Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

Exploring high-performance environmental barrier coatings for rare earth silicates: A combined approach of first principles calculations and machine learning

Yun Fana,bYuelei Baia()Zhiyao LuaZhaoxu SunaYuchen LiubSimiao ShabYiran LibBin Liub,c()
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150080, China
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
Institute of Coating Technology for Hydrogen Gas Turbines, Liaoning Academy of Materials, Shenyang, 110004, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

RE2Si2O7 is promising materials for environmental barrier coating (EBC), but the vast phase space poses challenges for the screening of RE2Si2O7. It follows that a combined approach of first principles calculations and machine learning is proposed for this problem, with establishing a comprehensive database comprising β-, γ- and δ-RE2Si2O7 (RE = La–Lu, Y, Sc) and correlating their mechanical/thermal properties on structural characteristics. It is revealed the [O3SiOSiO3] structure and polyhedron distortion affect mechanical properties of RE2Si2O7, while criteria for selecting RE2Si2O7 with low thermal conductivity are identified, including complex crystal structures, chemical bond inhomogeneity, and strong non-harmonic lattice vibrations. Also, the machine learning model accurately predicts the coefficient of thermal expansion (CTE) and minimum thermal conductivity (λmin) of RE2Si2O7, with volume and mass variations identified as critical factors, respectively. This integrated approach efficiently screens RE2Si2O7 for EBC application and enables rapid assessments of their thermal properties.

References

[1]

Lee KN, Fox DS, Bansal NP. Rare earth silicate environmental barrier, coatings for SiC/SiC composites and Si3N4 ceramics. J Eur Ceram Soc 2005;25:1705-15.

[2]

Gao J, Bai Y, He X, Fan H, Song G, Zou X, et al. A phase field and machining-learning approach for rapid and accurate prediction of composites failure. J Reinforc Plast Compos 2024. https://doi.org/10.1177/07316844241228182.

[3]

Chen P, Xiao P, Tang X, Li Y. Corrosion behavior and failure mechanism of SiC whisker and c-AIPOparticle-modified novel tri-layer YbSiO/mullite/SiC coating in burner rig tests. J Adv Ceram 2024;11:1901-17.

[4]

Luo Y, Sun L, Wang J, Wu Z, Lv X, Wang J. Material-genome perspective towards tunable thermal expansion of rare-earth di-silicates. J Eur Ceram Soc 2018;38:3547-54.

[5]

Hao S, Oleksak RP, Dogan ÖN, Gao MC. Computational design of high-entropy rare earth disilicates as next-generation thermal/environmental barrier coatings. Acta Mater 2023;258:119225.

[6]

Hong Z, Yoshida H, Ikuhara Y, Sakuma T, Nishimura T, Mitomo M. The effect of additives on sintering behavior and strength retention in silicon nitride with RE-disilicate. J Eur Ceram Soc 2002;22:527-34.

[7]

Tian Z, Zheng J, Wang J, Yang J, Yang G, Wang J. Damage tolerance and extensive plastic deformation of β-Yb2Si2O7 from room to high temperatures. J Am Ceram Soc 2015;98:2843-51.

[8]

Tian Z, Zheng L, Wang J. Synthesis, mechanical and thermal properties of a damage tolerant ceramic: β-Lu2Si2O7. J Eur Ceram Soc 2015;35:3641-50.

[9]

Soetebier F, Urland W. Crystal structure of lutetium disilicate, Lu2Si2O7. Z Krist-New Cryst St 2002;217:22.

[10]

Toher C, Ridley MJ, Tomko KQ, Olson DH, Curtarolo S, Hopkins PE, et al. Design rules for the thermal and elastic properties of rare-earth disilicates. Materialia 2023;28:101729.

[11]

Tian Z, Zheng L, Wang J, Wan P, Li J, Wang J. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J Eur Ceram Soc 2016;36:189-202.

[12]

Fujii S, Ioki A, Yokoi T, Yoshiya M. Role of phonons on phase stabilization of RE2Si2O7 over wide temperature range (RE = Yb, Gd). J Eur Ceram Soc 2020;40:780-8.

