AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Acetylcholine bidirectionally regulates learning and memory

First Clinical School, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
Show Author Information

Abstract

Acetylcholine (ACh) is one of the most important neurotransmitters in the central cholinergic system; it specifically binds to muscarinic and nicotinic receptors and is degraded by acetylcholinesterase (AChE). ACh plays a crucial role in learning and memory. It is generally believed that, in the central nervous system, ACh promotes the conduction of brain nerves and accelerates information transmission. Besides, increasing central ACh levels can enhance memory ability and comprehensively improve brain function. Thus, AChE inhibitors (AChEI), which inhibit the degradation of ACh by AChE, have been used to treat Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). However, recent studies have shown that excessive ACh in the central nervous system impairs learning and memory. Here we review the roles of ACh in learning and memory; we focus on the adverse effects of excessive ACh, the possible mechanisms, and the bidirectional role of ACh in the pathology and cure of AD and PDD. We conclude that the timing and dose of ACh administration should be carefully prescreened when using it to alleviate learning and memory in dementia patients.

References

1.

Eichenbaum H. Prefrontal-hippocampal interactions in episodic memory. Nat Rev Neurosci. 2017, 18(9): 547-558.

2.
GuZLLambPWYakelJLCholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticityJ Neurosci201232361233712348

Gu ZL, Lamb PW, Yakel JL. Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci. 2012, 32(36): 12337-12348.

10.1523/JNEUROSCI.2129-12.2012
3.

Gu ZL, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron. 2011, 71(1): 155-165.

4.
ArmstrongDMSaperCBLeveyAIDistribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferaseJ Comp Neurol19832161536810.1002/cne.902160106

Armstrong DM, Saper CB, Levey AI, et al. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol. 1983, 216(1): 53-68.

5.
Berger-SweeneyJStearnsNAMurgSLSelective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behaviorJ Neurosci200121208164817310.1523/jneurosci.21-20-08164.2001

Berger-Sweeney J, Stearns NA, Murg SL, et al. Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci. 2001, 21(20): 8164-8173.

6.
KimuraHMcGeerPLPengFCholine acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistryScience198020844471057105910.1126/science.6990490

Kimura H, McGeer PL, Peng F, et al. Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science. 1980, 208(4447): 1057-1059.

7.
NilssonOGLeanzaGRosenbladCSpatial learning impairments in rats with selective immunolesion of the forebrain cholinergic systemNeuroreport19923111005100810.1097/00001756-199211000-00015

Nilsson OG, Leanza G, Rosenblad C, et al. Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system. Neuroreport. 1992, 3(11): 1005-1008.

8.
RyeDBWainerBHMesulamMMCortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferaseNeuroscience1984133627643

Rye DB, Wainer BH, Mesulam MM, et al. Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience. 1984, 13(3): 627-643.

10.1016/0306-4522(84)90083-6
9.
DannenbergHPabstMBraganzaOSynergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networksJ Neurosci2015352283948410

Dannenberg H, Pabst M, Braganza O, et al. Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J Neurosci. 2015, 35(22): 8394-8410.

10.1523/JNEUROSCI.4460-14.2015
10.

Loewi O. Über humorale ubertragbarkeit der herznervenwirkung (in German). Pflüger Arch. 1921, 189(1): 239-242.

11.

Arendt T, Bigl V. Alzheimer plaques and cortical cholinergic innervation. Neuroscience. 1986, 17(1): 277-279.

12.
de JaegerXCammarotaMPradoMAMDecreased acetylcholine release delays the consolidation of object recognition memoryBehav Brain Res20132386268

de Jaeger X, Cammarota M, Prado MAM, et al. Decreased acetylcholine release delays the consolidation of object recognition memory. Behav Brain Res. 2013, 238: 62-68.

10.1016/j.bbr.2012.10.016
13.

Gallagher M, Colombo PJ. Ageing: the cholinergic hypothesis of cognitive decline. Curr Opin Neurobiol. 1995, 5(2): 161-168.

