Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

Tuning the bonding environment of Se atom in Cu2MnSnSe4-based alloys for raised thermoelectric performance

Yuqing SunaZhihao LiaYujie ZongaFulong LiuaHongxiang WangaHui Sunb()Chunlei WangaHongchao Wanga()
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
School of Space Science and Physics, Shandong University, Weihai, 264209, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The intrinsic low lattice thermal conductivities originates from the complex anion bonding environment make quaternary chalcogenides potential thermoelectric materials. Here, the bonding environment of Se atom in Cu2.1Mn0.9SnSe4 is further regulated by substituting Mn2+ with equimolar pairing elements (Ag+ and In3+). The increase in both bond length and angle, together with the reduction in bond strength of Ag–Se and In–Se bonds, cause the doped samples to display strong anharmonicities (γ ~ 1.84–2.04). And the weakened bond strength also lower the sound velocities. Consequently, the κL of the doped samples is effectively constrained, achieving a minimum value of 0.55 W·m−1·K−1 at 673 K in x = 0.10 sample. Ultimately, a zT value of 0.53 at 673 K is attained in x = 0.10 sample. The modification of bonding environment around anion is considered as an effective mean to optimize the thermoelectric performance of quaternary chalcogenides.

References

[1]

Qin Y, Qin B, Hong T, Zhang X, Wang D, Liu D, et al. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3. Science 2024;383:1204-1209.

[2]

He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.

[3]

Cao T, Shi X-L, Zou J, Chen Z-G. Advances in conducting polymer-based thermoelectric materials and devices. Microstructures 2021;1:1-33.

[4]

Shi X, Song S, Gao G, Ren Z. Global band convergence design for high-performance thermoelectric power generation in Zintls. Science 2024;384:757-762.

[5]

Li X, Liu M, Guo M, Niu C, He H, Liu Z, et al. Tailoring band structure and Ge precipitates through Er and Sb/Bi co-doping to realize high thermoelectric performance in GeTe. Chem Eng J 2023;474:145820.

[6]

Wu G, Guo Z, Wang R, Tan X, Cui C, Sun P, et al. Structural modulation and resonant level enable high thermoelectric performance of GeTe in the mid-to-low temperature range. J Mater Chem A 2023;11:20497-20505.

[7]

Xia J, Yang J, Wang Y, Jia B, Li S, Sun K, et al. Synergistic entropy engineering with vacancies: unraveling the cocktail effect for extraordinary thermoelectric performance in SnTe-based materials. Adv Funct Mater 2024:2401635.

[8]

Yang J, Ye H, Zhang X, Miao X, Yang X, Xie L, et al. Dual-site doping and low-angle grain boundaries lead to high thermoelectric performance in n-type Bi2S3. Adv Funct Mater 2024;34:2306961.

[9]

Chen T, Qin X, Ming H, Zhang X, Wang Z, Yang S, et al. Enhancing thermoelectric performance of n-type Bi2Te2.7Se0.3 through the incorporation of MnSb2Se4 nanoinclusions. Chem Eng J 2023;467:143397.

[10]

Jia B, Wu D, Xie L, Wang W, Yu T, Li S, et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science 2024;384:81-86.

[11]

Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science 2021;373:556-561.

[12]

Zhang M, Gao Z, Lou Q, Zhu Q, Wang J, Han Z, et al. Achieving high carrier mobility and thermal stability in plainified rhombohedral GeTe thermoelectric materials with zT > 2. Adv Funct Mater 2024;34:2307864.

[13]

Lugueva NV, Luguev SM, Dunaev AA. Thermal conductivity of polycrystalline zinc selenide. Phys Solid State 2003;45:449-452.

[14]

Yang E, Jiang Q, Li G, Tian Z, Li J, Kang H, et al. Enhancing thermoelectric performance of CuInTe2 via trace Ag doping at indium sites. ACS Appl Mater Interfaces 2023;15:49370-49378.

[15]

Li W, Luo Y, Ma Z, Xu T, Wei Y, Tao Y, et al. Towards a new chalcopyrite high-performance thermoelectric semiconductor Cu3InSnSe5 by entropy engineering. Acta Mater 2023;259:119259.

[16]

Zhang Z, Gao Y, Wu Y, Wang B, Sun W, Yu L, et al. P-type doping of transition metal elements to optimize the thermoelectric properties of CuGaTe2. Chem Eng J 2022;427:131807.

[17]

Zhang D, Yang J, Jiang Q, Zhou Z, Li X, Xin J, et al. Combination of carrier concentration regulation and high band degeneracy for enhanced thermoelectric performance of Cu3SbSe4. ACS Appl Mater Interfaces 2017;9:28558-28565.

[18]

Li Z, Zhang W, Gu B, Zhao C, Ye B, Xiao C, et al. Vacancy cluster-induced local disordered structure for the enhancement of thermoelectric property in Cu2ZnSnSe4. J Mater Chem A 2021;9:1006-1013.

[19]

Song Q, Qiu P, Chen H, Zhao K, Ren D, Shi X, et al. Improved thermoelectric performance in nonstoichiometric Cu2+δMn1-δSnSe4 quaternary diamondlike compounds. ACS Appl Mater Interfaces 2018;10:10123-10131.

[20]

Song Q, Qiu P, Chen H, Zhao K, Guan M, Zhou Y, et al. Enhanced carrier mobility and thermoelectric performance in Cu2FeSnSe4 diamond-like compound via manipulating the intrinsic lattice defects. Mater Today Phys 2018;7:45-53.

