Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

Texture modulation of ferroelectric Hf0.5Zr0.5O2 thin films by engineering the polymorphism and texture of tungsten electrodes

Kun YangaHyun Woo JeongaJaewook LeeaYong Hyeon ChoaJu Yong ParkaHyojun ChoiaYoung Yong KimbYounghwan LeecYunseok KimdMin Hyuk Parka,e,f()
Department of Materials Science and Engineering & Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
School of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
School of Advanced Materials and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

This study proposes a novel approach to achieving highly reliable, low-voltage polarization switching of ferroelectric Hf0.5Zr0.5O2 (HZO) thin films using polymorph- and orientation-controlled W electrodes ((111)-textured α-W and (200)-textured β-W) by adjusting the sputtering conditions. We demonstrated the formation of (111) and (002)/(020)-textured HZO films on the (111)-textured α-W and (200)-textured β-W electrodes, respectively. Under a low-voltage pulse of 1.2 V (1.5 MV/cm), α-W/HZO/α-W and β-W/HZO/β-W capacitors exhibited double-remanent polarization (2Pr) values of 29.23 μC/cm2 and 25.16 μC/cm2, which were higher than that of the TiN/HZO/TiN capacitor by 33% and 14%, respectively, and a high endurance of 109 cycles without hard-breakdown. The differences in the ferroelectric properties and switching kinetics were understood based on the polymorphism and texture of the HZO films influenced by electrode materials.

References

[1]

Böscke T, Müller J, Bräuhaus D, Schröder U, Böttger U. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 2011;99(10):102903.

[2]

Park MH, Lee YH, Kim HJ, Kim YJ, Moon T, Kim KD, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater 2015;27(11):1811–31.

[3]

Schroeder U, Park MH, Mikolajick T, Hwang CS. The fundamentals and applications of ferroelectric HfO2. Nat Rev Mater 2022;7(8):653–69.

[4]

Park MH, Lee YH, Mikolajick T, Schroeder U, Hwang CS. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Commun. 2018;8(3):795–808.

[5]

Muller J, Boscke TS, Schroder U, Mueller S, Brauhaus D, Bottger U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett 2012;12(8):4318–23.

[6]

Si M, Saha AK, Gao S, Qiu G, Qin J, Duan Y, et al. A ferroelectric semiconductor field-effect transistor. Nat Electron 2019;2(12):580–6.

[7]
Müller J, Böscke T, Müller S, Yurchuk E, Polakowski P, Paul J, et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. 2013 IEEE international electron devices meeting. 2013..
[8]

Oh S, Hwang H, Yoo I. Ferroelectric materials for neuromorphic computing. Apl Mater 2019;7(9):091109.

[9]

Mulaosmanovic H, Breyer ET, Dünkel S, Beyer S, Mikolajick T, Slesazeck S. Ferroelectric field-effect transistors based on HfO2: a review. Nanotechnology 2021;32(50):502002.

[10]

Yang K, Lee EB, Lee DH, Park JY, Kim SH, Park GH, et al. Energy conversion and storage using artificially induced antiferroelectricity in HfO2/ZrO2 nanolaminates. Compos B Eng 2022;236:109824.

[11]

Yao L, Liu X, Cheng Y, Xiao B. A synergistic interplay between dopant ALD cycles and film thickness on the improvement of the ferroelectricity of uncapped Al:HfO2 nanofilms. Nanotechnology 2021;32(21):215708.

[12]

Baumgarten L, Szyjka T, Mittmann T, Materano M, Matveyev Y, Schlueter C, et al. Impact of vacancies and impurities on ferroelectricity in PVD-and ALD-grown HfO2 films. Appl Phys Lett 2021;118(3):032903.

[13]

Kim K, Park M, Kim H, Kim Y, Moon T, Lee Y, et al. Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition. J Mater Chem C 2016;4(28):6864–72.

[14]

Shimizu T, Mimura T, Kiguchi T, Shiraishi T, Konno T, Katsuya Y, et al. Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films. Appl Phys Lett 2018;113(21):212901.

[15]

Ding W, Zhang Y, Tao L, Yang Q, Zhou Y. The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: a first-principle study. Acta Mater 2020;196:556–64.

[16]
Lomenzo P, Richter C, Materano M, Mikolajick T, Schroeder U, Schenk T, et al. AFE-like hysteresis loops from doped HfO2: field induced phase changes and depolarization fields. 2020 joint conference of the IEEE international frequency control symposium and international symposium on applications of ferroelectrics (IFCS-isaf). 2020.
[17]

Lederer M, Olivo R, Lehninger D, Abdulazhanov S, Kämpfe T, Kirbach S, et al. On the origin of wake-up and antiferroelectric-like behavior in ferroelectric hafnium oxide. Phys Status Solidi Rapid Res Lett 2021;15(5):2100086.

