Energy storage property of a dielectric is closely tied with its nanostructure. In this study, we aim to achieve a deep understanding of this relationship in high energy density ferroelectric ceramic films, by probing into the nanograin and sub-grain nanostructures in polycrystalline BaTiO3 films integrated on Si. Through scanning probe acoustic microscopy analyses, it is revealed that the BaTiO3 films directly grown on Pt/Ti/Si mostly consist of large discontinuous columnar nanograins, while those grown on LaNiO3-buffered Pt/Ti/Si substrates have a dominant microstructure of continuous columnar nanograins. Furthermore, ultrafine ferroelastic domains of ~10 nm wide are revealed inside the grains of the buffered BaTiO3 films, while those unbuffered films show about ~50% increase in the domain width. The dielectric properties of the BaTiO3 films are well correlated with their characteristic nanostructures. Under an increasing electric field, the LaNiO3-buffered films display a slower decline in its dielectric constant and a later saturation of its electric polarization, leading to an improved energy storage performance. Device-level charge-discharge tests have verified not only the delayed polarization saturation and high energy density of the LaNiO3-buffered BaTiO3 film capacitors, but also a high power density in the same order as those of the ferroelectric ceramics.
Cheng H, Ouyang J, Zhang YX, Ascienzo D, Li Y, Zhao YY, Ren Y. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat Commun 2017;8:1999.
Pan H, Li F, Liu Y, Zhang QH, Wang M, Lan S, Zheng YP, Ma J, Gu L, Shen Y, Zhang SJ, Chen LQ, Lin YH, Nan C. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365:578–82.
Zhao Y, Ouyang J, Wang K, Yuan M, Gao Y, Su Y, Cheng H, Liu M, Yang Q, Pan W. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Storage Mater 2021;39:81–8.
Sun ZX, Ma CR, Liu M, Cui J, Lu JB, Lou XJ, Jin J, Wang H, Jia CL. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater. 2017;29:1604427.
Zhang X, Shu L, Yang Z, Liu L, Zhu F, Wang H, Cheng YYS, Huang Y, Li JF. Ultra-thin multilayer films for enhanced energy storage performance. Nano Energy 2024;121:109271.
Wang K, Ouyang J, Wuttig M, Zhao YY, Cheng H, Zhang Y, Su R, Yan J, Zhong X, Zeng F. Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors. Adv Energy Mater 2020;10:2001778.
Huan Y, Wang X, Zheng Y, Wang X, Wei T, Ouyang J, Wang X. Achieving excellent energy storage reliability and endurance via mechanical performance optimization strategy in engineered ceramics with core-shell grain structure. J Materiomics 2022;8:601–10.
Er X, Chen P, Guo J, Hou Y, Yu X, Liu P, Bai Y, Zhan Q. Enhanced energy-storage performance in a flexible film capacitor with coexistence of ferroelectric and polymorphic antiferroelectric domains. J Materiomics 2022;8:375–81.
Zhu W, Shen ZY, Deng W, Li K, Luo W, Song F, Zeng X, Wang Z, Li Y. A review: (Bi,Na)TiO3 (BNT)-based energy storage ceramics. J Materiomics 2024;10:86–123.
Wang M, Bai T, He A, Pan Z, Zhao J, Tang L, Zhao Z, Liu J, Li S, Xia W. Excellent thermal stability and high energy storage performances of BNT-based ceramics via phase-structure engineering. J Materiomics 2023;9:1015–23.
Zhu H, Zhao YY, Ouyang J, Wang K, Cheng H, Su Y. Achieving a record-high capacitive energy density on Si with columnar nanograined ferroelectric films. ACS Appl Mater Interfaces 2022;14:7805–13.
Wang K, Zhu H, Ouyang J, Tian Y, Wang S, Li Q, Zhao YY, Cheng H, Zhai X. Significantly improved energy storage stabilities in nanograined ferroelectric film capacitors with a reduced dielectric nonlinearity. Appl Surf Sci 2022;581:152400.
He Q, Xie A, Tian A, Zuo R. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv Energy Mater 2019;10:1903338.
Wang H, Shu L, Wei L, Zhang X, Li Q, Li JF. Lead-free BiFeO3 -BaTiO3 based high-Tc ferroelectric ceramics: Antiferroelectric chemical modification leading to high energy storage performance. J Materiomics 2024;10:819–27.
Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, Ye M, Wang Y, Lu W, Niu H, Scott JF, Zeng X, Huang H. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv Electron Mater 2015;1:1500052.
Yuan Q, Li G, Yao FZ, Cheng SD, Wang Y, Ma R, Mi SB, Gu M, Wang K, Li JF, Wang H. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018;52:203.