[21]

Song Q, Qiu P, Hao F, Zhao K, Zhang T, Ren D, et al. Quaternary pseudocubic Cu2TMSnSe4 (TM = Mn, Fe, Co) chalcopyrite thermoelectric materials. Adv Electron Mater 2016;2:1600312.

[22]

Fan F-J, Yu B, Wang Y-X, Zhu Y-L, Liu X-J, Yu S-H, et al. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. J Am Chem Soc 2011;133:15910-15913.

[23]

Zhou Z, Huang Y, Wei B, Yang Y, Yu D, Zheng Y, et al. Compositing effects for high thermoelectric performance of Cu2Se-based materials. Nat Commun 2023;14:2410.

[24]

Pang H, Qin Y, Qin B, Yu L, Su X, Liang H, et al. Realizing ultrahigh thermoelectric performance in n-type PbSe through lattice planification and introducing liquid-like Cu ions. Adv Funct Mater 2024:2401716.

[25]

Lei J, Wuliji H, Ren Q, Hao X, Dong H, Chen H, et al. Exceptional thermoelectric performance in AB2Sb2-type Zintl phases through band shaping. Energy Environ Sci 2024;17:1416-1425.

[26]

Zhang C, Jin K, Dong H, Xu W, Xu P, Yan Z, et al. Synergistic enhancement of thermoelectric performance of n-type PbTe by resonant level and single-atom-layer vacancies. Nano Energy 2024;126:109615.

[27]

Liu W-D, Wang D-Z, Liu Q, Zhou W, Shao Z, Chen Z-G. High-performance GeTe-based thermoelectrics: from materials to devices. Adv Energy Mater 2020;10:2000367.

[28]

Lin N, Han S, Ghosh T, Schön C-F, Kim D, Frank J, et al. Metavalent bonding in cubic SnSe alloys improves thermoelectric properties over a broad temperature range. Adv Funct Mater 2024;34:2315652.

[29]

Liu Y, Wei T-R, Wu J, Wuliji H, Huang H, Zhou Z, et al. Non-layered InSe nanocrystalline bulk materials with ultra-low thermal conductivity. J Materiomics 2024;10:448-455.

[30]

Wang S, Sun Y, Yang J, Duan B, Wu L, Zhang W, et al. High thermoelectric performance in Te-free (Bi,Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ Sci 2016;9:3436-3447.

[31]

Li J, Zhang X, Ma H, Duan B, Li G, Yang J, et al. Dual occupations of sulfur induced band flattening and chemical bond softening in p-type SyCo4Sb12-2yS2y skutterudites. J Materiomics 2022;8:88-95.

[32]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15-50.

[33]

Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953-17979.

[34]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-3868.

[35]

Dronskowski R, Bloechl PE. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry 1993;97:8617-8624.

[36]

Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem 2016;37:1030-1035.

[37]

Togo A, Chaput L, Tadano T, Tanaka I. Implementation strategies in phonopy and phono3py. J Phys-Condes Matter 2023;35:353001.

[38]

Togo A. First-principles phonon calculations with phonopy and phono3py. J Phys Soc Jpn 2022;92:012001.

[39]

Sun Y, Wang H, Yao J, Mehmood F, Tan C, Wang L, et al. High symmetry structure and large strain field fluctuation lead enhancement of thermoelectric performance of quaternary alloys by tuning configurational entropy. Chem Eng J 2023;462:142185.

[40]

Miglio A, Heinrich CP, Tremel W, Hautier G, Zeier WG. Local bonding influence on the band edge and band gap formation in quaternary chalcopyrites. Adv Sci 2017;4:1700080.

[41]

Min R, Wang Y, Jiang X, Chen R, Li M, Kang H, et al. ZrNiSn-based compounds with high thermoelectric performance and ultralow lattice thermal conductivity via introduction of multiscale scattering centers. J Materiomics 2024;10:200-209.

[42]

Song Q, Qiu P, Zhao K, Deng T, Shi X, Chen L. Crystal structure and thermoelectric properties of Cu2Fe1-xMnxSnSe4 diamond-like chalcogenides. ACS Appl Energ Mater 2020;3:2137-2146.

[43]

Sun Y, Abbas A, Wang H, Tan C, Li Z, Zong Y, et al. Enhancement of thermoelectric performance of Cu2MnSnSe4 alloys by regulation of lattice strain. Chem Eng J 2024;486:150158.

[44]

Cahill DG, Pohl RO. Lattice vibrations and heat transport in crystals and glasses. Annu Rev Phys Chem 1988;39:93-121.

[45]

Mehmood F, Sun Y, Su W, Chebanova G, Zhai J, Wang L, et al. Improved thermoelectric performance of In-doped quaternary Cu2MnSnSe4 alloys. Phys Status Solidi RRL 2022;16:2200049.

[46]

Davidow J, Gelbstein Y. A comparison between the mechanical and thermoelectric properties of three highly efficient p-type GeTe-rich compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-doped Ge0.87Pb0.13Te. J Electron Mater 2013;42:1542-1549.

[47]

Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z, Dariel MP. Mechanical properties of PbTe-based thermoelectric semiconductors. Scr Mater 2008;58:251-254.

[48]

Suwardi A, Lim SH, Zheng Y, Wang X, Chien SW, Tan XY, et al. Effective enhancement of thermoelectric and mechanical properties of germanium telluride via rhenium-doping. J Mater Chem C 2020;8:16940-16948.

Journal of Materiomics
Cite this article:
Sun Y, Li Z, Zong Y, et al. Tuning the bonding environment of Se atom in Cu2MnSnSe4-based alloys for raised thermoelectric performance. Journal of Materiomics, 2025, 11(4). https://doi.org/10.1016/j.jmat.2024.100995
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return