Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

Phase transition mechanism and property prediction of hafnium oxide-based antiferroelectric materials revealed by artificial intelligence

Shaoan YanaPei XuaGang LiaYingfang Zhua()Yujie WuaQilai ChenbSen Liuc()Qingjiang LicMinghua Tangd()
School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, Hunan, China
School of Materials, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
College of Electronic Science and Engineering, National University of Defense Technology, Changsha, 410073, China
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Constrained by the inefficiency of traditional trial-and-error methods, especially when dealing with thousands of candidate materials, the swift discovery of materials with specific properties remains a central challenge in contemporary materials research. This study employed an artificial intelligence-driven materials design framework for identifying dopants that impart antiferroelectric properties to HfO2 materials. This strategy integrates density functional theory (DFT) with machine learning (ML) techniques to swiftly screen HfO2 materials exhibiting stable antiferroelectric properties based on the critical electric field. This approach aims to overcome the high cost and lengthy cycles associated with traditional trial-and-error and experimental methods. Among 30 undeveloped dopants, four candidate dopants demonstrating stable antiferroelectric properties were identified. Subsequent DFT analysis highlighted the Ga dopant, which displayed favorable characteristics such as a small volume change, minimal lattice deformation, and a low critical electric field after incorporation into hafnium oxide. These findings suggest the potential for stable antiferroelectric performance. Essentially, we established a correlation between the physical characteristics of hafnium oxide dopants and their antiferroelectric performance. The approach facilitates large-scale ML predictions, rendering it applicable to a broad spectrum of functional material designs.

References

[1]

Si Y, Zhang T, Liu C, Das S, Xu B, Burkovsky RG, et al. Antiferroelectric oxide thin-films: fundamentals, properties, and applications. Prog Mater Sci 2024;142:101231.

[2]

Liu C, Si Y, Zhang H, Wu C, Deng S, Dong Y, et al. Low voltage-driven high-performance thermal switching in antiferroelectric PbZrO3 thin films. Science 2023;382:1265-9.

[3]

Xu K, Tang S, Guo C, Song Y, Huang H. Antiferroelectric domain modulation enhancing energy storage performance by phase-field simulations. J Materiomics 2025;11(3):100901.

[4]

Böscke TS, Müller J, Bräuhaus D, Schröder U, Böttger U. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 2011;99(10):102903.

[5]

Yan S, Zang J, Xu P, Zhu Y, Li G, Chen Q, et al. Recent progress in ferroelectric synapses and their applications. Sci China Mater 2023;66(3):877-94.

[6]

Ju C, Zeng B, Luo Z, Yang Z, Hao P, Liao L, et al. Improved ferroelectric properties of CMOS back-end-of-line compatible Hf0.5Zr0.5O2 thin films by introducing dielectric layers. J Materiomics 2024;10(2):277-84.

[7]

Hou Y, Wang B, Luo Z, Du X, Wang Z, Fang Y, et al. Ultralow operating voltage for energy conversion performance in Hf1-xZrxO2 thin films. J Materiomics 2024;10(6):1206-13.

[8]

Ali F, Liu X, Zhou D, Yang X, Xu J, Schenk T, et al. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J Appl Phys 2017;122(14):144105.

[9]

Chen H, Liu L, Yan Z, Yuan X, Luo H, Zhang D. Ultrahigh energy storage density in superparaelectric-like Hf0.2Zr0.8O2 electrostatic supercapacitors. Adv Sci 2023;10(18):2300792.

[10]

Ali F, Zhou D, Sun N, Ali HW, Abbas A, Iqbal F, et al. Fluorite-structured ferroelectric-/antiferroelectric-based electrostatic nanocapacitors for energy storage applications. ACS Appl Energy Mater 2020;3(7):6036-55.

[11]

Kim KD, Lee YH, Gwon T, Kim YJ, Kim HJ, Moon T, et al. Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors. Nano Energy 2017;39:390-9.

[12]

Yun Y, Buragohain P, Li M, Ahmadi Z, Zhang Y, Li X, et al. Intrinsic ferroelectricity in Y-doped HfO2 thin films. Nat Mater 2022;21(8):903-9.

