Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Paper | Open Access

Recent progress on two-dimensional van der Waals thermoelectric materials with plasticity

Shengbo YinaCuihua Zhaoa,b,c()Bo-Ping Zhangd()Wenbo ZhaoaChencheng ZhangaLinji Lia
School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
Key Laboratory of High Performance Structural Materials and Thermo-surface Processing (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
School of Materials Science and Engineering. University of Science and Technology Beijing, 100083, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Lots of research on thermoelectric materials (TEs) has focused on improving their thermoelectric (TE) properties to achieve efficient energy conversion. However, the mechanical properties of materials are also the object of concern in practical applications. Nowadays, the field of electronic devices is obviously developing in the direction of flexible electronics, so the research on TEs should also consider the plasticity. Since 2018, it has been discovered that inorganic semiconductor materials have the ability of plastic deformation, giving new possibilities for the development of TEs with plasticity. This paper focuses on the TEs with two-dimensional van der Waals (2D vdW) crystal structures, which have good plasticity but low TE properties. However, these materials have the potential to become excellent materials with TE properties and good plasticity through optimization strategies. In this paper, the latest research progress of 2D vdW TE materials and their applications in electronic devices are reviewed. The plasticity and TE properties of 2D vdW materials with M2X, MX and MX2 structure are summarized, and their plasticity mechanisms are discussed. We also introduce the application of high throughput screening in the discovery of novel 2D vdW plastic materials, and outline the future research work of 2D vdW TE materials.

References

[1]

Salleo A, Wong WS. Flexible electronics: materials and applications. US: Springer Science & Business Media; 2009.

[2]

Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, et al. Epidermal electronics. Science 2011;333(6044):838-43.

[3]

Park S, Heo SW, Lee W, Inoue D, Jiang Z, Yu K, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018;561(7724):516-21.

[4]

Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 2019;48(6):1465-91.

[5]

Huang SY, Liu Y, Zhao Y, Ren ZF, Guo CF. Flexible electronics: Stretchable Electrodes and their future. Adv Funct Mater 2019;29(6):1805924.

[6]

Jiang H, Zheng L, Liu Z, Wang X. Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat 2019;2(6):1077-94.

[7]

Liu Y, Wang L, Zhao L, Yu X, Zi Y. Recent progress on flexible nanogenerators toward self-powered systems. InfoMat 2020;2(2):318-40.

[8]

Zhao X, Zhang Z, Liao Q, Xun X, Gao F, Xu L, et al. Self-powered user-interactive electronic skin for programmable touch operation platform. Sci Adv 2020;6(28):eaba4294.

[9]

Hasan MN, Wahid H, Nayan N, Ali MSM. Inorganic thermoelectric materials: a review. Int J Energ Res 2020;44(8):6170-222.

[10]

Chang C, Wu M, He D, Pei Y, Wu CF, Wu X, et al. 3D charge and 2D phonon transports leading to high out-of-plane zT in n-type SnSe crystals. Science 2018;360(6390):778-83.

[11]

Huang J, Liu XH, Du Y. Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT: PSS thermoelectric composites. J Materiomics 2022;8(6):1213-7.

[12]

Li J, Huckleby AB, Zhang M. Polymer-based thermoelectric materials: a review of power factor improving strategies. J Materiomics 2022;8(1):204-20.

[13]

Zhang C, Li H, Liu Y, Li P, Liu S, He C. Advancement of polyaniline/carbon Nanotubes based thermoelectric composites. Materials 2022;15(23):8644.

[14]

Adekoya GJ, Adekoya OC, Sadiku RE, Ray SS. Structure-property relationship and nascent applications of thermoelectric PEDOT:PSS/carbon composites: a review. Compos Commun 2021;27:100890.

[15]

Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 2011;10(6):429-33.

[16]

Dong BK, Zhang T, He F. Research progress and application of flexible thermoelectric materials. Prog Chem 2023;35(3):433-44.

[17]

Zhang Q, Sun Y, Xu W, Zhu D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 2014;26(40):6829-51.

[18]

Zhang Q, Sun YM, Xu W, Zhu DB. What to Expect from conducting polymers on the Playground of thermoelectricity: Lessons Learned from four high-mobility polymeric semiconductors. Macromolecules 2014;47(2):609-15.

[19]

Qu SY, Yao Q, Wang LM, Chen ZH, Xu KQ, Zeng HR, et al. Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. NPG Asia Mater 2016;8(7):e292.

[20]

Zhang L, Shang HJ, Huang DX, Xie BW, Zou Q, Gao ZS, et al. N-type flexible Bi2Se3 nanosheets/SWCNTs composite films with improved thermoelectric performance for low-grade waste-heat harvesting. Nano Energy 2022;104:107907.

[21]

Zhu Q, Wang S, Wang X, Suwardi A, Chua MH, Soo XYD, et al. Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett 2021;13(1):119.

[22]

Du J, Yu H, Liu B, Hong M, Liao Q, Zhang Z, et al. Strain engineering in 2D material-based flexible optoelectronics. Small Methods 2021;5(1):2000919.

[23]

Yu HH, Cao ZH, Zhang Z, Zhang XK, Zhang Y. Flexible electronics and optoelectronics of 2D van der Waals materials. Int J Min Met Mater 2022;29(4):671-90.

[24]

Kim DH, Cha GD. Deformable inorganic semiconductor. Nat Mater 2018;17(5):388-9.

[25]

Wang YC, Li AR, Hu HP, Fu CG, Zhu TJ. Reversible room temperature brittle-plastic transition in Ag2Te0.6S0.4 inorganic thermoelectric semiconductor. Adv Funct Mater 2023;33(26):2300189.

[26]

Wei TR, Jin M, Wang Y, Chen H, Gao Z, Zhao K, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 2020;369(6503):542-5.