[13]

Liu X, Zhang P, Huang M, Han Y, Xu N, Li Y, et al. Effect of lattice distortion in high-entropy RE2Si2O7 and RE2SiO5 (RE=Ho, Er, Y, Yb, and Sc) on their thermal conductivity: experimental and molecular dynamic simulation study. J Eur Ceram Soc 2023;43:6407-15.

[14]

Luo Y, Sun L, Wang J, Du T, Zhou C, Zhang J, et al. Phase formation capability and compositional design of β-phase multiple rare-earth principal component disilicates. Nat Commun 2023;14:1275.

[15]

Luo Y, Wang J, Li J, Hu Z, Wang J. Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7. J Mater Res 2015;30:493-502.

[16]

Chen L, Wang J, Li B, Luo K, Feng J. Simultaneous manipulations of thermal expansion and conductivity in symbiotic ScTaO4/SmTaO4 composites via multiscale effects. J Adv Ceram 2023;12:1625-40.

[17]

Lue K, Dong S, Huang Y, Mao C, Jiang J, Deng L, et al. Thermal shock behavior of LaMgAl11O19/Yb2Si2O7/Si thermal/environmental barrier coatings with LaMgAl11O19-LiAlSiO4 transition layer. Surf Coating Technol 2022;443:128594.

[18]

Jablonka K, Ongari D, Moosavi SM, Smit B. Big-data science in porous materials: materials genomics and machine learning. Chem Rev 2022;120:8066-129.

[19]

Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong S. A critical review of machine learning of energy materials. Adv Energy Mater 2022;10:1903242.

[20]

Liu H, Fu Z, Yang K, Xu X, Bauchy M. Machine learning for glass science and engineering: a review. J Non-Cryst Solids 2021;557:119419.

[21]

Hart GLW, Mueller T, Toher C, Curtarolo S. Machine learning for alloys. Nat Rev Mater 2021;6:730-55.

[22]

Zhang Y, Ren K, Wang W, Gao X, Yuan R, Wang J, et al. Discovering the ultralow thermal conductive A2B2O7-type high-entropy oxides through the hybrid knowle dge-assiste d data-driven machine learning. J Mater Sci Technol 2024;168:131-42.

[23]

Feng H, Li N. A multi-feature fusion model based on differential thermal capacity for prediction of the health status of lithium-ion batteries. J Energy Storage 2023;72:108419.

[24]

Tanaka H, Nagai H. Data-driven thermal state estimation for in-orbit systems via physics-informed machine learning. Acta Astronaut 2023;212:316-28.

[25]

Wu C, Li F, Zeng Y, Zhao H, Xie G, Zhou W, et al. Machine learning accelerated design of 2D covalent organic frame materials for thermoelectrics. Appl Surf Sci 2023;638:157947.

[26]

Ayyasamy MV, Deijkers JA, Wadley HNG, Balachandran PV. Density functional theory and machine learning guided search for RE2Si2O7 with targeted coefficient of thermal expansion. J Am Ceram Soc 2020;103:4489-97.

[27]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75.

[28]

Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 1999;100:136406.

[29]

Xiang H, Feng Z, Zhou Y. Mechanical and thermal properties of Yb2SiO5: first-principles calculations and chemical bond theory investigations. J Mater Res 2014;29:1609-19.

[30]

Liu Y, Chu K, Zhou Y, Li Y, Li W, Liu B. Discovery of orthorhombic perovskite oxides with low thermal conductivity by first-principles calculations. J Adv Ceram 2022;11:1596-603.

[31]

Liu B, Zhao J, Liu Y, Xi J, Li Q, Xiang H, et al. Application of high-throughput first-principles calculations in ceramic innovation. J Mater Sci Technol 2021;88:143-57.

[32]

Liu B, Liu Y, Zhu C, Xiang H, Chen H, Sun L, et al. Advances on strategies for searching for next generation thermal barrier coating materials. J Mater Sci Technol 2019;35:833-51.

[33]

Zhou Y, Zhao C, Wang F, Sun Y, Zheng L, Wang X. Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β--Yb2Si2O7. J Am Ceram Soc 2013;96:3891-900.

