Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

Large ferroelectric polarization and high dielectric constant in HfO2-based thin films via Hf0.5Zr0.5O2/ZrO2 nanobilayer engineering

Lei LiuaChengfeng JiangcXi YuanbYan ZhangaHaiyan Chenc()Dou Zhanga()
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, 410114, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

HfO2-based ferroelectric films have been extensively explored and utilized in the field of non-volatile memory and electrical programmability. However, the trade-off between ferroelectric polarization and dielectric constant in HfO2 has limited the overall performance improvement of devices in practical applications. Herein, a novel approach is proposed for the Hf0.5Zr0.5O2/ZrO2 (HZO/ZrO2) nanobilayer engineering, which can effectively regulate the phase structure evolution of HfO2 films to construct a suitable morphotropic phase boundary (MPB). The findings highlight that the top ZrO2 layer can regularly promote the formation of either the ferroelectric o-phase or the antiferroelectric t-phase. An ideal MPB is successfully established in HZO/ZrO2 (6/9 nm) nanobilayer film by carefully optimizing the HZO/ZrO2 thickness ratio, which presents a high dielectric constant of 52.7 and a large 2Pr value of up to 72.3 μC/cm2 without any wake-up operation. Moreover, the HZO/ZrO2 nanobilayer thin films demonstrate faster polarization switching speed (1.09 μs) and better fatigue performance (109 cycles) compared to the conventional HZO solid solution films. The relationship between ferroelectric and dielectric properties can be harmoniously balanced through the designation. The results indicate that the HZO/ZrO2 nanobilayer engineering strategy is quite potential to pave the way for the development of next-generation memory technologies with superior performance and reliability.

References

[1]

Chen XL, Zhou Y, Roy VAL, Han ST. Evolutionary metal oxide clusters for novel applications: toward high-density data storage in nonvolatile memories. Adv Mater 2018;30(3):1703950.

[2]

Martin LW, Rappe AM. Thin-film ferroelectric materials and their applications. Nat Rev Mater 2016;2(2):16087.

[3]

Chen HY, Zhou XF, Tang L, Chen YH, Luo H, Yuan X, et al. HfO2-based ferroelectrics: from enhancing performance, material design, to applications. Appl Phys Rev 2022;9(1):011307.

[4]

Park MH, Lee YH, Kim HJ, Kim YJ, Moon T, Kim KD, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater 2015;27(11):1811-31.

[5]

Liao JJ, Dai SW, Peng RC, Yang JH, Zeng BJ, Liao M, et al. HfO2-based ferroelectric thin film and memory device applications in the post-Moore era: a review. Fundamental Res 2023;3(3):332-45.

[6]

Schroeder U, Park MH, Mikolajick T, Hwang CS. The fundamentals and applications of ferroelectric HfO2. Nat Rev Mater 2022;7(8):653-69.

[7]

Boescke TS, Müller J, Bräuhaus D, Schröder U, Böttger U. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 2011;99(10):102903.

[8]

Park JY, Lee DH, Yang K, Kim SH, Yu GT, Park GH, et al. Engineering strategies in emerging fluorite-structured ferroelectrics. ACS Appl Electron Mater 2022;4(4):1369-80.

[9]

Kashir A, Farahani MG, Hwang H. Towards an ideal high-κ HfO2-ZrO2-based dielectric. Nanoscale 2021;13(32):13631-40.

[10]

Ni K, Saha A, Chakraborty W, Ye H, Grisafe B, Smith J, et al. Equivalent oxide thickness (EOT) scaling with hafnium zirconium oxide high-κ dielectric near morphotropic phase boundary. IEEE International Electron Devices Meeting, San Francisco, CA, USA 2019;7(4):1-4.

[11]

Jung M, Gaddam V, Jeon S. A review on morphotropic phase boundary in fluorite-structure hafnia towards DRAM technology. Nano Converg 2022;9(1):44.

[12]

Ahn CH, Rabe KM, Triscone JM. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 2004;303(5657):488-91.

[13]

Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 2008;452(7188):732.

[14]

Ravichandran J, Yadav AK, Cheaito R, Rossen PB, Soukiassian A, Suresha SJ, et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat Mater 2014;13(2):168-72.