[18]

Lederer M, Kämpfe T, Olivo R, Lehninger D, Mart C, Kirbach S, et al. Local crystallographic phase detection and texture mapping in ferroelectric Zr doped HfO2 films by transmission-EBSD. Appl Phys Lett 2019;115(22):222902.

[19]

Gronenberg O, Marquardt R, Lamprecht R, Ekici Y, Schürmann U, Kohlstedt H, et al. The impact of rapid thermal annealing for the ferroelectricity of undoped sputtered HfO2 and its wake-up effect. J Appl Phys 2022;132(9):094101.

[20]

Xiang Y, Mukherjee S, Hellings G, Oh H, Bardon MG, Van Houdt J. Compact modeling and design exploration of non-destructive read-out 1T1C FeRAM. IEEE Trans Electron Dev 2024;71(8):4685–91.

[21]
Maeda T, Magyari-Kope B, Nishi Y. Identifying ferroelectric switching pathways in HfO2: first principles calculations under electric fields. 2017 IEEE international memory workshop (IMW). 2017.
[22]

Fina I, Sanchez F. Epitaxial ferroelectric HfO2 films: growth, properties, and devices. ACS Appl Electron Mater 2021;3(4):1530–49.

[23]

Lee Y, Broughton RA, Hsain HA, Song SK, Edgington PG, Horgan MD, et al. The influence of crystallographic texture on structural and electrical properties in ferroelectric Hf0.5Zr0.5O2. J Appl Phys 2022;132(24):244103.

[24]

Huan TD, Sharma V, Rossetti Jr GA, Ramprasad R. Pathways towards ferroelectricity in hafnia. Phys Rev B 2014;90(6):064111.

[25]

Tan H, Song T, Dix N, Sánchez F, Fina I. Vector piezoelectric response and ferroelectric domain formation in Hf0.5Zr0.5O2 films. J Mater Chem C 2023;11(22):7219–26.

[26]

Park JY, Choe DH, Lee DH, Yu GT, Yang K, Kim SH, et al. Revival of ferroelectric memories based on emerging fluorite-structured ferroelectrics. Adv Mater 2023;35(43):2204904.

[27]

Eom D, Lee J, Lee W, Oh J, Park C, Kim J, et al. Combined effects of the deposition temperature and metal electrodes on ferroelectric properties of atomic-layer-deposited Hf0.5Zr0.5O2 films. J Phys D Appl Phys 2023;56(6):065301.

[28]

Lee K, Byun J, Park K, Kang S, Song MS, Park J, et al. Giant tunneling electroresistance in epitaxial ferroelectric ultrathin films directly integrated on Si. Appl Mater Today 2022;26:101308.

[29]

Hyuk Park M, Kim H Joon, Kim Y Jin, Moon T, Hwang C Seong. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl Phys Lett 2014;104(7):072901.

[30]

Van Someren L. Work function measurements on macroscopic tungsten specimens. Surf Sci 1970;20(2):221–34.

[31]

Djerdj I, Tonejc A, Tonejc A, Radić N. XRD line profile analysis of tungsten thin films. Vacuum 2005;80(1–3):151–8.

[32]

Vüllers F, Spolenak R. Alpha-vs. beta-W nanocrystalline thin films: a comprehensive study of sputter parameters and resulting materials' properties. Thin Solid Films 2015;577:26–34.

[33]

Materlik R, Künneth C, Kersch A. The origin of ferroelectricity in Hf1-xZrxO2: a computational investigation and a surface energy model. J Appl Phys 2015;117(13):134109.

[34]

Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 1998;61(9):1267.

[35]

Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Phys 2012;10(1):181–8.

[36]
Young Yong Kim NKJK. pGIXS: PLS-Ⅱ 3C SAXS beamline data plot program with MATLAB (0.1 version). Zenodo; 2022. p. 7042272.
[37]

Qin M, Chan PF, Lu X. A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv Mater 2021;33(51):2105290.

[38]

Schlipf J, Müller-Buschbaum P. Structure of organometal halide perovskite films as determined with grazing-incidence X-ray scattering methods. Adv Energy Mater 2017;7(16):1700131.

[39]

Senthilkumar R, Ravi G, Sekar C, Arivanandhan M, Navaneethan M, Hayakawa Y. Determination of gas sensing properties of thermally evaporated WO3 nanostructures. J Mater Sci Mater Electron 2015;26:1389–94.

[40]

Yang K, Kim G-Y, Ryu JJ, Lee DH, Park JY, Kim SH, et al. Wake-up-mitigated giant ferroelectricity in Hf0.5Zr0.5O2 thin films through oxygen-providing, surface-oxidized W electrode. Mater Sci Semicond Process 2023;164:107565.

[41]

Batra R, Tran HD, Ramprasad R. Stabilization of metastable phases in hafnia owing to surface energy effects. Appl Phys Lett 2016;108(17):172902.