[27]

Deng T, Gao Z, Qiu P, Wei TR, Xiao J, Wang G, et al. Plastic/ductile bulk 2D van der Waals single-crystalline SnSe2 for flexible thermoelectrics. Adv Sci 2022;9(29):2203436.

[28]

Gao ZQ, Yang QY, Qiu PF, Wei TR, Yang SQ, Xiao J, et al. p-Type plastic inorganic thermoelectric materials. Adv Energy Mater 2021;11(23):2100883.

[29]

Luu SDN, Vaqueiro P. Layered oxychalcogenides: structural chemistry and thermoelectric properties. J Materiomics 2016;2(2):131-40.

[30]

Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17(5):421-6.

[31]

Liang JS, Wang T, Qiu PF, Yang SQ, Ming C, Chen HY, et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energ Environ Sci 2019;12(10):2983-90.

[32]

He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Sci Adv 2020;6(15):eaaz8423.

[33]

Liu J, Xing T, Gao ZQ, Liang JS, Peng LM, Xiao J, et al. Enhanced thermoelectric performance in ductile Ag2S-based materials via doping iodine. Appl Phys Lett 2021;119(12):121905.

[34]

Yang S, Gao Z, Qiu P, Liang J, Wei TR, Deng T, et al. Ductile Ag20S7Te3 with excellent shape-Conformability and high thermoelectric performance. Adv Mater 2021;33(10):2007681.

[35]

Gao Z, Wei TR, Deng T, Qiu P, Xu W, Wang Y, et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat Commun 2022;13(1):7491.

[36]

Liang J, Zhang X, Wan C. From brittle to ductile: a scalable and Tailorable all-inorganic semiconductor Foil through a rolling process toward flexible thermoelectric Modules. Acs Appl Mater Inter 2022;14(46):520-4.

[37]

Pan Y, He B, Helm T, Chen D, Schnelle W, Felser C. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2. Nat Commun 2022;13(1):3909.

[38]

Wang HY, Wu H, Lin WT, Zhang B, Li XC, Zhang Y, et al. Orientation-dependent large plasticity of single-crystalline gallium selenide. Cell Rep Phys Sci 2022;3(4):100816.

[39]

Wang XD, Tan J, Ouyang J, Zhang HM, Wang JJ, Wang Y, et al. Designing inorganic semiconductors with Cold-rolling processability. Adv Sci 2022;9(30):2203776.

[40]

Ge BZ, Li C, Lu WQ, Ye HL, Li RY, He WK, et al. Dynamic phase transition leading to extraordinary plastic deformability of thermoelectric SnSe2 single crystal. Adv Energy Mater 2023;13(27):2300965.

[41]

Wang Y, Gong W, Kawasaki T, Harjo S, Zhang K, Zhang Z, et al. In situ neutron diffraction study on the deformation behavior of the plastic inorganic semiconductor Ag2S. Appl Phys Lett 2023;123(1):011903.

[42]

Zhang X, Zhao LD. Thermoelectric materials: energy conversion between heat and electricity. J Materiomics 2015;1(2):92-105.

[43]

Zhao LD, Kanatzidis MG. An overview of advanced thermoelectric materials. J Materiomics 2016;2(2):101-3.

[44]

He J, Tritt TM. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017;357(6358):eaak9997.

[45]

Freer R, Ekren D, Ghosh T, Biswas K, Qiu P, Wan S, et al. Key properties of inorganic thermoelectric materials—tables (version 1). JPhys Energy 2022;4(2):022002.

[46]

Li Z, Xiao C, Xie Y. Layered thermoelectric materials: structure, bonding, and performance mechanisms. Appl Phys Rev 2022;9(1):011303.

[47]

Zhang YN, Song ZY, Qiao D, Li XH, Guang Z, Li SP, et al. 2D van der Waals materials for ultrafast pulsed fiber lasers: review and prospect. Nanotechnology 2021;33(8):082003.

[48]

Alsalama MM, Hamoudi H, Abdala A, Ghouri ZK, Youssef KM. Enhancement of thermoelectric properties of layered chalcogenide materials. Rev Adv Mater Sci 2020;59(1):371-98.

[49]

Ma N, Zhang Z, Nan P, Bai W, Li K, Zhao J, et al. Phonon Symphony of stacked Multilayers and weak bonds lowers lattice thermal conductivity. Adv Mater 2022;34(30):e2202677.

[50]

Han C, Sun Q, Li Z, Dou SX. Thermoelectric enhancement of different Kinds of metal chalcogenides. Adv Energy Mater 2016;6(15):1600498.

[51]

Balandin AA, Lazarenkova OL. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices. Appl Phys Lett 2003;82(3):415-7.

[52]

Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 1998;57(23):14958-73.

[53]

Chen G. Nanoscale heat transfer and nanostructured thermoelectrics. Ieee T Compon Pack T 2006;29(2):238-46.

[54]

Dresselhaus MS, Dresselhaus G, Sun X, Zhang Z, Cronin SB, Koga T. Low-dimensional thermoelectric materials. Phys Solid State 1999;41(5):679-82.

[55]

Heremans JP. Low-dimensional thermoelectricity. Acta Phys Pol A 2005;108(4):609-34.

[56]

Hicks LD, Dresselhaus MS. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 1993;47(19):12727-31.

[57]

Hicks LD, Dresselhaus MS. Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 1993;47(24):16631-4.

[58]

Parker D, Chen X, Singh DJ. High three-dimensional thermoelectric performance from low-dimensional bands. Phys Rev Lett 2013;110(14):146601.

[59]

Zhou Y, Zhao LD. Promising thermoelectric bulk materials with 2D structures. Adv Mater 2017;29(45):1702676.

[60]

Xi L, Yang J, Wu L, Yang J, Zhang W. Band engineering and rational design of high-performance thermoelectric materials by first-principles. J Materiomics 2016;2(2):114-30.

[61]

Wu J, Chen YB, Wu JQ, Hippalgaonkar K. Perspectives on thermoelectricity in layered and 2D materials. Adv Electron Mater 2018;4(12):1800248.