[15]

Park MH, Kim HJ, Lee G, Park J, Lee YH, Kim YJ, et al. A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl Phys Rev 2019;6(4):041403.

[16]

Weeks SL, Pal A, Narasimhan VK, Littau KA, Chiang T. Engineering of ferroelectric HfO2-ZrO2 nanolaminates. ACS Appl Mater Interfaces 2017;9(15):13440-7.

[17]

Ahart M, Somayazulu M, Cohen RE, Ganesh P, Dera P, Mao HK, et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008;451(7178):545-8.

[18]

Kashir A, Hwang H. A CMOS-compatible morphotropic phase boundary. Nanotechnology 2021;32(44):445706.

[19]

Park MH, Lee YH, Kim HJ, Kim YJ, Moon T, Kim K Do, et al. Morphotropic phase boundary of Hf1-xZrxO2 thin films for dynamic random access memories. ACS Appl Mater Interfaces 2018;10(49):42666-73.

[20]

Sang XH, Grimley ED, Schenk T, Schroeder U, LeBeau JM. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett 2015;106(16):162905.

[21]

Park MH, Lee YH, Kim HJ, Schenk T, Lee W, Kim K Do, et al. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. Nanoscale 2017;9(28):9973-86.

[22]

Yan F, Liao JJ, Cao K, Jia SJ, Zhou YC, Liao M. Achieving excellent ferroelectric and dielectric performance of HfO2/ZrO2/HfO2 thin films under low operating voltage. J Alloys Compd 2023;968:172267.

[23]

Park MH, Chung CC, Schenk T, Richter C, Opsomer K, Detavernier C, et al. Effect of annealing ferroelectric HfO2 thin films: in situ, high temperature X-ray diffraction. Adv Electron Mater 2018;4(7):1800091.

[24]

Lee DH, Yu GT, Park JY, Kim SH, Yang K, Park GH, et al. Effect of residual impurities on polarization switching kinetics in atomic-layer-deposited ferroelectric Hf0.5Zr0.5O2 thin films. Acta Mater 2023;247:118732.

[25]
Ni K, Smith J, Ye H, Grisafe B, Rayner GB, Kummel A, et al. A novel ferroelectric superlattice based multi-level cell non-volatile memory. IEEE International Electron Devices Meeting 2019;28(8):1-4. San Francisco, CA, USA.
[26]

Liu XH, Zhou DY, Guan Y, Li SD, Cao F, Dong XL. Endurance properties of silicon-doped hafnium oxide ferroelectric and antiferroelectric-like thin films: a comparative study and prediction. Acta Mater 2018;154:190-8.

[27]

Park MH, Lee YH, Mikolajick T, Schroeder U, Hwang CS. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides. Adv Electron Mater 2019;5(3):1800522.

[28]

Shibayama S, Nishimura T, Migita S, Toriumi A. Thermodynamic control of ferroelectric-phase formation in HfxZr1-xO2 and ZrO2. J Appl Phys 2018;124(18):184101.

[29]

Wu Y, Zhang YK, Jiang J, Jiang LM, Tang MH, Zhou YC, et al. Unconventional polarization-switching mechanism in (Hf, Zr)O2 ferroelectrics and its implications. Phys Rev Lett 2023;131(22):226802.

[30]

Kim SJ, Narayan D, Lee J-G, Mohan J, Lee JS, Lee J, et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget. Appl Phys Lett 2017;111(24):242901.

[31]

Lee Y, Goh Y, Hwang J, Das D, Jeon S. The influence of top and bottom metal electrodes on ferroelectricity of hafnia. IEEE Trans Electron Dev 2021;68(2):523-8.

[32]

Fan P, Zhang YK, Yang Q, Jiang J, Jiang LM, Liao M, et al. Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics. J Phys Chem C 2019;123(35):21743-50.

[33]

Lu YW, Shieh J, Tsai FY. Induction of ferroelectricity in nanoscale ZrO2/HfO2 bilayer thin films on Pt/Ti/SiO2/Si substrates. Acta Mater 2016;115:68-75.

[34]

Jang H, Kashir A, Oh S, Hwang H. Improvement of endurance and switching speed in Hf1-xZrxO2 thin films using a nanolaminate structure. Nanotechnology 2022;33(39):395205.

