Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
References
Show full outline
Hide outline
Research paper | Open Access

Cold sintering of CsPbBr3 quantum dots embedded KBr ceramics for LED displays

Jie Gao1Yu Ren1Qi DingPeng YanYongping LiuYunfeng HuJihu ChenZhi ChengYuchi Fan()Wan Jiang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China

Peer review under responsibility of The Chinese Ceramic Society.

1 Jie Gao and Yu Ren contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Thanks to their tunable luminescence, narrow emission range, and superior color fidelity, perovskite quantum dots (PeQDs) are widely considered as promising materials for next-generation backlight displays. However, the susceptibility to degradation and failure when exposed to ambient environment significantly hampers their widespread applications. Herein, we reported an effective strategy to encapsulate CsPbBr3 nanocrystals into robust KBr matrix via cold sintering process at 120 °C. The well prepared translucent CsPbBr3@KBr ceramic displays a narrow green photoluminescence (with a full-width at half-maximum of ~22 nm) and an quantum yield of 73.6% with remarkable thermal stability. By incorporating red emitting K2SiF4:Mn4+ phosphor into the KBr matrix, the color gamut of the constructed white LED improves to 118% of the National Television System Committee (NTSC) standard, suggesting that the thermally robust and narrow-band green emitter holds significant promise for wide-color-gamut liquid crystal displays.

References

[1]

Nam YH, Han K, Chung WJ, Im WB. Double encapsulation of CsPbBr3 perovskite nanocrystals with inorganic glasses for robust color converters with wide color gamut. ACS Appl Nano Mater 2021;4(7):7072–8.

[2]

Liao SX, Jin SL, Pang T, Lin SS, Zheng YH, Chen RH, et al. Novel color converters for high brightness laser-driven projection display: transparent ceramics-glass ceramics film composite. Adv Funct Mater 2023;34(4):2307761.

[3]

Yang MT, Wang Q, Tong Y, Zhai LL, Xiang WD, Liang XJ. CsPbBr3 nanocrystals glass with finely adjustable wavelength and color coordinate by mgo modulation for wide-color-gamut backlight displays. Appl Surf Sci 2022;604: 154529.

[4]

Pang XL, Zhang HR, Xie LQ, Xuan TT, Sun YQ, Si SC, et al. Precipitating CsPbBr3 nanocrystals glass with finely adjustable wavelength and color coordinate by mgo modulation for wide-color-gamut backlight displays quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. J Mater Chem C 2019;7:13139–48.

[5]

Kim J, Roh J, Park M, Lee C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv Mater 2024;36(20):2212220.

[6]

Wang XC, Bao Z, Chang YC, Liu RS. Perovskite quantum dots for application in high color gamut backlighting display of light-emitting diodes. ACS Energy Lett 2020;5:3374–96.

[7]

Osborne RA, Cherepy NJ, Seeley ZM, Payne SA, Drobshoff AD, Srivastava AM, et al. New red phosphor ceramic K2SiF6:Mn4+. Opt Mater 2020;107:110140.

[8]

Zhang YJ, Zhang ZL, Liu XD, Shao GZ, Shen LL, Liu JM, et al. A high quantum efficiency CaAlSiN3:Eu2+ phosphor-in-glass with excellent optical performance for white light-emitting diodes and blue laser diodes. Chem Eng J 2020;401:125983.

[9]

Cifci OS, Yoder MA, Xu L, Chen H, Beck CJ, He JW, et al. Luminescent concentrator design for displays with high ambient contrast and efficiency. Nat Photonics 2023;17:872–7.

[10]

Shim HC, Kim J, Park SY, Kim BS, Jang B, Lee HJ, et al. Full-color micro-led display with photo-patternable and highly ambient-stable perovskite quantum dot/siloxane composite as color conversion layers. Sci Rep 2023;13:4836.

[11]

Lin KB, Xing J, Quan LN, de Arquer FPG, Gong XW, Lu JX, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018;562:245–8.

[12]

Qi Y, Liu Y, Lin C, Deng Y, Bai P, Gao Y, et al. Anisotropic emission of orientation-controlled mixed-dimensional perovskites for light-emitting devices. J Materiomics 2023;9(4):762–7.

[13]

Fan C, Liu HP, Zhou JW, Dai XL, He HP, Ye ZZ. Ultrastable and highly efficient CsPbBr3 composites achieved by dual-matrix encapsulation for display devices. InfoMat 2023;5(7):12417.