[62]

Samanta M, Ghosh T, Chandra S, Biswas K. Layered materials with 2D connectivity for thermoelectric energy conversion. J Mater Chem A 2020;8(25):12226-61.

[63]

Wu L, Meng Q, Jooss C, Zheng JC, Inada H, Su D, et al. Origin of phonon glass–electron crystal behavior in thermoelectric layered Cobaltate. Adv Funct Mater 2013;23(46):5728-36.

[64]

Cavallo F, Lagally MG. Semiconductors turn soft: inorganic nanomembranes. Soft Matter 2010;6(3):439-55.

[65]

Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells. New York: McGraw-hill; 1959.

[66]

Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015;9(12):11509-39.

[67]

Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, et al. Electronics based on two-dimensional materials. Nat Nanotechnol 2014;9(10):768-79.

[68]

Ge B, Li R, Zhu M, Yu Y, Zhou C. Deformation mechanisms of inorganic thermoelectric materials with plasticity. Adv Energy Sustainability Res 2023;5(1):2300197.

[69]

Ren Q, Lun YZ, Li YH, Gao ZY, Deng JM, Wang XY, et al. High-throughput screening of deformable inorganic layered semiconductors. J Phys Chem C 2023;127(16):7870-7.

[70]

Chen H, Wei TR, Zhao K, Qiu P, Chen L, He J, et al. Room-temperature plastic inorganic semiconductors for flexible and deformable electronics. InfoMat 2020;3(1):22-35.

[71]

Sun FH, Li H, Tan J, Zhao L, Wang X, Hu H, et al. Review of current zT > 1 thermoelectric sulfides. J Materiomics 2023;10(1):218-33.

[72]

Zhao C, Li Z, Fan T, Xiao C, Xie Y. Defects engineering with multiple dimensions in thermoelectric materials. Research 2020;2020:9652749.

[73]

Ren Y, Jiang Q, Yang J, Luo Y, Zhang D, Cheng Y, et al. Enhanced thermoelectric performance of MnTe via Cu doping with optimized carrier concentration. J Materiomics 2016;2(2):172-8.

[74]

Tan XF, Liu GQ, Xu JT, Tan XJ, Shao HZ, Hu HY, et al. Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering. J Materiomics 2018;4(1):62-7.

[75]

Xu YD, Li W, Wang C, Chen ZW, Wu YX, Zhang XY, et al. MnTe2 as a novel promising thermoelectric material. J Materiomics 2018;4(3):215-20.

[76]

Asfandiyar, Cai BW, Zhao LD, Li JF. High thermoelectric figure of merit zT > 1 in SnS polycrystals. J Materiomics 2020;6(1):77-85.

[77]

Ding J, Liu C, Xi L, Xi J, Yang J. Thermoelectric transport properties in chalcogenides ZnX (X= S, Se): from the role of electron-phonon couplings. J Materiomics 2021;7(2):310-9.

[78]

Pang HM, Zhang XX, Wang DY, Huang R, Yang ZZ, Zhang X, et al. Realizing ranged performance in SnTe through integrating bands convergence and DOS distortion. J Materiomics 2022;8(1):184-94.

[79]

Wei ST, Wang BY, Zhang ZP, Li WH, Yu L, Wei SK, et al. Achieving high thermoelectric performance through carrier concentration optimization and energy filtering in Cu3SbSe4-based materials. J Materiomics 2022;8(5):929-36.

[80]

Min R, Wang Y, Jiang X, Chen R, Li M, Kang H, et al. ZrNiSn-based compounds with high thermoelectric performance and ultralow lattice thermal conductivity via introduction of multiscale scattering centers. J Materiomics 2023;10(1):220-9.

[81]

Shi Q, Li J, Zhao X, Chen Y, Zhang F, Zhong Y, et al. Comprehensive Insight into p-type Bi2Te3-based thermoelectrics near room temperature. Acs Appl Mater Inter 2022;14(44):49425-45.

[82]

Han ZJ, Li JW, Jiang F, Xia JT, Zhang BP, Li JF, et al. Room-temperature thermoelectric materials: Challenges and a new paradigm. J Materiomics 2022;8(2):427-36.

[83]

Li Z, Yang X, Gao Z, Wang J, Xue Y, Wang J, et al. Remarkable average thermoelectric performance of the highly oriented Bi(Te, Se)-based thin films and devices. J Materiomics 2024;10(2):366-76.

[84]

Wei TR, Qiu P, Zhao K, Shi X, Chen L. Ag2Q-Based (Q= S, Se, Te) silver chalcogenide thermoelectric materials. Adv Mater 2023;35(1):2110236.

[85]

Liebig J. Uber einige Stickstoff - Verbindungen. Ann Pharm (Poznan) 1834;10(1):1-47.

[86]

Kenngott A. Ueber den Akanthit, eine neue Species in dem Geschlechte der Silber-Glanze. Ann Phys 2006;171(7):462-4.

[87]

Conn JB, Taylor RC. Thermoelectric and Crystallographic properties of Ag2Se. J Electrochem Soc 1960;107(12):977.

[88]

Miyatani S. Electrical properties of pseudo-binary systems of Ag2VI’s; Ag2TexSe1-x, Ag2TexS1-x, and Ag2SexS1-x. J Phys Soc Jpn 1960;15(9):1586-95.

[89]

Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, et al. Copper ion liquid-like thermoelectrics. Nat Mater 2012;11(5):422-5.

[90]

Yang D, Su X, Li J, Bai H, Wang S, Li Z, et al. Blocking ion migration Stabilizes the high thermoelectric performance in Cu2Se composites. Adv Mater 2020;32(40):2003730.

[91]

Sakuma T, Iida K, Honma K, Okazaki H. X-ray diffraction study on a superionic conductor: α-Ag2Se. J Phys Soc Jpn 1977;43(2):538-43.

