Dielectric capacitors with ultrahigh power density and ultra-fast charge/discharge rate are highly desired in pulse power fields. Environmental-friendly AgNbO3 family have been actively studied for its large polarization and antiferroelectric nature, which greatly boost the electric energy storage performance. However, high-quality AgNbO3-based films are difficult to fabricate, leading to a low breakdown field Eb (<1.2 MV/cm) and consequently arising inferior energy storage performance. In this work, we propose an interface engineering strategy to mitigate the breakdown field issue. A Ag(Nb,Ta)O3/BaTiO3 bilayer film is proposed, where the BaTiO3 layer acts as a p-type semiconductor while Ag(Nb,Ta)O3 layer is n-type, together with the n-type LaNiO3 buffer layer on the substrate, forming an n-p-n heterostructure. The n-p-n heterostructure elevates the potential barriers for charge transport, greatly reducing the leakage current. An extremely large breakdown field Eb~4.3 MV/cm is achieved, being the highest value up to date in the niobate system. A high recoverable energy density Wrec~62.3 J/cm3 and a decent efficiency η~72.3% are obtained, much superior to that of the Ag(Nb,Ta)O3 monolayer film (Wrec~46.4 J/cm3 and η~80.3% at Eb~3.3 MV/cm). Our results indicate that interface engineering is an effective method to boost energy storage performance of dielectric film capacitors.
Whittingham MS. Materials challenges facing electrical energy storage. MRS Bull 2008;33:411–19.
Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928–35.
Liu FY, Zhang YY, Zheng LM, Tian G, Du J, Zhao L, et al. Homogenous Sn-doped K(Ta,Nb)O3 single crystals and its high piezoelectric response. J Materiomics 2022;8:702–9.
Cheng HB, Ouyang J, Zhang YX, Ascienzo D, Li Y, Zhao YY, et al. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat Commun 2017;8:1999.
Silva JPB, Sekhar KC, Pan H, MacManus-Driscoll JL, Pereira M. Advances in dielectric thin films for energy storage applications, revealing the promise of group Ⅳ binary oxides. ACS Energy Lett 2021;6:2208.
Sun ZX, Ma CR, Liu M, Cui J, Lu L, Lu JB, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater 2017;29:1604427.
Palneedi H, Peddigari M, Hwang GT, Jeong DY, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018;28:1803665.
Xu B, Íñiguez J, Bellaiche L. Designing lead-free antiferroelectrics for energy storage. Nat Commun 2017;8:15682.
Li S, Hu TF, Nie HC, Fu ZQ, Xu CH, Xu FF, et al. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Mater 2021;34:417–26.
Li X, Wang J, San XY, Wang N, Zhao L. High energy storage performance in AgNbO3 relaxor ferroelectric films induced by nanopillar structure. J Mater Sci Technol 2023;155:160–6.
Yang J, Ge GL, Chen CK, Shen B, Zhai JW, Chou XJ. Field-induced strain engineering to optimize antiferroelectric ceramics in breakdown strength and energy storage performance. Acta Mater 2023;257:119186.
Meng XJ, Zhao Y, Zhu JY, Zhu LP, Li Y, Hao XH. High energy-storage density and efficiency in PbZrO3-based antiferroelectric multilayer ceramic capacitors. J Eur Ceram Soc 2022;42:6493–503.
Ma ZY, Li Y, Zhao Y, Sun NN, Lu CX, Han P, et al. High-performance energystorage ferroelectric multilayer ceramic capacitors via nano-micro engineering. J Mater Chem A 2023;11:7184.
Yan ZN, Zhang D, Zhou XF, Qi H, Luo H, Zhou KC, et al. Silver niobate based lead-free ceramics with high energy storage density. J Mater Chem A 2019;7:10702–11.
Qi H, Zuo RZ, Xie AW, Tian A, Fu J, Zhang Y, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Funct Mater 2019;29:1903877.
Łukaszewski M, Pawełczyk M, Haňderek J, Kania A. On the phase transitions in silver niobate AgNbO3. Phase Transitions 1983;3:247–57.
Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A. Structural investigation of AgNbO3 phases using X-ray and neutron diffraction. J Phys Condens Matter 2004;16:2795–810.
Gao J, Zhang YC, Zhao L, Lee KY, Liu Q, Studer A, et al. Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties. J Mater Chem A 2019;7:2225–32.
