The direct integration of crystalline oxide layers with industrial Si substrate, specifically compatible with CMOS technology, requires the development of relatively simple, low-temperature processing routes below 450 ℃. Here, a novel nonstoichiometric approach is proposed to achieve fabrication of BiFeO3 films at 450 ℃. Of particular importance is that, a saturation and remnant polarization of ~80 μC/cm2 and ~60 μC/cm2 and a strain as large as 1% are obtained. This strain stands as one of the most impressive values reported for thin films, comparable to the most superior strain obtained in ferroelectric films fabricated at temperatures exceeding 700 ℃. The current work provides a new paradigm with significant simplicity and novel efficacy in reducing processing temperatures, as well offers a promising material for memory and piezo-driven actuating applications, especially meeting the increasing demand for precision position control systems at the nanometer scale.
Calzada ML, Bretos I, JimØnez R, Guillon H, Pardo L. Low-temperature processing of ferroelectric thin films compatible with silicon integrated circuit technology. Adv Mater 2004;16:1620.
Yang B, Jin L, Wei R, Tang X, Hu L, Tong P, et al. Chemical solution route for high-quality multiferroic BiFeO3 thin films. Small 2019;17:1903663.
Bretos Í, Jiménez R, Ricote J, Calzada ML. Low-temperature solution approaches for the potential integration of ferroelectric oxide films in flexible electronics. IEEE Trans Ultrason Ferroelectrics Freq Control 2020;67:1967.
Tang X, Chen W, Wu D, Gao A, Li G, Sun J, et al. In situ growth of all-inorganic perovskite single crystal arrays on electron transport layer. Adv Sci 2020;7:1902767.
Bretos I, Jiménez R, Pérez-Mezcua D, Salazar N, Ricote J, Calzada ML. Low-temperature liquid precursors of crystalline metal oxides assisted by heterogeneous photocatalysis. Adv Mater 2015;27:2608-13.
Bretos I, Jiménez R, Ricote J, Sirera R, Calzada ML. Photoferroelectric thin films for flexible systems by a three-in-one solution-based approach. Adv Funct Mater 2020;30:2001897.
Lebeugle D, Colson D, Forget A, Viret M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett 2007;91(2):022907.
Barrios Ó, Jiménez R, Ricote J, Tartaj P, Calzada ML, Bretos Í. A sustainable self-induced solution seeding approach for multipurpose BiFeO3 active layers in flexible electronic devices. Adv Funct Mater 2022:2112944.
Suzuki H, Koizumi T, Kondo Y, Kaneko S. Low-temperature processing of Pb(Zr0.53Ti0.47)O3 thin film from stable precursor sol. J Eur Ceram Soc 1999;19:1397-401.
Xue K-H, Celinska J, Paz de Araujo CA. Low temperature preparation of ferroelectric bismuth titanate thin films. Appl Phys Lett 2009;95(5):052908.
Zhao Z, Zhu J, Chen W. Size-dependent vibrations and waves in piezoelectric nanostructures: a literature review. Int J Smart Nano Mater 2022;13:391-431.
Yi J, Yue L, Xue R, Wang Y, Yang G. Mechanism underlying two-step separated fcc-Al crystallization in Al-based metallic glasses. Mater Lett 2021;303:130488.
Bai X, Bugnet M, Frontera C, Gemeiner P, Guillot Jrm, Lenoble D, et al. Crystal growth mechanisms of BiFeO3 nanoparticles. Inorg Chem 2019;58:11364-71.
Qin H, Zhao J, Chen X, Li H, Wang S, Du Y, et al. Investigation of BiFeO3-BaTiO3 lead-free piezoelectric ceramics with nonstoichiometric bismuth. Microstructures 2023;3:2023033.
Lu CJ, Ren SB, Shen HM, Liu S, Wang YN. The effect of grain size on domain structure in unsupported PbTiO3 thin films. J Phys Condens Matter 1996;8:8011.