[92]

Sadanaga R, Sueno S. X-ray study on the α-β transition of Ag2S. Mineral J 1967;5(2):124-43.

[93]

Lin SQ, Guo LL, Wang XH, Liu Y, Wu YY, Li RB, et al. Revealing the promising near-room-temperature thermoelectric performance in Ag2Se single crystals. J Materiomics 2023;9(4):754-61.

[94]

Manolikas C. A study by means of electron microscopy and electron diffraction of the phase transformation and the domain structure in Ag2Te. J Solid State Chem 1987;66(1):1-6.

[95]

Gautam AK, Khare N. Enhanced thermoelectric figure of merit at near room temperature in n-type binary silver telluride nanoparticles. J Materiomics 2023;9(2):310-7.

[96]

Jood P, Chetty R, Ohta M. Structural stability enables high thermoelectric performance in room temperature Ag2Se. J Mater Chem A 2020;8(26):13024-37.

[97]

Li G, An Q, Morozov SI, Duan B, Goddard WA, Zhang Q, et al. Ductile deformation mechanism in semiconductor α-Ag2S. npj Comput Mater 2018;4(1):1-6.

[98]

Han Z, Gu Y, Zheng X, Liu JX, Zhang GJ, Liang Y. Ultrahigh elasticity and anomalous softening of α-Ag2S under pressure. Chem Phys Lett 2022;802:139801.

[99]

Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y. Single-layer Ag2S: a two-dimensional Bidirectional Auxetic semiconductor. Nano Lett 2019;19(2):1227-33.

[100]

Zhu T, Bai H, Zhang J, Tan G, Yan Y, Liu W, et al. Realizing high thermoelectric performance in Sb-doped Ag2Te compounds with a low-temperature monoclinic structure. Acs Appl Mater Inter 2020;12(35):39425-33.

[101]

Mi WL, Qiu PF, Zhang TS, Lv YH, Shi X, Chen LD. Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions. Appl Phys Lett 2014;104(13):133903.

[102]

Pei Y, Heinz NA, Snyder GJ. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. J Mater Chem 2011;21(45):18256-60.

[103]

Pei Y, LaLonde AD, Heinz NA, Shi X, Iwanaga S, Wang H, et al. Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv Mater 2011;23(47):5674-8.

[104]

Hong M, Lyu W, Wang Y, Zou J, Chen ZG. Establishing the Golden range of Seebeck coefficient for Maximizing thermoelectric performance. J Am Chem Soc 2020;142(5):2672-81.

[105]

Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Thinking like a chemist: Intuition in thermoelectric materials. Angew Chem Int Ed Engl 2016;55(24):6826-41.

[106]

Jin M, Liang J, Qiu P, Huang H, Yue Z, Zhou L, et al. Investigation on low-temperature thermoelectric properties of Ag2Se polycrystal fabricated by using zone-melting method. J Phys Chem Lett 2021;12(34):8246-55.

[107]

Fouddad FZ, Hiadsi S, Bouzid L, Ghrici YF, Bekhadda K. Low temperature study of the structural stability, electronic and optical properties of the acanthite α-Ag2S: Spin-orbit coupling effects and new important ultra-refraction property. Mat Sci Semicon Proc 2020;107:104801.

[108]

Fang CM, de Groot RA, Wiegers GA. Ab initio band structure calculations of the low-temperature phases of Ag2Se, Ag2Te and Ag3AuSe2. J Phys Chem Solids 2002;63(3):457-64.

[109]

Jahangirli Z, Alekperov O, Eyyubov Q. Ab-Initio investigation of the electronic structure, optical properties, and lattice dynamics of β-Ag2Te. Phys Status Solidi B 2018;255(12):1800344.

[110]

Alekberov O, Jahangirli Z, Paucar R, Huseynova S, Abdulzade N, Nakhmedov A, et al. Band structure and vacancy formation in β-Ag2S: Ab-initio study. Phys Status Solidi C 2015;12(6):672-5.

[111]

Du CY, Tian JY, Liu XJ. Effect of intrinsic vacancy defects on the electronic properties of monoclinic Ag2S. Mater Chem Phys 2020;249:122961.

[112]

Wei TR, Wu CF, Li F, Li JF. Low-cost and environmentally benign selenides as promising thermoelectric materials. J Materiomics 2018;4(4):304-20.

[113]

Liang J, Qiu P, Zhu Y, Huang H, Gao Z, Zhang Z, et al. Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system. Research 2020;2020:6591981.

[114]

Liang X, Chen C. Ductile inorganic amorphous/crystalline composite Ag4TeS with phonon-glass electron-crystal transport behavior and excellent stability of high thermoelectric performance on plastic deformation. Acta Mater 2021;218:117231.

[115]

Peng L, Yang S, Wei TR, Qiu P, Yang J, Zhang Z, et al. Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. J Materiomics 2022;8(3):656-61.

[116]

Yu K, Wu Y, He H, Niu C, Rong M, Wu D, et al. Ultra-low lattice thermal conductivity and enhanced thermoelectric performance in Ag2−xSe1/3S1/3Te1/3 via anion permutation and cation modulation. J Alloy Compd 2021;885:161378.

[117]

Wu RN, Li ZL, Li YB, You L, Luo PF, Yang J, et al. Synergistic optimization of thermoelectric performance in p-type Ag2Te through Cu substitution. J Materiomics 2019;5(3):489-95.

[118]

Hong M, Wang Y, Feng T, Sun Q, Xu S, Matsumura S, et al. Strong phonon-phonon interactions Securing extraordinary thermoelectric Ge1-xSbxTe with Zn-Alloying-Induced band alignment. J Am Chem Soc 2019;141(4):1742-8.

[119]

Hu P, Wei TR, Huang SJ, Xia XG, Qiu PF, Yang J, et al. Anion-site-modulated thermoelectric properties in Ge2Sb2Te5-based compounds. Rare Met 2020;39(10):1127-33.