14.
KonishiKMcKenzieSEtchamendyNHippocampus-dependent spatial learning is associated with higher global cognition among healthy older adultsNeuropsychologia2017106310321

Konishi K, McKenzie S, Etchamendy N, et al. Hippocampus-dependent spatial learning is associated with higher global cognition among healthy older adults. Neuropsychologia. 2017, 106: 310-321.

10.1016/j.neuropsychologia.2017.09.025
15.
WhitehousePJPriceDLStrubleRGAlzheimer's disease and senile dementia: loss of neurons in the basal forebrainScience198221545371237123910.1126/science.7058341

Whitehouse PJ, Price DL, Struble RG, et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982, 215(4537): 1237-1239.

16.

McGleenon BM, Dynan KB, Passmore AP. Acetylcholinesterase inhibitors in Alzheimer's disease. Br J Clin Pharmacol. 1999, 48(4): 471-480.

17.

Goard M, Dan Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci. 2009, 12(11): 1444-1449.

18.
CanoltyRTEdwardsEDalalSSHigh gamma power is phase-locked to theta oscillations in human neocortexScience200631357931626162810.1126/science.1128115

Canolty RT, Edwards E, Dalal SS, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006, 313(5793): 1626-1628.

19.
KeizerAWVerschoorMVermentRSThe effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measuresInt J Psychophysiol20107512532

Keizer AW, Verschoor M, Verment RS, et al. The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures. Int J Psychophysiol. 2010, 75(1): 25-32.

10.1016/j.ijpsycho.2009.10.011
20.
PandyaPKMouchaREngineerNDAsynchronous inputs alter excitability, spike timing, and topography in primary auditory cortexHear Res20052031/21020

Pandya PK, Moucha R, Engineer ND, et al. Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex. Hear Res. 2005, 203(1/2): 10-20.

10.1016/j.heares.2004.11.018
21.

Matthews DB, Best PJ. Fimbria/fornix lesions facilitate the learning of a nonspatial response task. Psychon Bull Rev. 1995, 2(1): 113-116.

22.

McDonald RJ, White NM. Information acquired by the hippocampus interferes with acquisition of the amygdala-based conditioned-cue preference in the rat. Hippocampus. 1995, 5(3): 189-197.

23.
McIntyreCKPalSNMarriottLKCompetition between memory systems: acetylcholine release in the hippocampus correlates negatively with good performance on an amygdala-dependent taskJ Neurosci20022231171117610.1523/jneurosci.22-03-01171.2002

McIntyre CK, Pal SN, Marriott LK, et al. Competition between memory systems: acetylcholine release in the hippocampus correlates negatively with good performance on an amygdala-dependent task. J Neurosci. 2002, 22(3): 1171-1176.

24.
RaschBHBornJGaisSCombined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidationJ Cognit Neurosci200618579380210.1162/jocn.2006.18.5.793

Rasch BH, Born J, Gais S. Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J Cogn Neurosci. 2006, 18(5): 793-802.

25.
KukoljaJThielCMFinkGRCholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humansJ Neurosci2009292581198128

Kukolja J, Thiel CM, Fink GR. Cholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humans. J Neurosci. 2009, 29(25): 8119-8128.

10.1523/JNEUROSCI.0203-09.2009
26.

Rogers JL, Kesner RP. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol Learn Mem. 2003, 80(3): 332-342.

27.

Gais S, Born J. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci USA. 2004, 101(7): 2140-2144.

28.

Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989, 31(3): 551-570.

29.

Hasselmo ME. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci. 1999, 3(9): 351-359.

30.
AchermannPBorbélyAATemporal evolution of coherence and power in the human sleep electroencephalogramJ Sleep Res19987suppl 1364110.1046/j.1365-2869.7.s1.6.x

Achermann P, Borbély AA. Temporal evolution of coherence and power in the human sleep electroencephalogram. J Sleep Res. 1998, 7(Suppl 1): 36-41.