[13]

Park MH, Schenk T, Fancher CM, Grimley ED, Zhou C, Richter C, et al. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants. J Mater Chem C 2017;5(19):4677-90.

[14]

Silva A, Fina I, S Nchez F, Silva JP, Marques LA, Lenzi V. Unraveling the ferroelectric switching mechanisms in ferroelectric pure and La doped HfO2 epitaxial thin films. Mater Today Phys 2023;34:101064.

[15]

Li S, Zhou D, Shi Z, Hoffmann M, Mikolajick T, Schroeder U. Temperature-dependent subcycling behavior of Si-doped HfO 2 ferroelectric thin films. ACS Appl Electron Mater 2021;3(5):2415-22.

[16]

Lee K, Lee H, Lee TY, Lim HH, Song MS, Yoo HK, et al. Stable subloop behavior in ferroelectric Si-doped HfO2. ACS Appl Mater Interfaces 2019;11(42):38929-36.

[17]

Lomenzo PD, Richter C, Mikolajick T, Schroeder U. Depolarization as driving force in antiferroelectric hafnia and ferroelectric wake-up. ACS Appl Electron Mater 2020;2(6):1583-95.

[18]

Zhou D, Xu J, Li Q, Guan Y, Cao F, Dong X, et al. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl Phys Lett 2013;103(19):192904.

[19]

Lederer M, Olivo R, Lehninger D, Abdulazhanov S, K Mpfe T, Kirbach S, et al. On the origin of wake-up and antiferroelectric-like behavior in ferroelectric hafnium oxide. Phys Status Solidi-R 2021;15(5):2100086.

[20]

Shimizu T, Mimura T, Kiguchi T, Shiraishi T, Konno T, Katsuya Y, et al. Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films. Appl Phys Lett 2018;113(21):212901.

[21]

Pešić M, Hoffmann M, Richter C, Mikolajick T, Schroeder U. Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Adv Funct Mater 2016;26(41):7486-94.

[22]

Materlik R, K Nneth C, Kersch A. The origin of ferroelectricity in Hf1−xZrxO2: a computational investigation and a surface energy model. J Appl Phys 2015;117(13):134109.

[23]

Luo X, Toprasertpong K, Takenaka M, Takagi S. Antiferroelectric properties of ZrO2 ultra-thin films prepared by atomic layer deposition. Appl Phys Lett 2021;118(23):232904.

[24]

Payne A, Alex Hsain H, Lee Y, Strnad NA, Jones JL, Hanrahan B. Thermal stability of antiferroelectric-like Al:HfO2 thin films with TiN or Pt electrodes. Appl Phys Lett 2022;120(23):232901.

[25]

He Y, Zheng G, Wu X, Liu W, Zhang DW, Ding S. Superhigh energy storage density on-chip capacitors with ferroelectric Hf0.5Zr0.5O2/antiferroelectric Hf0.25Zr0.75O2 bilayer nanofilms fabricated by plasma-enhanced atomic layer deposition. Nanoscale Adv 2022;4(21):4648-57.

[26]

Liu X, Zhou D, Guan Y, Li S, Cao F, Dong X. Endurance properties of silicon-doped hafnium oxide ferroelectric and antiferroelectric-like thin films: a comparative study and prediction. Acta Mater 2018;154:190-8.

[27]

Martin D, M Ller J, Schenk T, Arruda TM, Kumar A, Strelcov E, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric. Adv Mater 2014;26(48):8198-202.

[28]

Muller J, Boscke TS, Schroder U, Mueller S, Brauhaus D, Bottger U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett 2012;12(8):4318-23.

[29]

Park MH, Schenk T, Hoffmann M, Knebel S, G Rtner J, Mikolajick T, et al. Effect of acceptor doping on phase transitions of HfO2 thin films for energy-related applications. Nano Energy 2017;36:381-9.

[30]

Li C, Huang Z, Hao H, Shen Z, Zhao G, Xu B, et al. Interpretable machine learning model of effective mass in perovskite oxides with cross-scale features. J Materiomics 2024;11(1):100848.

[31]

Mattur MN, Nagappan N, Rath S, Thomas T. Prediction of nature of band gap of perovskite oxides (ABO3) using a machine learning approach. J Materiomics 2022;8(5):937-48.