[120]

Wang H, LaLonde AD, Pei YZ, Snyder GJ. The Criteria for Beneficial disorder in thermoelectric solid solutions. Adv Funct Mater 2013;23(12):1586-96.

[121]

Chen H, Shao C, Huang S, Gao Z, Huang H, Pan Z, et al. High-entropy cubic pseudo-ternary Ag2(S, Se, Te) materials with excellent ductility and thermoelectric performance. Adv Energy Mater 2023:2303473.

[122]

Chang Y, Li Z, Luo P, Qian W, Zhang J, Luo J. Room-temperature cubic Ag2S1-2xSexTex with promising ductility and thermoelectric properties enabled by entropy engineering. Adv Funct Mater 2023:2310016.

[123]

Liang J, Liu J, Qiu P, Ming C, Zhou Z, Gao Z, et al. Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials. Nat Commun 2023;14(1):8442.

[124]

Hu H, Wang Y, Fu C, Zhao X, Zhu T. Achieving metal-like malleability and ductility in Ag2Te1-xSx inorganic thermoelectric semiconductors with high mobility. Innovation 2022;3(6):100341.

[125]

Wu H, Shi XL, Mao Y, Li M, Liu WD, Wang DZ, et al. Optimized thermoelectric performance and plasticity of ductile semiconductor Ag2S0.5Se0.5 via Dual-phase engineering. Adv Energy Mater 2023;13(43):2302551.

[126]

Liu WS, Bai SQ. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module. J Materiomics 2019;5(3):321-36.

[127]

Zhu H, Luo J, Zhao H, Liang J. Enhanced thermoelectric properties of p-type Ag2Te by Cu substitution. J Mater Chem A 2015;3(19):10303-8.

[128]

Xue LS, Zhang ZF, Shen WX, Ma HG, Zhang YW, Fang C, et al. Thermoelectric performance of Cu2Se bulk materials by high-temperature and high-pressure synthesis. J Materiomics 2019;5(1):103-10.

[129]

Çınar MN, Sargın GÖ, Sevim K, Özdamar B, Kurt G, Sevinçli H. Ballistic thermoelectric transport properties of two-dimensional group Ⅲ-Ⅵ monolayers. Phys Rev B 2021;103(16):165422.

[130]

Yang Q, Yang S, Qiu P, Peng L, Wei TR, Zhang Z, et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022;377(6608):854-8.

[131]

Liu Y, Wei TR, Wu J, Wuliji H, Huang H, Zhou Z, et al. Non-layered InSe nanocrystalline bulk materials with ultra-low thermal conductivity. J Materiomics 2024;10(2):448-55.

[132]

Wan W, Guo R, Ge Y, Liu Y. Carrier and phonon transport in 2D InSe and its Janus structures. J Phys Condens Matter 2023;35(13):133001.

[133]

Shi LB, Cao S, Yang M, You Q, Zhang KC, Bao Y, et al. Theoretical prediction of intrinsic electron mobility of monolayer InSe: first-principles calculation. J Phys Condens Matter 2020;32(6):065306.

[134]

Shafique A, Shin YH. The effect of non-analytical corrections on the phononic thermal transport in InX (X = S, Se, Te) monolayers. Sci Rep 2020;10(1):1093.

[135]

Ma JL, Xu DW, Hu R, Luo XB. Examining two-dimensional Frohlich model and enhancing the electron mobility of monolayer InSe by dielectric engineering. J Appl Phys 2020;128(3):035107.

[136]

Han G, Chen ZG, Drennan J, Zou J. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 2014;10(14):2747-65.

[137]

Zhang B, Wu H, Peng KL, Shen XC, Gong XN, Zheng SK, et al. Super deformability and thermoelectricity of bulk γ-InSe single crystals. Chinese Phys B 2021;30(7):078101.

[138]

Ma YP, Huang HR, Liu YF, Chen HY, Bai XD, Zhao KP, et al. Remarkable plasticity and softness of polymorphic InSe van der Waals crystals. J Materiomics 2023;9(4):709-16.

[139]

Sun MJ, Wang W, Zhao QH, Gan XT, Sun YH, Jie WQ, et al. ε-InSe single crystals grown by a horizontal gradient freeze method. CrystEngComm 2020;22(45):7864-9.

[140]

Isik M, Gasanly NM. Temperature-tuned band gap characteristics of InSe layered semiconductor single crystals. Mat Sci Semicon Proc 2020;107:104862.

[141]

Spitzer DP. Lattice thermal conductivity of semiconductors: a chemical bond approach. J Phys Chem Solids 1970;31(1):19-40.

[142]

Hou XJ, Chen SP, Du ZL, Liu XL, Cui JL. Improvement of the thermoelectric performance of InSe-based alloys doped with Sn. Rsc Adv 2015;5(124):102856-62.

[143]

Lee KH, Oh MW, Kim HS, Shin WH, Lee K, Lim JH, et al. Enhanced thermoelectric transport properties of n-type InSe due to the emergence of the flat band by Si doping. Inorg Chem Front 2019;6(6):1475-81.

[144]

Choo SS, Hong SW, Kim HS, Kim SI. Enhanced thermoelectric transport properties of n-type InSe by Sn doping. Korean J Met Mater 2020;58(5):348-52.

[145]

Yoo J, Kim JI, Cho HJ, Choo SS, Kim SI, Lee K, et al. Electronic and thermal properties of Si-doped InSe layered chalcogenides. J Korean Phys Soc 2018;72(7):775-9.

[146]

Zhang Q, Song QC, Wang XY, Sun JY, Zhu Q, Dahal K, et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energ Environ Sci 2018;11(4):933-40.

[147]

Kim JI, Kim HS, Kim SI. Electrical and thermal transport properties of S- and Te-doped InSe alloys. J Phys D Appl Phys 2019;52(29):295501.