Han K, Luo NN, Mao SF, Zhuo FP, Chen XY, Liu LJ, et al. Realizing high lowelectric field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour. J Materiomics 2019;5:597–605.
Wang J, Fan XH, Liu Z, Zhu KJ, Yuan H, Zheng ZH, et al. Superior energy storage performance realized in antiferroelectric 0.10 wt% MnO2-AgNbO3 ceramics via Bi-doping induced phase engineering. J Mater Chem A 2023;11:22512–21.
Zhao MY, Shen XS, Wang J, Wang J, Zhang J, Zhao L. Superior comprehensive energy storage performances in Eu-doped AgNbO3 antiferroelectric ceramics. Chem Eng J 2023;478:147527.
Pan H, Li F, Liu Y, Zhang QH, Wang M, Lan S, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365:578–82.
Peng BL, Zhang Q, Li X, Sun TY, Fan HQ, Ke SM, et al. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv Electron Mater 2015;1:1500052.
Koh JH, Khartsev SI, Grishin A. Ferroelectric silver niobate-tantalate thin films. Appl Phys Lett 2000;77:4416–8.
Sakurai H, Yamazoe S, Wada T. Ferroelectric and antiferroelectric properties of AgNbO3 films fabricated on (001), (110), and (111)SrTiO3 substrates by pulsed laser deposition. Appl Phys Lett 2010;97:042901.
Shu L, Zhang X, Li W, Gao J, Wang HL, Huang Y, et al. Phase-pure antiferroelectric AgNbO3 films on Si substrates: chemical solution deposition and phase transitions. J Mater Chem A 2022;10:12632–42.
Cheng HB, Zhai X, Ouyang J, Zheng LM, Luo NN, Liu JP, et al. Achieving a high energy storage density in Ag(Nb,Ta)O3 antiferroelectric films via nanograin engineering. J Adv Ceram 2023;12:96–206.
Zhang TD, Li WL, Zhao Y, Yu Y, Fei WD. High energy storage performance of opposite double-heterojunction ferroelectricity-insulators. Adv Funct Mater 2018;28:1706211.
Chen JY, Tang ZH, Yang B, Zhao SF. Ultra-high energy storage performances regulated by depletion region engineering sensitive to the electric field in PNP-type relaxor ferroelectric heterostructural films. J Mater Chem A 2020;8:8010–9.
Sun NN, Du JH, Zhao Y, Lu CX, Han P, Li Y, et al. Flexible multilayer lead-free film capacitor with high energy storage performances via heterostructure engineering. J Materiomics 2022;8:772–80.
Zhao YY, Ouyang J, Wang K, Yuan ML, Gao YQ, Su Y, et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Storage Mater 2021;39:81–8.
Telli MB, Trolier-McKinstry S, Woodward DI, Reaney I. Chemical solution deposited silver tantalate niobate, Agx(Ta0.5Nb0.5)O3-y, thin films on (111)Pt/Ti/SiO2/(100)Si substrates. J Sol Gel Sci Technol 2007;42:407–14.
Valant M, Axelsson AK, Alford N. Review of Ag(Nb,Ta)O3 as a functional material. J Eur Ceram Soc 2007;27:2549–60.
Wang K, Zhang Y, Wang SX, Zhao YY, Cheng HB, Li Q, et al. High energy performance ferroelectric (Ba,Sr)(Zr,Ti)O3 film capacitors integrated on Si at 400 ℃. ACS Appl Mater Interfaces 2021;13:22717–27.
Niu MM, Zhu HF, Wang YY, Yan J, Chen N, Yan P, et al. Integration-friendly, chemically stoichiometric BiFeO3 films with a piezoelectric performance challenging that of PZT. ACS Appl Mater Interfaces 2020;12:33899–907.
Zhang YL, Li XB, Song JM, Zhang SW, Wang J, Dai XH, et al. AgNbO3 antiferroelectric film with high energy storage performance. J Materiomics 2021;7:1294–300.
Zhao C, Meng XH, Wang W, Zhou Y. Energy storage performance of (K, Na) NbO3 ferroelectric thin films with Mn-Ta and Mn-Ti co-doping. Ceram Int 2019;45:13772–9.
Sun YZ, Zhou YP, Lu QS, Zhao SF. High energy storage efficiency with fatigue resistance and thermal stability in lead-free Na0.5K0.5NbO3/BiMnO3 solid-solution films. Phys Status Solidi-R 2018;12:1700364.