[14]

Chen D, He Y, Fan G, Zhang Z, Zhu W, Xi H, et al. Ultrahigh fill-factor all-inorganic CsPbBr3 perovskite solar cells processed from two-step solution method and solvent additive strategy. J Materiomics 2023;9(4):717–24.

[15]

Zhu K, Wu J, Fan Q. Double-side modification strategy for efficient carbon-based, all-inorganic CsPbIBr2 perovskite solar cells with high photovoltage. J Materiomics 2023;9(1):35–43.

[16]

Liu XD, Mei ER, Liu ZZ, Du J, Liang XJ, Xiang WD. Stable, low-threshold amplification spontaneous emission of blue-emitting CsPbCl2Br1 perovskite nanocrystals glasses with controlled crystallization. ACS Photonics 2021;8(3): 887–93.

[17]

He QY, Mei ER, Liang XJ, Xiang WD. Ultrastable PVB films-protected CsPbBr3/ Cs4PbBr6 perovskites with high color purity for nearing Rec. 2020 standard. Chem Eng J 2021;419:129529.

[18]

Ma WB, Jiang TM, Yang Z, Zhang H, Su YR, Chen Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering. Adv Sci 2021;8(15):2003728.

[19]

Li JH, Zhou DC, Liu Y, Chen Y, Chen JY, Yang Y, et al. Engineering CsPbX3 (X = Cl, Br, I) quantum dot-embedded borosilicate glass through self-crystallization facilitated by naf as a phosphor for full-color illumination and laser-driven projection displays. ACS Appl Mater Interfaces 2023;15(18):22219–30.

[20]

Peng XT, Hu L, Sun XQ, Lu YR, Chu DW, Xiao P. Fabrication of high-performance CsPbBr3 perovskite quantum dots/polymer composites via photopolymerization: implications for luminescent displays and lighting. ACS Appl Nano Mater 2023;6(1):646–55.

[21]

Wang Z, Huang F, Cai M, Zhang X, Deng D, Xu S. Novel ultra-wideband fluorescence material: defect state control based on nickel-doped semiconductor QDs embedded in inorganic glasses. J Materiomics 2023;9(2):338–44.

[22]

Liu SN, Shao GZ, Ding L, Liu JM, Xiang WD, Liang XJ. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED. Chem Eng J 2019;361:937–44.

[23]

Jin XY, Ma KL, Chakkamalayath J, Morsby J, Gao HF. In situ photocatalyzed polymerization to stabilize perovskite nanocrystals in protic solvents. ACS Energy Lett 2022;7(2):610–6.

[24]

Yang BB, Mei SL, Zhu YX, Yang D, He HY, Hu RR, et al. Precipitation promotion of highly emissive and stable CsPbBr3 (Cl, Br, I) perovskite quantum dots in borosilicate glass with alkaline earth modification. Ceram Int 2023;49(4): 6720–8.

[25]

Li YT, Li YJ, Yang ZX, Zhang XJ, Liu JH, Zeng FM, et al. Structural, optical and mechanical properties and cracking factors of large-sized KBr:Ce3+ single crystal. J Electron Mater 2020;49:4785–93.

[26]

Boness DA, Brown JM. Bulk superheating of solid KBr and CsBr with shock waves. Phys Rev Lett 1993;71(18):2931–4.

[27]

Gao J, Ding Q, Yan P, Liu Y, Hu Y, et al. Direct cold sintering of translucent gamma-Al2O3 ceramics. J Eur Ceram Soc 2024;44(6):4225–31.

[28]

Wang X, Zhang H, Yu X, Mo X, Gao J, Hu Y, et al. Effects of water on cold-sintered highly dense dicalcium phosphate anhydrous bioceramic using its hydrate. J Am Ceram Soc 2024;107(7):4631–40.

[29]

Gao J, Xia Z, Ding Q, Liu Y, Yan P, Hu Y, et al. Cold Sintering of Highly Transparent Calcium Fluoride Nanoceramic as a Universal Platform for High-Power Lighting. Adv Funct Mater 2023;33(33):2302088.

[30]

Chen L, He M, Gong WB, Hu PY, Yuan SL, Chen AP, et al. Robust salt-shelled metal halide for highly efficient photoluminescence and wearable real-time human motion perception. Nano Energy 2023;108:108235.