[35]

Yi SH, Lin BT, Hsu TY, Shieh J, Chen MJ. Modulation of ferroelectricity and antiferroelectricity of nanoscale ZrO2 thin films using ultrathin interfacial layers. J Eur Ceram Soc 2019;39(14):4038-45.

[36]

Kashir A, Kim H, Oh S, Hwang H. Large remnant polarization in a wake-up free Hf0.5Zr0.5O2 ferroelectric film through bulk and interface engineering. ACS Appl Electron Mater 2021;3(2):629-38.

[37]

Chen HY, Luo H, Yuan X, Zhang D. Realization of excellent ferroelectricity in PDA-derived Hf0.5Zr0.5O2 films through insertion of an ultrathin Ti metal layer. Scripta Mater 2022;217:114758.

[38]

Schroeder U, Richter C, Park MH, Schenk T, Pešić M, Hoffmann M, et al. Lanthanum-doped hafnium oxide: a robust ferroelectric material. Inorg Chem 2018;57(5):2752-65.

[39]

Müller J, Schröder U, Böscke TS, Müller I, Böttger U, Wilde L, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys 2011;110(11):114113.

[40]

Hoffmann M, Schroeder U, Schenk T, Shimizu T, Funakubo H, Sakata O, et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J Appl Phys 2015;118(7):072006.

[41]

Chen H, Tang L, Luo H, Yuan X, Zhang D. Modulation of ferroelectricity in atomic layer deposited HfO2/ZrO2 multilayer films. Mater Lett 2022;313:131732.

[42]

Chuang CH, Wang TY, Chou CY, Yi SH, Jiang YS, Jj Shyue, et al. Sharp transformation across morphotropic phase boundary in sub-6 nm wake-up-free ferroelectric films by atomic layer technology. Adv Sci 2023;10(32):2302770.

[43]

Kashir A, Ghiasabadi Farahani M, Kamba S, Yadav M, Hwang H. Hf1-xZrxO2/ZrO2 nanolaminate thin films as a high-κ dielectric. ACS Appl Electron Mater 2021;3(12):5632-40.

[44]

Liao JJ, Zeng BJ, Sun Q, Chen Q, Liao M, Qiu CG, et al. Grain size engineering of ferroelectric Zr-doped HfO2 for the highly scaled devices applications. IEEE Electron Device Lett 2019;40(11):1868-71.

[45]

Pešić M, Fengler FPG, Larcher L, Padovani A, Schenk T, Grimley ED, et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv Funct Mater 2016;26(25):4601-12.

[46]

Chen YH, Wang L, Liu LY, Tang L, Yuan X, Chen HY, et al. Thickness-dependent ferroelectric properties of HfO2/ZrO2 nanolaminates using atomic layer deposition. J Mater Sci 2021;56(10):6064-72.

[47]

Gong Z, Chen JJ, Peng Y, Liu Y, Yu X, Han GQ. Physical origin of the endurance improvement for HfO2-ZrO2 superlattice ferroelectric film. Appl Phys Lett 2022;121(24):242901.

[48]

Liang YK, Li WL, Wang YJ, Peng LC, Lu CC, Huang HY, et al. ZrO2-HfO2 superlattice ferroelectric capacitors with optimized annealing to achieve extremely high polarization stability. IEEE Electron Device Lett 2022;43(9):1451-4.

[49]

Gaddam V, Kim G, Kim T, Jung MHY, Kim C, Jeon S. Novel approach to high κ (∼59) and low EOT (∼3.8 Å) near the morphotrophic phase boundary with AFE/FE (ZrO2/HZO) bilayer heterostructures and high-pressure annealing. ACS Appl Mater Interfaces 2022;14(38):43463-73.

[50]

Park MH, Kim HJ, Kim YJ, Lee W, Moon T, Hwang CS. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl Phys Lett 2013;102(24):242905.

[51]

Chen HY, Luo H, Yuan X, Zhang D. Constructing a correlation between ferroelectricity and grain sizes in Hf0.5Zr0.5O2 ferroelectric thin films. CrystEngComm 2022;24(9):1731-7.