Won SS, Kawahara M, Kuhn L, Venugopal V, Kwak J, Kim IW, et al. BiFeO3-doped (K0.5Na0.5)(Mn0.005Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications. Appl Phys Lett 2017;110:152901.
Luo BC, Dong HJ, Wang DY, Jin KX. Large recyclable energy density with excellent thermal stability in Mn-modified NaNbO3-CaZrO3 lead-free thin films. J Am Ceram Soc 2018;101:3460–7.
Guo F, Shi ZF, Yang B, Zhao SF. The role of PN-like junction effects in energy storage performances for Ag2O nanoparticle dispersed lead-free K0.5Na0.5NbO3-BiMnO3 films. Nanoscale 2020;12:7544–9.
Huang Y, Shu L, Zhang SW, Cheng YYS, Peng BL, Liu LS, et al. Simultaneously achieved high-energy storage density and efficiency in (K,Na)NbO3-based lead-free ferroelectric films. J Am Ceram Soc 2021;104:4119–30.
Ma QZ, Yao Y, Su DD, Zhang SW, Zhao L. Relaxor ferroelectric AgNbO3 film fabricated on (110) SrTiO3 substrates via pulsed laser deposition. Coatings 2023;13:1834.
Zhou YP, Tang ZH, Bai YJ, Guo F, Chen JY. Surface plasma treatment boosting antiferroelectricity and energy storage performance of AgNbO3 film. J Eur Ceram Soc 2024;44:2923–33.
An ZX, Yao Y, Wang J, Wang J, Zhu LF, Zhao L. Energy storage performance and piezoelectric response of silver niobate antiferroelectric thin film. Ceram Int 2024;50:12427–33.
Kobald AM, Kobald H, Deluca M. Phase stability and energy storage properties of polycrystalline antiferroelectric BaTiO3-substituted NaNbO3 thin films. J Eur Ceram Soc 2024;44:2831–41.
Dong HJ, Luo BC, Jin KX. Tunable dielectric and energy storage properties in nonstoichiometric NaNbO3 thin films. Ceram Int 2022;48:16215–20.
Beppu K, Shimasaki T, Fujii I, Imai T, Adachi H, Wada T. Energy storage properties of antiferroelectric 0.92NaNbO3-0.08SrZrO3 film on (001)SrTiO3 substrate. Phys Lett 2020;384:126690.
Dong HJ, Luo BC, Jin KX. Structural, electrical and energy storage properties of lead-free NaNbO3-BaHfO3 thin films. J Phys Chem Solid 2022;162:110513.
Shiraishi T, Suzuki S, Kiguchi T, Konno TJ. Energy storage properties of epitaxially grown xCaZrO3-(1-x)NaNbO3 thin films prepared with chemical solution deposition method. J Appl Phys 2020;128:044102.
Beppu K, Funatomi F, Adachi H, Wada T. Fabrication of antiferroelectric NaNbO3-CaSnO3 film by pulsed laser deposition. Jpn J Appl Phys 2021;60:SFFB01.
Lv PP, Yang CH, Qian J, Wu HT, Huang SF, Cheng X, et al. Flexible lead-free perovskite oxide multilayer film capacitor based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for high-performance dielectric energy storage. Adv Energy Mater 2020;10:1904229.
Zhang W, Gao YQ, Kang LM, Yuan ML, Yang Q, Cheng HB, et al. Space-charge dominated epitaxial BaTiO3 heterostructures. Acta Mater 2015;85:207–15.
Jiang L, Huang XH, Zhou Y, Huang SL, Wang YW, Wang ZJ, et al. High photocatalytic performance of ferroelectric AgNbO3 in a doping state. J Environ Chem Eng 2023;11:110402.
Khettab M, Omeiri S, Sellam D, Ladjouzi MA, Trari M. Characterization of LaNiO3 prepared by sol-gel: application to hydrogen evolution under visible light. Mater Chem Phys 2012;132:625–30.
Zhang W, Ouyang J, Kang LM, Cheng HB, Yang Q, Hu FR. Influence of top contact noble metals on leakage current properties of epitaxial BaTiO3 film capacitors. J Mater Sci Mater Electron 2015;26:9962–9.
Wang K, Zhu HF, Ouyang J, Tian Y, Wang SX, Li Q, et al. Significantly improved energy storage stabilities in nanograined ferroelectric film capacitors with a reduced dielectric nonlinearity. Appl Surf Sci 2022;581:152400.