[42]

Ma C-H, Huang J-H, Chen H. Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films 2002;418(2):73–8.

[43]

Lee Y, Jeong HW, Kim SH, Yang K, Park MH. Effect of stress on fluorite-structured ferroelectric thin films for semiconductor devices. Mater Sci Semicond Process 2023;160:107411.

[44]

Wei Y, Nukala P, Salverda M, Matzen S, Zhao HJ, Momand J, et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat Mater 2018;17(12):1095–100.

[45]

Zeng B, Liu C, Dai S, Zhou P, Bao K, Zheng S, et al. Electric field gradient-controlled domain switching for size effect-resistant multilevel operations in HfO2-based ferroelectric field-effect transistor. Adv Funct Mater 2021;31(17):2011077.

[46]

Lee J, Yang K, Kwon JY, Kim JE, Han DI, Lee DH, et al. Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide. Nano Convergence 2023;10(1):55.

[47]

Zhou D, Xu J, Li Q, Guan Y, Cao F, Dong X, et al. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl Phys Lett 2013;103(19):192904.

[48]

Kim HJ, Park MH, Kim YJ, Lee YH, Moon T, Kim K Do, et al. A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale 2016;8(3):1383–9.

[49]

Park MH, Kim HJ, Kim YJ, Lee YH, Moon T, Kim KD, et al. Effect of Zr content on the wake-up effect in Hf1-xZrxO2 films. ACS Appl Mater Interfaces 2016;8(24):15466–75.

[50]

Grimley ED, Schenk T, Sang X, Pešić M, Schroeder U, Mikolajick T, et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv Electron Mater 2016;2(9):1600173.

[51]

Kashir A, Kim H, Oh S, Hwang H. Large remnant polarization in a wake-up free Hf0.5Zr0.5O2 ferroelectric film through bulk and interface engineering. ACS Appl Electron Mater 2021;3(2):629–38.

[52]

Wang D, Zhang Y, Wang J, Luo C, Li M, Shuai W, et al. Enhanced ferroelectric polarization with less wake-up effect and improved endurance of Hf0.5Zr0.5O2 thin films by implementing W electrode. J Mater Sci Technol 2022;104:1–7.

[53]

Kim SJ, Mohan J, Kim HS, Lee J, Young CD, Colombo L, et al. Low-voltage operation and high endurance of 5-nm ferroelectric Hf0.5Zr0.5O2 capacitors. Appl Phys Lett 2018;113(18):182903.

[54]
Okuno J, Kunihiro T, Konishi K, Maemura H, Shuto Y, Sugaya F, et al. Highendurance and low-voltage operation of 1T1C FeRAM arrays for nonvolatile memory application. 2021 IEEE international memory workshop (IMW).2021.
[55]
Gong T, Tao L, Li J, Cheng Y, Xu Y, Wei W, et al. 105×endurance improvement of FE-HZO by an innovative rejuvenation method for 1z node NV-DRAM applications. 2021 symposium on VLSI technology. 2021.
[56]
Huang H-H, Cho C-Y, Lin T-Y, Huang T-S, Wu M-H, Wang I-T, et al. Modeling fatigue-breakdown dilemma in ferroelectric Hf0.5Zr0.5O2 and optimized programming strategies. International electron devices meeting (IEDM). 2022; 2022.
[57]

Hur J, Tasneem N, Choe G, Wang P, Wang Z, Khan AI, et al. Direct comparison of ferroelectric properties in Hf0.5Zr0.5O2 between thermal and plasma-enhanced atomic layer deposition. Nanotechnology 2020;31(50):505707.

[58]
Liao P, Chang Y, Lee Y-H, Lin Y, Yeong S, Hwang R, et al. Characterization of fatigue and its recovery behavior in ferroelectric HfZrO. 2021 symposium on VLSI technology. 2021.
[59]

Yu E, Lyu X, Si M, Peide DY, Roy K. Interfacial layer engineering in sub-5-nm HZO: enabling low-temperature process, low-voltage operation, and high robustness. IEEE Trans Electron Dev 2023;70(6):2962–9.

[60]

Yang K, Kim SH, Jeong HW, Lee DH, Park GH, Lee Y, et al. Perspective on ferroelectric devices: lessons from interfacial chemistry. Chem Mater 2023;35(6):2219–37.

[61]

Cheng Y, Gao Z, Ye KH, Park HW, Zheng Y, Zheng Y, et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat Commun 2022;13(1):645.

Journal of Materiomics
Cite this article:
Yang K, Jeong HW, Lee J, et al. Texture modulation of ferroelectric Hf0.5Zr0.5O2 thin films by engineering the polymorphism and texture of tungsten electrodes. Journal of Materiomics, 2025, 11(4). https://doi.org/10.1016/j.jmat.2025.101015
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return