High-temperature polymer nanocomposites with high energy storage density (Ue) are promising dielectrics for capacitors used in electric vehicles, aerospace, etc. However, filler agglomeration and interface defects at high filler loadings significantly limit the enhancement of Ue and hamper the large-scale production of the nanocomposites. Here, polyetherimide (PEI) nanocomposites with nanoscale alumina (AO) at ultra-low contents were prepared via in situ polymerization from PEI monomers. We compared two composite dielectric preparation methods (in situ polymerization and ordinary solution blending) under the same conditions. In contrast to the nanocomposites obtained by blending PEI polymers with AO, the in situ nanocomposites exhibit substantially improved filler dispersion, together with largely suppressed conduction loss at high fields and high temperatures, leading to comprehensive enhancements of breakdown strength (Eb), charge-discharge efficiency (η) and Ue, simultaneously. The 0.3% (in volume) AO filled PEI nanocomposite film exhibits a superior Ue of 4.8 J/cm3 with η of 90% at 150 ℃, which is 128% and 218% higher than those of pristine PEI and the ex situ PEI/AO nanocomposite film under the same conditions, respectively. This work provides a scalable strategy for the preparation of dielectrics with both good processability and excellent high-temperature energy storage performance.
Li Q, Chen L, Gadinski M, Zhang S, Zhang G, Li H, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015;523:576-9.
Pan Z, Pan Y, Li L, Xu X, Dong J, Jin F, et al. High energy density and superior charge/discharge efficiency polymer dielectrics enabled by rationally designed dipolar polarization. J. Materiomics 2023;9:601-8.
Zhang T, Yang L, Zhang C, Feng Y, Wang J, Shen Z, et al. Polymer dielectric films exhibiting superior high-temperature capacitive performance by utilizing an inorganic insulation interlayer. Mater Horiz 2022;9:1273-82.
Sun L, Shi Z, Wang H, Zhang K, Dastan D, Sun K, et al. Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites. J Mater Chem A 2020;8:5750.
Xu X, Liu W, Li Y, Wang Y, Yuan Q, Chen J, et al. Flexible mica films for high-temperature energy storage. J. Materiomics 2018;4:173-8.
He Q, Sun K, Shi Z, Liu Y, Fan R. Polymer dielectrics for capacitive energy storage: from theories, materials to industrial capacitors. J. Materiomics 2023;68:298-333.
Zhang T, Shi Z, Yin C, Zhang C, Zhang Y, Zhang Y, et al. Tunable polarization-drived superior energy storage performance in PbZrO3 thin films. J Adv Ceram 2023;12:930-42.
Li L, Cheng J, Cheng Y, Han T, Liang X, Zhao Y, et al. Polymer dielectrics exhibiting an anomalously improved dielectric constant simultaneously achieved high energy density and efficiency enabled by CdSe/Cd1-xZnxS quantum dots. J Mater Chem A 2020;8:13659-70.
Li H, Yang T, Zhou Y, Ai D, Yao B, Liu Y, et al. Enabling high-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers. Adv Funct Mater 2021;31:2006739.
Zhang T, Sun H, Yin C, Jung Y, Min S, Zhang Y, et al. Recent progress in polymer dielectric energy storage: from film fabrication and modification to capacitor performance and application. J. Materiomics 2024;140:1012207.
Dong J, Hu R, Xu X, Chen J, Niu Y, Wang F, et al. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv Funct Mater 2021;31:2102644.
Pan Z, Li L, Wang L, Luo G, Xu X, Jin F, et al. Tailoring poly(styrene-co-maleic anhydride) networks for all-polymer dielectrics exhibiting ultrahigh energy density and charge-discharge efficiency at elevated temperatures. Adv Mater 2023;35:2207580.
Li L, Zhou Y, Liu Y, Chen X, Han Z, Wang Q. Perspective on scalable high-energy-density polymer dielectrics with ultralow loadings of inorganic nanofillers. Appl Phys Lett 2022;120:050502.
Zha J, Xiao M, Wan B, Wang X, Dang Z, Chen G. Polymer dielectrics for high-temperature energy storage: constructing carrier traps. J. Materiomics 2023;140:201208.
Dong J, Li L, Qiu P, Pan Y, Niu Y, Sun L, et al. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage. Adv Mater 2023;35:2211487.
Hu H, Zhang F, Luo S, Chang W, Yue J, Wang C. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 2020;74:104844.
Li S, Dong J, Niu Y, Li L, Wang F, Hu R, et al. Enhanced high-temperature energy storage properties of polymer composites by interlayered metal nanodots. J Mater Chem A 2022;10:18773.
Li H, Gadinski M, Huang Y, Ren L, Zhou Y, Ai D, et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency. Energy Environ Sci 2020;13:1279-86.
Cheng R, Wang Y, Men R, Lei Z, Song J, Li Y, et al. High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage. iScience 2022;25:104837.
Feng Q, Zhong S, Pei J, Zhao Y, Zhang D, Liu D, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem Rev 2022;122:3820-78.
Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 2021;121:6124-72.
Dong J, Hu R, Niu Y, Li L, Li S, Sun L, et al. Scalable in-situ surface-coated polymer dielectrics with significantly enhanced high-temperature breakdown strength. Mater Today Energy 2022;30:101158.
Ren L, Li H, Xie Z, Ai D, Zhou Y, Liu Y, et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv Energy Mater 2021;11:2101297.