Lim S-H, Murakami M, Yang JH, Young S-Y, Hattrick-Simpers J, Wuttig M, et al. Enhanced dielectric properties in single crystal-like BiFeO3 thin films grown by flux-mediated epitaxy. Appl Phys Lett 2008;92:012918.
Lee H-Y, Liu L, Luo J, Zhen Z, Li J-F. Thickness-dependent switching behavior of 0.8(Bi0.5Na0.5)TiO3-0.2SrTiO3 lead-free piezoelectric thin films. Ceram Int 2019;45:16022-7.
Liu L, Hinterstein M, Rojac T, Walker J, Makarovic M, Daniels J. In situ study of electric-field-induced ferroelectric and antiferromagnetic domain switching in polycrystalline BiFeO3. J Am Ceram Soc 2018;102:1768-75.
Zhao J, Qin H, Chen X, Yu S, Wang D. Enhanced piezoelectric properties and electrical resistivity in CaHfO3 modified BiFeO3-BaTiO3 lead-free piezoceramics. J Materiomics 2024;10(2):416-22.
Wang Z, Zhao J, Zhang N, Ren W, Zheng K, Quan Y, et al. Optimizing strain response in lead-free (Bi0.5Na0.5)TiO3-BaTiO3-NaNbO3 solid solutions via ferroelectric/(non-) ergodic relaxor phase boundary engineering. J Materiomics 2023;9(2):244-55.
Tang Y-C, Yin Y, Song A-Z, Li H-Z, Zhang B-P. High-performance BiFeO3-BaTiO3 lead-free piezoceramics insensitive to off-stoichiometry and processing temperature. J Materiomics 2023;9(2):353-61.
Alonso-Sanjosé D, Jiménez R, Bretos I, Calzada ML. Lead-free ferroelectric (Na1/2Bi1/2)TiO3-BaTiO3 thin films in the morphotropic phase boundary composition: solution processing and properties. J Am Ceram Soc 2009;92(10):2218-25.
Chen W, Wang L, Ren W, Niu G, Zhao J, Zhang N, et al. Crystalline phase and electrical properties of lead-free piezoelectric KNN-based films with different orientations. J Am Ceram Soc 2017;100(7):2965-71.
Davydok A, Cornelius TW, Mocuta C, Lima EC, Araujo EB, Thomas O. In situ X-ray diffraction studies on the piezoelectric response of PZT thin films. Thin Solid Films 2016;603:29-33.
Gonzalez AHM, Simões AZ, Cavalcante LS, Longo E, Varela JA, Riccardi CS. Soft chemical deposition of BiFeO3 multiferroic thin films. Appl Phys Lett 2007;90(5):052906.
He G, Zhang Y, Peng C, Li X. Surface morphology and ferroelectric properties of compositional gradient PZT thin films prepared by chemical solution deposition process. Appl Surf Sci 2013;283:532-6.
Hou F, Shen M, Cao W. Ferroelectric properties of neodymium-doped Bi4Ti3O12 thin films crystallized in different environments. Thin Solid Films 2005;471(1/2):35-9.
Jin L, Tang X, Song D, Wei R, Yang J, Dai J, et al. Annealing temperature effects on (111)-oriented BiFeO3 thin films deposited on Pt/Ti/SiO2/Si by chemical solution deposition. J Mater Chem C 2015;3(41):10742-7.
Kariya K, Yoshimura T, Murakami S, Fujimura N. Piezoelectric properties of (100) orientated BiFeO3 thin films on LaNiO3. Jpn J Appl Phys 2014;53(8S3):08NB02.
Li N, Li WL, Wang LD, Xu D, Chi QG, Fei WD. Improved leakage property and reduced crystallization temperature by V2O5 seed layer in K0.4Na0.6NbO3 thin films derived from chemical solution deposition. J Alloys Compd 2013;552:269-73.
Lian L, Sottos NR. Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films. J Appl Phys 2000;87(8):3941-9.