[148]

Shi HN, Wang DY, Xiao Y, Zhao LD. Dynamic carrier transports and low thermal conductivity in n-type layered InSe thermoelectrics. Aggregate 2021;2(4):e92.

[149]

Song ZL, Liu HY, Du ZL, Liu XL, Cui JL. Improvement of thermoelectric performance of α-In2Se3 upon S incorporation. Phys Status Solidi A 2016;213(4):986-93.

[150]

Xiao Y, Wu HJ, Wang DY, Niu CL, Pei YL, Zhang Y, et al. Amphoteric Indium enables carrier engineering to enhance the power factor and thermoelectric performance in n-type AgnPb100InnTe100+2n (LIST). Adv Energy Mater 2019;9(17):1900414.

[151]

Li XP, Song XH, Du J, Xiong WQ, Xia CX. Strain-tunable p-type Ag doping in the native n-type InSe monolayer. Appl Surf Sci 2018;462:387-92.

[152]

Xia Z, Wang G, Zhou X, Wen W. Effect of the Cu vacancy on the thermoelectric performance of p-type Cu1−xInTe2 compounds. Ceram Int 2017;43(18):16276-82.

[153]

Li XP, Xia CX, Song XH, Du J, Xiong WQ. n- and p-type dopants in the InSe monolayer via substitutional doping. J Mater Sci 2017;52(12):7207-14.

[154]

Zhang X, Shen J, Lin S, Li J, Chen Z, Li W, et al. Thermoelectric properties of GeSe. J Materiomics 2016;2(4):331-7.

[155]

Sun H, Wang Z, Wang Y. Band alignment of two-dimensional metal monochalcogenides MXs (M= Ga, In; X= S, Se, Te). AIP Adv 2017;7(9):095120.

[156]

Chen X, Huang Y, Liu J, Yuan H, Chen H. Thermoelectric performance of two-dimensional AlX (X= S, Se, Te): a first-principles-based transport study. ACS Omega 2019;4(18):17773-81.

[157]

Nakamura M, Nakamura H, Shimamura K, Ohashi N. Growth and characterization of a gallium monosulfide (GaS) single crystal using the Bridgman method. J Cryst Growth 2021;573:126303.

[158]

Kokh KA, Andreev YM, Svetlichnyi VA, Lanskii GV, Kokh AE. Growth of GaSe and GaS single crystals. Cryst Res Technol 2011;46(4):327-30.

[159]

Orlov V, Borisenko E, Golovin Y, Tyurin A, Kolesnikov N, Bozhko S. Micro- and nanohardness of GaTe single crystals. Mater Sci Eng B 2023;290:116301.

[160]

Vu TH, Pham AT, Nguyen VQ, Park J, Park S, Cho S. Bi-doped GaTe single crystals: Growth and thermoelectric properties. J Solid State Chem 2021;298:122155.

[161]

Wang J, Zhang R, Xiao H, Zhou R, Gao T. The carrier mobility of monolayer and bulk GaS: from first-principles calculations. Phys Chem Chem Phys 2022;24(36):21666-73.

[162]

Marfoua B, Hong J. High thermoelectric performance in two dimensional chalcogenides systems: GaSe and GaTe. Nanotechnology 2021;32(11):115702.

[163]

Marfoua B, Hong J. Giant thermoelectric performance of an n-type 2D GaSe0.5Te0.5 alloy. J Mater Chem C 2021;9(32):10497-504.

[164]

Conwell E, Weisskopf VF. Theory of impurity scattering in semiconductors. Phys Rev 1950;77(3):388-90.

[165]

Yang J, Xi L, Qiu W, Wu L, Shi X, Chen L, et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. npj Comput Mater 2016;2(1):1-17.

[166]

Mahan GD. Figure of merit for thermoelectrics. J Appl Phys 1989;65(4):1578-83.

[167]

Li X, Li L, Wu M. Various polymorphs of group Ⅲ–Ⅵ (GaSe, InSe, GaTe) monolayers with quasi-degenerate energies: facile phase transformations, high-strain plastic deformation, and ferroelastic switching. Mater Today Phys 2020;15:100229.

[168]

Zhou X, Zhang Q, Gan L, Li H, Xiong J, Zhai T. Booming development of group Ⅳ-Ⅵ semiconductors: Fresh Blood of 2D Family. Adv Sci 2016;3(12):1600177.

[169]

Lu ZY, Neupane GP, Jia GH, Zhao HT, Qi DC, Du YP, et al. 2D materials based on main group element compounds: phases, synthesis, characterization, and applications. Adv Funct Mater 2020;30(40):2001127.

[170]

Wang Y, Gao ZB, Zhou J. Ultralow lattice thermal conductivity and electronic properties of monolayer 1T phase semimetal SiTe2 and SnTe2. Physica E 2019;108:53-9.

[171]

Bera J, Betal A, Singh Z, Gandi AN, Sahu S. Low lattice thermal conductivity and its role in the remarkable thermoelectric performance of newly predicted SiS2 and SiSe2 monolayers. Comp Mater Sci 2022;201:110931.

[172]

Ivanov AA, Kaplar EP, Prilepo YP, Murav'ev VV, Ustinov VS. Progress in the research on promising high-performance thermoelectric materials. Nanobiotechnol Rep 2021;16(3):268-81.

[173]

Liu D, Wang D, Hong T, Wang Z, Wang Y, Qin Y, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science 2023;380(6647):841-6.

[174]

Ding YC, Xiao B, Tang G, Hong JW. Transport properties and high thermopower of SnSe2: a full Ab-initio investigation. J Phys Chem C 2017;121(1):225-36.

[175]

Pham AT, Vu TH, Cheng C, Trinh TL, Lee JE, Ryu H, et al. High-quality SnSe2 single crystals: electronic and thermoelectric properties. ACS Appl Energ Mater 2020;3(11):10787-92.