[34]

Marzban C. The ROC curve and the area under it as performance measures. Weather Forecast 2004;19:1106-14.

[35]

Hao J, Ho T. Machine Learning Made Easy: a review of scikit-learn package in python programming language. J Educ Behav Stat 2019;44:348-61.

[36]

Fernandez-Carrion AJ, Allix M, Becerro AI. Thermal expansion of rare-earth pyrosilicates. J Am Ceram Soc 2013;96:2298-305.

[37]

Fernandez-Carrion AJ, Alba MD, Escudero A, Becerro AI. Solid solubility of Yb2Si2O7 in β-, γ-, and δ- Y2Si2O7. J Solid State Chem 2011;184:1882-9.

[38]

Abrar S, Ma Z, Liu L, Nazeer F, Malik A. Excellent CMAS resistance of a newly developed equiatomic high entropy (Dy1/4Ho1/4Tm1/4Yb1/4)2Si2O7 ceramic pyrosilicate. Ceram Int 2023;49:19840-50.

[39]

Abrar S, Nazeer F, Ma Z, Liu L, Malik A, Kamal M, et al. Ultra-low thermal conductivity and hydrophobic properties of high entropy β-type quaternary pyrosilicate. J Eur Ceram Soc 2024;44:1698-709.

[40]

Abrar S, Ma Z, Liu L, Nazeer F, Malik A. Ultra-low thermal conductivity and excellent high temperature resistance against calcium-magnesium-alumina-silicate of a novel β-type pyrosilicates. J Alloys Compd 2023;942:169001.

[41]

Ahme S, Raza B, Hussain L, Aldwees A, Omar A, Khan MS, et al. The deep learning ResNet101 and ensemble XGBoost algorithm with hyperparameters optimization accurately predict the lung cancer. Appl Artif Intell 2023;37:2166222.

[42]

Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 2020;415:295-316.

[43]

Taye M, Mengistu D, Sahlu D. Performance evaluation of multiple satellite rainfall data sets in central highlands of Abbay Basin, Ethiopia. Eur J Remote Sens 2023;56.

[44]

Mangalathu S, Hwang SH, Jeon JS. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng Struct 2020;219:110927.

[45]

Rodriguez-Perez R, Bajorath J. Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values. J Med Chem 2020;63:8761-77.

[46]

Maqsood A. Phase transformations in Ho2Si2O7 ceramics. J Alloys Compd 2009;471:432-4.

[47]

Lv X, Cui J, Zhang J, Wang J. Phase composition and property evolution of (Yb1-xHox)2Si2O7 solid solution as environmental/thermal barrier coating candidates. J Eur Ceram Soc 2022;42:4377-87.

[48]

Hu W, Zhang J, Nian H, Wang J. Phase evolution of reactive sputtering synthesized holmium silicate coatings. J Am Ceram Soc 2019;102:490-7.

[49]

Sarker P, Harrington T, Toher C, Oses C, Samiee M, Maria J, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun 2018;9:4980.

[50]

Fernandez-Carrion AJ, Allix M, Ocana M, Garcia-Sevillano J, Cusso F, Fitch AN, et al. Crystal structures and photoluminescence across the La2Si2O7-Ho2Si2O7 system. Inorg Chem 2013;52:13469-79.

[51]

Chu K, Zhang Y, Zhao J, Liu Y, Li Y, Li W, et al. Screening rare-earth aluminates as promising thermal barrier coatings by high-throughput first-principles calculations. J Am Ceram Soc 2023;106:3089-102.

[52]

Ozcelik O, Karabas M, Yalcin Y. Synthesis and thermal conductivity of ytterbium silicate doped with Sm and Gd for environmental barrier coatings application. Powder Metall Met Ceram 2022;60:608-16.

[53]

Harrington TJ, Gild J, Sarker P, Toher C, Vecchio KS. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater 2022;166:271-80.

Journal of Materiomics
Cite this article:
Fan Y, Bai Y, Lu Z, et al. Exploring high-performance environmental barrier coatings for rare earth silicates: A combined approach of first principles calculations and machine learning. Journal of Materiomics, 2025, 11(3). https://doi.org/10.1016/j.jmat.2024.07.006
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return