[52]

Song TF, Tan H, Dix N, Moalla R, Lyu J, Saint-Girons G, et al. Stabilization of the ferroelectric phase in epitaxial Hf1-xZrxO2 enabling coexistence of ferroelectric and enhanced piezoelectric properties. ACS Appl Electron Mater 2021;3(5):2106-13.

[53]

Wei JC, Jiang LL, Huang ML, Wu YN, Chen SY. Intrinsic defect limit to the growth of orthorhombic HfO2 and (Hf,Zr)O2 with strong ferroelectricity: first-principles insights. Adv Funct Mater 2021;31(42):2104913.

[54]

Hoffmann M, Schroeder U, Schenk T, Shimizu T, Funakubo H, Sakata O, et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J Appl Phys 2015;118(7):072006.

[55]

Chen HY, Chen YH, Tang L, Luo H, Zhou KC, Yuan X, et al. Obvious ferroelectricity in undoped HfO2 films by chemical solution deposition. J Mater Chem C 2020;8(8):2820-6.

[56]

Lee H-J, Lee M, Lee K, Jo J, Yang H, Kim Y, et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020;369(6509):1343-7.

[57]

Ding W, Zhang Y, Tao L, Yang Q, Zhou Y. The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: a first-principle study. Acta Mater 2020;196:556-64.

[58]

Zhou DY, Guan Y, Vopson MM, Xu J, Liang HL, Cao F, et al. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films. Acta Mater 2015;99:240-6.

[59]

Jo JY, Yang SM, Kim TH, Lee HN, Yoon JG, Park S, et al. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. Phys Rev Lett 2009;102(4):045701.

[60]

Yoo HK, Kim JS, Zhu Z, Choi YS, Yoon A, MacDonald MR, et al. Engineering of ferroelectric switching speed in Si doped HfO2 for high-speed 1T-FERAM application. IEEE International Electron Devices Meeting, San Francisco, CA, USA 2017;19(6):1-4.

[61]

Kozodaev MG, Chernikova AG, Korostylev EV, Park MH, Khakimov RR, Hwang CS, et al. Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping. J Appl Phys 2019;125(3):034101.

[62]

Lyu X, Si M, Sun X, Capano MA, Wang H, Ye PD. Ferroelectric and anti-ferroelectric hafnium zirconium oxide: scaling limit, switching speed and record high polarization density. IEEE Symposium on VLSI Technology, Kyoto, Japan 2019:44-5.

[63]

Merz WJ. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 1954;95(3):690-8.

[64]

Liu C, Yang QJ, Zeng BJ, Jiang YQ, Zheng SZ, Liao JJ, et al. Orientation independent growth of uniform ferroelectric Hf0.5Zr0.5O2 thin films on silicon for high-density 3D memory applications. Adv Funct Mater 2022;32(49):2209604.

[65]

Hao PQ, Zheng SZ, Zeng BJ, Yu T, Yang ZB, Liao LC, et al. Highly enhanced polarization switching speed in HfO2-based ferroelectric thin films via a composition gradient strategy. Adv Funct Mater 2023;33(31):2301746.

[66]

Lee DH, Lee Y, Yang K, Park JY, Kim SH, Reddy PRS, et al. Domains and domain dynamics in fluorite-structured ferroelectrics. Appl Phys Rev 2021;8(2):021312.

[67]

Li YX, Li JZ, Liang RR, Zhao RT, Xiong BK, Liu HF, et al. Switching dynamics of ferroelectric HfO2-ZrO2 with various ZrO2 contents. Appl Phys Lett 2019;114(14):142902.

[68]

Buragohain P, Erickson A, Mimura T, Shimizu T, Funakubo H, Gruverman A. Effect of film microstructure on domain nucleation and intrinsic switching in ferroelectric Y:HfO2 thin film capacitors. Adv Funct Mater 2022;32(9):2108876.

Journal of Materiomics
Cite this article:
Liu L, Jiang C, Yuan X, et al. Large ferroelectric polarization and high dielectric constant in HfO2-based thin films via Hf0.5Zr0.5O2/ZrO2 nanobilayer engineering. Journal of Materiomics, 2025, 11(3). https://doi.org/10.1016/j.jmat.2024.07.007
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return