Liu H, Wang X. Room temperature saturated polarization in BiFeO3 film by a simple chemical solution deposition method. J Phys D Appl Phys 2008;41(17):175411.
Michael-Sapia EK, Li HU, Jackson TN, Trolier-McKinstry S. Nanocomposite bismuth zinc niobate tantalate for flexible energy storage applications. J Appl Phys 2015;118(23):234102.
Minh DH, Loi NV, Duc NH, Trinh BNQ. Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates. J Sci-Adv Mater Dev 2016;1(1):75-9.
Nakashima Y, Sakamoto W, Shimura T, Yogo T. Chemical processing and characterization of ferroelectric (K,Na)NbO3 thin films. Jpn J Appl Phys 2007;46(10B):6971-5.
Tomczyk M, Bretos I, Jiménez R, Mahajan A, Ramana EV, Calzada ML, et al. Direct fabrication of BiFeO3 thin films on polyimide substrates for flexible electronics. J Mater Chem C 2017;5(47):12529-37.
Wu A, Vilarinho PM, Reaney I, Miranda Salvado IM. Early stages of crystallization of sol-gel-derived lead zirconate titanate thin films. Chem Mater 2003;15(5):1147-55.
Vendrell X, Raymond O, Ochoa DA, García JE, Mestres L. Growth and physical properties of highly oriented La-doped (K,Na)NbO3 ferroelectric thin films. Thin Solid Films 2015;577:35-41.
Yan X, Ren W, Wu X, Shi P, Yao X. Lead-free (K, Na)NbO3 ferroelectric thin films: preparation, structure and electrical properties. J Alloys Compd 2010;508(1):129-32.
Zhong J, Kotru S, Han H, Jackson J, Pandey RK. Effect of Nb doping on highly {100}-textured PZT films grown on CSD-prepared PbTiO3 seed layers. Integrated Ferroelectrics Int J 2011;130(1):1-11.
Nakashima Y, Sakamoto W, Maiwa H, Shimura T, Yogo T. Lead-free piezoelectric (K,Na)NbO3 thin films derived from metal alkoxide precursors. Jpn J Appl Phys 2007;46(14):311-3.
Nguyen MD, Rijnders G. Comparative study of piezoelectric response and energy-storage performance in normal ferroelectric, antiferroelectric and relaxor-ferroelectric thin films. Thin Solid Films 2020;697:137843.
Sharifzadeh Mirshekarloo M, Yao K, Sritharan T. Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1-x-ySnxTi)O3 antiferroelectric thin films. Appl Phys Lett 2010;97(14):142902.
Yao Y, Naden A, Tian M, Lisenkov S, Beller Z, Kumar A, et al. Ferrielectricity in the archetypal antiferroelectric, PbZrO3. Adv Mater 2022;35(3):2206541.
Oliveira AN, Moreira LS, Sacramento RL, Kosulic L, Brasil VB, Wolff W, et al. Cryogenic mount for mirror and piezoelectric actuator for an optical cavity. Rev Sci Instrum 2017;88(6):063104.
Favero I, Karrai K. Optomechanics of deformable optical cavities. Nat Photonics 2009;3:201-5.
M K, Hampson, Turcotte R, Miller DT, Kurokawa K, Males JR, et al. Adaptive optics for high-resolution imaging. Nat Rev Methods Primers 2021;1:s43586.
Mandal S, Ghosh CK, Sarkar D, Maiti UN, Chattopadhyay KK. X-ray photoelectron spectroscopic investigation on the elemental chemical shifts in multiferroic BiFeO3 and its valence band structure. Solid State Sci 2010;12:1803-8.
Bozgeyik MS, Katiyar RK, Katiyar RS. Improved magnetic properties of bismuth ferrite ceramics by La and Gd co-substitution. J Electroceram 2018;40:247-56.
Yi J, Liu L, Shu L, Huang Y, Li J-F. Outstanding ferroelectricity in sol–gel-derived polycrystalline BiFeO3 films within a wide thickness range. ACS Appl Mater Interfaces 2022;14:21696-704.