[176]

Luo YB, Zheng Y, Luo ZZ, Hao SQ, Du CF, Liang QH, et al. n-Type SnSe2 oriented-Nanoplate-based Pellets for high thermoelectric performance. Adv Energy Mater 2018;8(8):1702167.

[177]

Wu Y, Li W, Faghaninia A, Chen Z, Li J, Zhang X, et al. Promising thermoelectric performance in van der Waals layered SnSe2. Mater Today Phys 2017;3:127-36.

[178]

Nisar M, Chen YX, Qin WN, Abbas A, Zheng ZH, Fan P, et al. Effects of heavy bromine doping on the thermoelectric performance and dynamic stability of SnSe2 polycrystals. J Alloy Compd 2023;959:170566.

[179]

Kim SI, Bang J, An J, Hong S, Bang G, Shin WH, et al. Effect of Br substitution on thermoelectric transport properties in layered SnSe. J Alloy Compd 2021;868:159161.

[180]

Williamson I, Hernandez AC, Wong-Ng W, Li L. High-throughput computational screening of electrical and phonon properties of two-dimensional transition metal dichalcogenides. Jom 2016;68(10):2666-72.

[181]

Li G, Ding G, Gao G. Thermoelectric properties of SnSe2 monolayer. J Phys Condens Matter 2017;29(1):015001.

[182]

Liu WJ, Liu ML, Wang XT, Shen T, Chang GQ, Lei M, et al. Thickness-Dependent ultrafast Photonics of SnS2 Nanolayers for optimizing fiber lasers. ACS Appl Nano Mater 2019;2(5):2697-705.

[183]

Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012;7(11):699-712.

[184]

Podzorov V, Gershenson ME, Kloc C, Zeis R, Bucher E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl Phys Lett 2004;84(17):3301-3.

[185]

Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, et al. Two-dimensional atomic crystals. P Natl Acad Sci Usa 2005;102(30):10451-3.

[186]

Chen K, Pan JA, Yin WA, Ma CY, Wang LL. Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides. Chinese Chem Lett 2023;34(11):108226.

[187]

Cui X, Lee GH, Kim YD, Arefe G, Huang PY, Lee CH, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol 2015;10(6):534-40.

[188]

Li D, Gong Y, Chen Y, Lin J, Khan Q, Zhang Y, et al. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett 2020;12(1):36.

[189]

Ge Y, Wan W, Ren Y, Liu Y. Large thermoelectric power factor of high-mobility transition-metal dichalcogenides with 1T″ phase. Phys Rev Res 2020;2(1):013134.

[190]

Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) monolayers. Physica B 2011;406(11):2254-60.

[191]

Liu J, Yang HS, Gao HX, Li D, Sun CH, Chai YS, et al. Study on the thermopower of Bi intercalated TiS2: Evidence of thin, lens-shaped Fermi pockets. Phys Lett 2006;360(2):344-7.

[192]

Guilmeau E, Barbier T, Maignan A, Chateigner D. Thermoelectric anisotropy and texture of intercalated TiS2. Appl Phys Lett 2017;111(13):133903.

[193]

Guilmeau E, Bréard Y, Maignan A. Transport and thermoelectric properties in Copper intercalated TiS2 chalcogenide. Appl Phys Lett 2011;99(5):052107.

[194]

Martinez H, Auriel C, Gonbeau D, Pfister-Guillouzo G, Meerschaut A. Electronic structure of two misfit layer compounds: (PbS)1.18(TiS2) and (PbS1.18)(TiS2)2. J Electron Spectrosc 1998;95(2–3):145-58.

[195]

Yin C, Hu Q, Wang GY, Huang TY, Zhou XY, Zhang X, et al. Intriguing substitution of conducting layer triggered enhancement of thermoelectric performance in misfit-layered (SnS)1.2(TiS2)2. Appl Phys Lett 2017;110(4):043507.

[196]

Wang ZW, Zhang CR, Li Y, Liang J, Zhang J, Liu ZG, et al. Robustly enhanced Seebeck coefficient in the MXene/Organics/TiS2 misfit structure for flexible thermoelectrics. Acs Appl Mater Inter 2023;15(30):36301-11.

[197]

Huang XG, Feng XB, An Q, Huang B, Zhang XL, Lu ZT, et al. Stacking fault-induced strengthening mechanism in thermoelectric semiconductor Bi2Te3. Matter 2023;6(9):3087-98.

[198]

Wu Y, Nan P, Chen Z, Zeng Z, Liu R, Dong H, et al. Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and Converged bands. Adv Sci 2020;7(12):1902628.

[199]

Wu D, Chen X, Zheng FS, Du HC, Jin L, Dunin-Borkowski RE. Dislocation evolution and migration at grain boundaries in thermoelectric SnTe. Acs Appl Energ Mater 2019;2(4):2392-7.

[200]

Huang ZY, Wang F, Jung CW, Zhang SY, Zu FQ, Zhou CJ, et al. Decorated dislocations lead to dynamically optimized thermoelectric performance in N-type PbTe. Mater Today Phys 2023;37:101198.

[201]

Wang H, Feng X, Lu Z, Duan B, Yang H, Wu L, et al. Synergetic enhancement of strength–ductility and thermoelectric properties of Ag2Te by domain boundaries. Adv Mater 2023;35(35):2302969.

[202]

Sumigawa T, Shimada T, Huang K, Mizuno Y, Hagiwara Y, Ozaki N, et al. Ultrasmall-scale brittle fracture Initiated from a dislocation in SrTiO3. Nano Lett 2022;22(5):2077-84.

[203]

Yuan KP, Zhang XL, Chang Z, Yang ZH, Tang DW. Pressure-induced anisotropic to Isotropic thermal transport and promising thermoelectric performance in layered InSe. Acs Appl Energ Mater 2022;5(9):10690-701.

[204]

Zheng Q, Liang C, Jiang J, Li S. Elastic properties and deformation mechanisms in the van der Waals single-crystalline Indium selenide. Phys Status Solidi RRL 2021;16(3):2100418.