[31]

Debeauvoir TH, Taberna PL, Simon P, Estournes C. Cold sintering process characterization by in operando electrochemical impedance spectroscopy. J Eur Ceram Soc 2022;42(13):5747–55.

[32]

Gao J, Wang KJ, Luo W, Cheng XW, Fan YC, Jiang W. Realizing translucency in aluminosilicate glass at ultralow temperature via cold sintering process. J Adv Ceram 2022;11:1714–24.

[33]

Huang X, Guo Q, Yang D, Xiao X, Liu X, Xia Z, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photonics 2019;14:82–8.

[34]

Song JZ, Li JH, Li XM, Xu LM, Dong YH, Zeng HB. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 2015;27(44):7162–7.

[35]

Akkerman QA, D'Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc 2015;137(32): 10276–81.

[36]

Dirin DN, Benin BM, Yakunin S, Krumeich F, Raino G, Frison R, et al. Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals. ACS Nano 2019;13(10):11642–52.

[37]

Hu XB, Xu YQ, Wang JC, Ma JX, Wang LJ, Jiang W. Synergistic effects of surface ligand engineering and double matrices protecting enable ultrastable and highly emissive blue/cyan perovskite nanocrystal films for multifunctional applications. Laser Photon Rev 2023;17(2):2200651.

[38]

Fan M, Huang J, Turyanska L, Bian Z, Wang L, Xu C, et al. Efficient all-perovskite white light-emitting diodes made of in situ grown perovskite-mesoporous silica nanocomposites. Adv Funct Mater 2023;33(19):2215032.

[39]

Wei Y, Xiao H, Xie Z, Liang S, Liang S, Cai X, et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv Opt Mater 2018;6(11):1701343.

[40]

Zhang Q, Wang B, Zheng W, Kong L, Wan Q, Zhang C, et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat Commun 2020;11:31.

[41]

Yuan S, Chen D, Li X, Zhong J, Xu X. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl Mater Interfaces 2018;10(22):18918–26.

[42]

Chen S, Lin J, Zheng S, Zheng Y, Chen D. Efficient and stable perovskite white light-emitting diodes for backlit display. Adv Funct Mater 2023;33(18): 2213442.

[43]

Su B, Zhou G, Huang J, Song E, Nag A, Xia Z. Mn2+-doped metal halide perovskites: structure, photoluminescence, and application. Laser Photon Rev 2021;15(1):2000334.

[44]

Li J, Zhou D, Liu Y, Chen Y, Chen J, Yang Y, et al. Engineering CsPbBr3 (X = Cl, Br, I) quantum dot-embedded borosilicate glass through self-crystallization facilitated by naf as a phosphor for full-color illumination and laser-driven projection displays. ACS Appl Mater Interfaces 2023;15(18):22219–30.

[45]

Zhang DQ, Wei CT, Li XS, Guo SY, Luo X, Jin X, et al. Highly solvent resistant small-molecule hole-transporting materials for efficient perovskite quantum dot light-emitting diodes. ACS Appl Mater Interfaces 2023;15(37):44043–53.

[46]

Peng WF, Hu RR, Yang BB, Wu QY, Liang P, Cheng L, et al. Solution-grown millimeter-scale Mn-doped CsPbBr3/Cs4PbBr6 crystals with enhanced photoluminescence and stability for light-emitting applications. Phys Chem Chem Phys 2023;26:373–80.

[47]

Huang P, Zhou BY, Zheng Q, Tian Y, Wang MM, Wang LJ, et al. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG:Ce composite ceramics for high luminous efficiency white light-emitting diodes. Adv Mater 2020;32(1):1905951.

[48]

Si SC, Yu JB, Lou SQ, Lan B, Zhang JH, Zhang XJ, et al. Engineering the crystallization behavior of CsPbBr3 quantum dots in borosilicate glass through modulating the glass network modifiers for wide-color-gamut displays. J Eur Ceram Soc 2022;42(8):3586–94.

Journal of Materiomics
Cite this article:
Gao J, Ren Y, Ding Q, et al. Cold sintering of CsPbBr3 quantum dots embedded KBr ceramics for LED displays. Journal of Materiomics, 2025, 11(4). https://doi.org/10.1016/j.jmat.2024.100933
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return