[32]

Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559:547-55.

[33]

Williams T, McCullough K, Lauterbach JA. Enabling catalyst discovery through machine learning and high-throughput experimentation. Chem Mater 2020;32(1):157-65.

[34]

Balachandran PV, Kowalski B, Sehirlioglu A, Lookman T. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat Commun 2018;9(1):1668.

[35]

Oh SHV, Hwang W, Kim K, Lee JH, Soon A. Using feature-assisted machine learning algorithms to boost polarity in lead-free multicomponent niobate alloys for high-performance ferroelectrics. Adv Sci 2022;9(13):2104569.

[36]

Oviedo F, Ferres JL, Buonassisi T, Butler KT. Interpretable and explainable machine learning for materials science and chemistry. Acc Mater Res 2022;3(6):597-607.

[37]

Li G, Liu Y, Yan S, Ma N, Xiao Y, Tang M, et al. Charge-compensated co-doping stabilizes robust hafnium oxide ferroelectricity. J Mater Chem C 2024;12(17):6257-66.

[38]

Xu X, Huang F, Qi Y, Singh S, Rabe KM, Obeysekera D, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat Mater 2021;20(6):826-32.

[39]

Schroeder U, Richter C, Park MH, Schenk T, Pesic M, Hoffmann M, et al. Lanthanum-doped hafnium oxide: a robust ferroelectric material. Inorg Chem 2018;57(5):2752-65.

[40]

Luo C, Kang C, Song Y, Wang W, Zhang W. Large remanent polarization in Ta-doped HfO2 thin films by reactive sputtering. Appl Phys Lett 2021;119(4):042902.

[41]

Reyes-Lillo SE, Garrity KF, Rabe KM. Antiferroelectricity in thin-film ZrO2 from first principles. Phys Rev B 2014;90(14):140103.

[42]

Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U, et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv Funct Mater 2012;22(11):2412-7.

[43]

Payne A, Brewer O, Leff A, Strnad NA, Jones JL, Hanrahan B. Dielectric, energy storage, and loss study of antiferroelectric-like Al-doped HfO2 thin films. Appl Phys Lett 2020;117(22):221104.

[44]

Yurchuk E, M Ller J, Knebel S, Sundqvist J, Graham AP, Melde T, et al. Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films. Thin Solid Films 2013;533:88-92.

[45]

Chen D, Zhong S, Dong Y, Cui T, Liu J, Si M, et al. Antiferroelectric phase evolution in HfxZr1-xO2 thin film toward high endurance of non-volatile memory devices. IEEE Electron Device Lett 2022;43(12):2065-8.

[46]

Park MH, Kim HJ, Kim YJ, Moon T, Kim KD, Hwang CS. Thin HfxZr1–xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv Energy Mater 2014;4(16):1400610.

[47]

Lo C, Chen C, Chang C, Zhang F, Lu Z, Chao T. High endurance and low fatigue effect of bilayer stacked antiferroelectric/ferroelectric HfxZr1–xO2. IEEE Electron Device Lett 2022;43(2):224-7.

[48]

Korolev VV, Mitrofanov A, Marchenko EI, Eremin NN, Tkachenko V, Kalmykov SN. Transferable and extensible machine learning-derived atomic charges for modeling hybrid nanoporous materials. Apl Mater 2020;32(18):7822-31.

[49]

Lu S, Zhou Q, Guo Y, Wang J. On-the-fly interpretable machine learning for rapid discovery of two-dimensional ferromagnets with high Curie temperature. Chem 2022;8(3):769-83.

[50]

Zhou C, Ma L, Feng Y, Kuo C, Ku Y, Liu C, et al. Enhanced polarization switching characteristics of HfO2 ultrathin films via acceptor-donor co-doping. Nat Commun 2024;15(1):2893.

Journal of Materiomics
Cite this article:
Yan S, Xu P, Li G, et al. Phase transition mechanism and property prediction of hafnium oxide-based antiferroelectric materials revealed by artificial intelligence. Journal of Materiomics, 2025, 11(4). https://doi.org/10.1016/j.jmat.2024.100968
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return