[205]

Li G, Yao K, Gao G. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures. Nanotechnology 2018;29(1):015204.

[206]

Jia XZ, Shao Q, Xu YC, Li RS, Huang K, Guo YZ, et al. Elasticity-based-exfoliability measure for high-throughput computational exfoliation of two-dimensional materials. npj Comput Mater 2021;7(1):211.

[207]

Shao Q, Li RS, Yue ZG, Wang YL, Gao EL. Data-driven discovery and understanding of Ultrahigh-modulus crystals. Chem Mater 2021;33(4):1276-84.

[208]

Wang YF, Lin PJ, Lou Q, Zhang ZC, Huang S, Lu Y, et al. Design guidelines for chalcogenide-based flexible thermoelectric materials. Mater Adv 2021;2(8):2584-93.

[209]

Kim S, Kim T, Kim CS, Choi H, Kim YJ, Lee GS, et al. Two-dimensional thermal Haptic module based on a flexible thermoelectric device. Soft Robot 2020;7(6):736-42.

[210]

Bahk JH, Fang HY, Yazawa K, Shakouri A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J Mater Chem C 2015;3(40):10362-74.

[211]

Du Y, Xu JY, Paul B, Eklund P. Flexible thermoelectric materials and devices. Appl Mater Today 2018;12:366-88.

[212]

Shi X, He J. Thermopower and harvesting heat. Science 2021;371(6527):343-4.

[213]

Jin Q, Jiang S, Zhao Y, Wang D, Qiu J, Tang DM, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat Mater 2019;18(1):62-8.

[214]

Kim SJ, Lee HE, Choi H, Kim Y, We JH, Shin JS, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 2016;10(12):10851-7.

[215]

Kim SJ, We JH, Cho BJ. A wearable thermoelectric generator fabricated on a glass fabric. Energ Environ Sci 2014;7(6):1959-65.

[216]

Pei YZ, LaLonde AD, Wang H, Snyder GJ. Low effective mass leading to high thermoelectric performance. Energ Environ Sci 2012;5(7):7963-9.

[217]

Kim GH, Shao L, Zhang K, Pipe KP. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 2013;12(8):719-23.

[218]

Sun YG, Rogers JA. Inorganic semiconductors for flexible electronics. Adv Mater 2007;19(15):1897-916.

[219]

Chen K, Wang LL, Luo ZZ, Xu XW, Li Y, Liu SJ, et al. Flexible thermoelectrics based on plastic inorganic semiconductors. Adv Mater Technol 2023;8(16):2300189.

[220]

Zhang L, Shi XL, Yang YL, Chen ZG. Flexible thermoelectric materials and devices: from materials to applications. Mater Today 2021;46:62-108.

[221]

Balyakin IA, Sadovnikov SI. Deep learning potential for superionic phase of Ag2S. Comp Mater Sci 2022;202:100963.

[222]

Zhao S, Chen H, Zhao X, Luo J, Tang Z, Zeng G, et al. Excessive iodine addition leads to room-temperature superionic Cu2S with enhanced thermoelectric properties and improved thermal stability. Mater Today Phys 2020;15:100271.

[223]

Fan FR, Tang W, Wang ZL. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 2016;28(22):4283-305.

[224]

Han X. Ductile van der Waals materials. Science 2020;369(6503):509.

[225]

Wang Y, Sun L, Wang C, Yang F, Ren X, Zhang X, et al. Organic crystalline materials in flexible electronics. Chem Soc Rev 2019;48(6):1492-530.

[226]

Ji L, Shi J, Wei J, Yu T, Huang W. Air-stable organic Radicals: new-generation materials for flexible electronics? Adv Mater 2020;32(32):1908015.

[227]

Peng J, Grayson M, Snyder GJ. What makes a material bendable? A thickness-dependent metric for bendability, malleability, ductility. Matter 2021;4(9):2694-6.

[228]

Peng J, Snyder GJ. A figure of merit for flexibility. Science 2019;366(6466):690-1.

[229]

Yang L, Chen W, Yu Q, Liu B. Mass production of two-dimensional materials beyond graphene and their applications. Nano Res 2020;14(6):1583-7.

[230]

Zhang C, Tan J, Pan Y, Cai X, Zou X, Cheng HM, et al. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl Sci Rev 2020;7(2):324-32.

[231]

Zhang ZY, Wang X, Meng FN, Liu DD, Huang SL, Cui JF, et al. Origin and evolution of a crack in silicon induced by a single grain grinding. J Manuf Process 2022;75:617-26.

[232]

Pei ZJ, Fisher GR, Liu J. Grinding of silicon wafers: a review from historical perspectives. Int J Mach Tool Manu 2008;48(12–13):1297-307.

[233]

Zhang ZY, Cui JF, Wang B, Wang ZG, Kang RK, Guo DM. A novel approach of mechanical chemical grinding. J Alloy Compd 2017;726:514-24.

[234]

Gao PL, Liu TT, Zhang ZY, Meng FN, Ye RP, Liu J. Non-spherical abrasives with ordered mesoporous structures for chemical mechanical polishing. Sci China Mater 2021;64(11):2747-63.

[235]

Daud ND, Hasan MN, Saleh T, Leow PL, Ali MSM. Non-traditional machining techniques for silicon wafers. Int J Adv Manuf Tech 2022;121(1–2):29-57.

[236]

Sebastian A, Zhang F, Dodda A, May-Rawding D, Liu H, Zhang T, et al. Electrochemical polishing of two-dimensional materials. ACS Nano 2019;13(1):78-86.

Journal of Materiomics
Article number: 100850
Cite this article:
Yin S, Zhao C, Zhang B-P, et al. Recent progress on two-dimensional van der Waals thermoelectric materials with plasticity. Journal of Materiomics, 2025, 11(1): 100850. https://doi.org/10.1016/j.jmat.2024.02.010
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return