Li L, Dong J, Hu R, Chen X, Niu Y, Wang H. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures. Chem Eng J 2022;435:135059.
Zhou Y, Yuan C, Wang S, Zhu Y, Cheng S, Yang X, et al. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater 2020;28:255-63.
Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci Adv 2020;6:eaax6622.
Dai Z, Bao Z, Ding S, Liu C, Sun H, Wang H, et al. Scalable polyimide-poly(amic acid) copolymer based nanocomposites for high-temperature capacitive energy storage. Adv Mater 2022;34:2101976.
Ren L, Yang L, Zhang S, Li H, Zhou Y, Ai D, et al. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors. Compos Sci Technol 2021;201:108528.
Dong J, Hu R, Niu Y, Sun L, Li L, Li S, et al. Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region. Nano Energy 2022;99:107314.
Li L, Cheng J, Cheng Y, Han T, Liu Y, Zhou Y, et al. Significantly enhancing the dielectric constant and breakdown strength of linear dielectric polymers by utilizing ultralow loadings of nanofillers. J Mater Chem A 2021;9:23028-36.
Chen X, Zhang Q, Liu Z, Sun Y, Zhang Q. High dielectric response in dilute nanocomposites via hierarchical tailored polymer nanostructures. Appl Phys Lett 2022;120:162902.
Liu Y, Yang T, Zhang B, Williams T, Lin Y, Li L, et al. Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Adv Mater 2020;32:2005431.
Liu Z, Wang T, Zhu L, Jiang Z, Zhang Y. In-situ crosslinked polyetherimide/BNNS composites with ultrahigh charged-discharged efficiency at high temperature. Compos Appl Sci Manuf 2023;175:107829.
Ai D, Li H, Zhou Y, Ren L, Han Z, Yao B, et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv Energy Mater 2020;10:1903881.
Stark K, Garton C. Electric strength of irradiated polythene. Nature 1955;176:1225-6.
Chen X, Zhang Q, Liu Z, Sun Y, Zhang Q. High dielectric response in dilute nanocomposites via hierarchical tailored polymer nanostructures. Appl Phys Lett 2022;120:162902.
Thakur Y, Zhang T, Iacob C, Yang T, Bernholc J, Chen L, et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 2017;9:10992-7.
Li L, Cheng J, Cheng Y, Han T, Liu Y, Zhou Y, et al. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv Mater 2021;33:2102392.
An N, Wang X, Li Y, Zhang L, Lu Z, Sun J. Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes. Adv Mater 2019;31:11904882.
Li H, Ai D, Ren L, Yao B, Han Z, Shen Z, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv Mater 2019;31:1900875.
Huang C, Li W, Yang L, Peng Y, Huang J, Hu Z, et al. High energy density of polyvinylidene fluoride-based composite films induced by anisotropic PLZT fillers. ChemNanoMat 2022;8:e202200302.
Fu J, Yang M, Wang R, Cheng S, Huang X, Wang S, et al. Improvement of high-temperature energy storage performance in polymer dielectrics by nanofillers with defect spinel structure. Mater Today Energy 2022;29:101101.
Tuncer E, Gubański S, Nettelblad B. Dielectric relaxation in dielectric mixtures: application of the finite element method and its comparison with dielectric mixture formulas. J Appl Phys 2001;89:8092-100.
Yamada T, Ueda T, Kitayama T. Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J Appl Phys 1982;53:4328-32.
Van C, Neugebauer J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 2003;423:626-8.
Sun B, Hu P, Ji X, Fan M, Zhou L, Guo M, et al. Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature. Small 2022;18:2202421.
Chiu F. A review on conduction mechanisms in dielectric films. Adv Mater Sci Eng 2014;2014:5578168.
Jiang J, Shen Z, Qian J, Dan Z, Guo M, He Y, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 2019;62:220-9.
Fan M, Hu P, Dan Z, Jiang J, Sun B, Shen Y. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles. J Mater Chem A 2020;8:24536-42.
Tan D. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv Funct Mater 2020;30:1808567.
Li H, Ren L, Ai D, Han Z, Liu Y, Yao B, et al. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors. InfoMat 2020;2:389-400.
Li Q, Liu F, Yang T, Gadinski M, Zhang G, Chen L, et al. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc Natl Acad Sci USA 2016;113:9995-10000.
Zhang Y, Li W, Zhao X, Meng F, Sun P, Wang C, et al. Epoxy-based high-k composite vitrimer: with low dielectric loss, high breakdown strength and surface electrical damage repairability. Chem Eng J 2023;473:145199.
Yang L, Liu X, Lu Z, Song T, Yang Z, Xu J, et al. Free volume dependence of the dielectric constant of poly(vinylidene fluoride) nanocomposite films. RCS Adv 2022;38:24734-42.
Qian K, Qiao R, Chen S, Luo H, Zhang D. Enhanced permittivity in polymer blends via tailoring the orderliness of semiconductive liquid crystalline polymers and intermolecular interactions. J Mater Chem C 2020;8:8440-50.
Li H, Ai D, Zhou Y, Ren LWang Q. Polymer nanocomposite capacitors with largely reduced conduction loss utilizing wide-bandgap inorganic nanofillers. IEEE CEIDP 2020:251-4. 2020.
Wu X, Chen X, Zhang Q, Tan D. Advanced dielectric polymers for energy storage. Energy Storage Mater 2022;44:29-47.
Pitike K, Hong W. Phase-field model for dielectric breakdown in solids. J Appl Phys 2014;115:044101.