Pan H, Lan S, Xu S, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021;374:100–4.
Zhu LF, Song A, Zhang BP, Gao XQ, Shan ZH, Zhao GL, Yuan J, Deng D, Shu H, Li JF. Boosting energy storage performance of BiFeO3-based multilayer capacitors via enhancing ionic bonding and relaxor behavior. J Mater Chem. A 2022;10:7382–90.
Zhang Y, Yan MH, Zhang ZF, Bai HR, Li P, Han WF, Hao JG, Li W, Li YC, Wang CM, Fu P. Enhanced energy storage properties and good stability of novel (1–x) Na0.5Bi0.5TiO3–xCa(Mg1/3Nb2/3)O3 relaxor ferroelectric ceramics prepared by chemical modification. J Materiomics 2024;10(4):819–27.
Peng B, Xie Z, Yue Z, Li L. Improvement of the recoverable energy storage density and efficiency by utilizing the linear dielectric response in ferroelectric capacitors. Appl Phys Lett 2014;105:052904.
Wang K, Zhang Y, Wang S, Zhao YY, Cheng H, Li Q, Zhong X, Ouyang J. High energy performance ferroelectric (Ba,Sr)(Zr,Ti)O3 film capacitors integrated on Si at 400 ℃. ACS Appl Mater & Interfaces 2021;13:22717–27.
Buscaglia V, Randall CA. Size and scaling effects in barium titanate: an overview. J Eur Ceram Soc 2020;40:3744–58.
Kinoshita K, Yamaji A. Grain-size effects on dielectric properties in barium titanate ceramics. J Appl Phys 1976;47:371–3.
Peng H, Liu Z, Fu Z, Dai K, Lv Z, Guo S, Hu Z, Xu F, Wang G. Superior energy density achieved in unfilled tungsten bronze ferroelectrics via multiscale regulation strategy. Adv Sci 2023;10:2300227.
Yin QR, Li GR, Zeng HR, Liu XX, Heiderhoff R, Balk LJ. Ferroelectric domain structures in (Pb,La)(Zr,Ti)O3 ceramics observed by scanning force microscopy in acoustic mode. Appl Phys A 2004;78:699–702.
Zeng HR, Yu HF, Hui SX, Chu RQ, Li GR, Luo HS, Yin QR. Local elasticity imaging of ferroelectric domains in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals by low- frequency atomic force acoustic microscopy. Solid State Commun 2005;133:521–5.
Yin QR, Zeng HR, Yu HF, Li GR. Near-field acoustic and piezoresponse microscopy of domain structures in ferroelectric material. J Mater Sci 2006;41:259–70.
Zhao KY, Zeng HR, Song HZ, et al. Acoustic imaging frequency dynamics of ferroelectric domains by atomic force microscopy. Chin Phys Lett 2008;25:3429–32.
Ouyang J, Teng X, Yuan M, Wang K, Zhao YY, Cheng H, Zhu H, Liu C, Xiao Y, Tang M, Zhang W, Pan W. Grain engineering of high energy density BaTiO3 thick films integrated on Si. Microstructures 2023;3:2023027.
Zhang W, Yuan M, Wang X, Pan W, Wang CM, Ouyang J. Design and preparation of stress-free epitaxial BaTiO3 polydomain films by RF magnetron sputtering. Sci Technol Adv Mater 2012;13:035006.
Tan C, Ouyang J, Zhong X, Wang J, Liao M, Gong L, Ren C, Zhong G, Zheng S, Guo H, Zhou Y. Crystallographically engineered hierarchical polydomain nanostructures in perovs- kite ferroelectric films. Acta Mater 2019;171:282–90.
Soergel E. Piezoresponse force microscopy (PFM). J Phys D. Appl Phys. 2011;44:464003.
Ouyang J, Xue Y, Song C, et al. Simultaneously achieving high energy density and responsivity in submicron BaTiO3 film capacitors integrated on Si. J Adv Ceram 2024;13:198–206.
Yang C, Lv P, Qian J, Han Y, Ouyang J, Lin X, Huang S, Cheng Z. Fatigue-free and bending-endurable flexible Mn-doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv Energy Mater 2019;9:1803949.
Wang X, Wang X, Huan Y, et al. A combined optimization strategy for improvement of comprehensive energy storage performance in sodium niobate-based antiferroelectric ceramics. ACS Appl Mater Interfaces 2022;14:9330–9.
Wang J, Zhang F, Peng Z, Chao X, Yang Z. Sodium bismuth titanate-based perovskite ceramics with high energy storage efficiency and discharge performance. J Materiomics 2022;8:1077–85.