31.

Bland BH. The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol. 1986, 26(1): 1-54.

32.

Buzsáki G. Hippocampal sharp waves: their origin and significance. Brain Res. 1986, 398(2): 242-252.

33.
GrastyanELissakKMadaraszIHippocampal electrical activity during the development of conditioned reflexesElectroencephalogr Clin Neurophysiol1959113409430

Grastyan E, Lissak K, Madarasz I, et al. Hippocampal electrical activity during the development of conditioned reflexes. Electroencephalogr Clin Neurophysiol. 1959, 11(3): 409-430.

10.1016/0013-4694(59)90040-9
34.

Jouvet M. Biogenic amines and the states of sleep. Science. 1969, 163(3862): 32-41.

35.
MölleMMarshallLGaisSGrouping of spindle activity during slow oscillations in human non-rapid eye movement sleepJ Neurosci20022224109411094710.1523/jneurosci.22-24-10941.2002

Mölle M, Marshall L, Gais S, et al. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci. 2002, 22(24): 10941-10947.

36.

Steriade M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience. 2000, 101(2): 243-276.

37.

Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969, 26(4): 407-418.

38.

Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci. 2013, 36: 295-312.

39.

Jones MW, Wilson MA. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005, 3(12): e402.

40.

Mitchell SJ, Ranck JB Jr. Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Res. 1980, 189(1): 49-66.

41.
PopaDDuvarciSPopescuATCoherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleepProc Natl Acad Sci USA2010107146516651910.1073/pnas.0913016107

Popa D, Duvarci S, Popescu AT, et al. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci USA. 2010, 107(14): 6516-6519.

42.
van der MeerMAARedishADTheta phase precession in rat ventral striatum links place and reward informationJ Neurosci201131828432854

van der Meer MAA, Redish AD. Theta phase precession in rat ventral striatum links place and reward information. J Neurosci. 2011, 31(8): 2843-2854.

10.1523/JNEUROSCI.4869-10.2011
43.

Vertes RP, Hoover WB, Viana di Prisco G. Theta rhythm of the hippocampus: subcortical control and functional significance. Behav Cogn Neurosci Rev. 2004, 3(3): 173-200.

44.
BoyceRGlasgowSDWilliamsSCausal evidence for the role of REM sleep theta rhythm in contextual memory consolidationScience2016352628781281610.1126/science.aad5252

Boyce R, Glasgow SD, Williams S, et al. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 2016, 352(6287): 812-816.

45.

Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002, 33(3): 325-340.

46.
LinJJRuggMDDasSTheta band power increases in the posterior hippocampus predict successful episodic memory encoding in humansHippocampus201727101040105310.1002/hipo.22751

Lin JJ, Rugg MD, Das S, et al. Theta band power increases in the posterior hippocampus predict successful episodic memory encoding in humans. Hippocampus. 2017, 27(10): 1040-1053.

47.

Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001, 29(1): 145-156.

48.
BuzsákiGHorváthZUriosteRHigh-frequency network oscillation in the hippocampusScience1992256505910251027

Buzsáki G, Horváth Z, Urioste R, et al. High-frequency network oscillation in the hippocampus. Science. 1992, 256(5059): 1025-1027.

10.1126/science.1589772
49.

Cheng S, Frank LM. New experiences enhance coordinated neural activity in the hippocampus. Neuron. 2008, 57(2): 303-313.

50.
ChrobakJJBuzsákiGSelective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving ratJ Neurosci199414106160617010.1523/jneurosci.14-10-06160.1994

Chrobak JJ, Buzsáki G. Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat. J Neurosci. 1994, 14(10): 6160-6170.

51.
ColginLLKubotaDJiaYSLong-term potentiation is impaired in rat hippocampal slices that produce spontaneous sharp wavesJ Physiol2004558Pt 3953961

Colgin LL, Kubota D, Jia YS, et al. Long-term potentiation is impaired in rat hippocampal slices that produce spontaneous sharp waves. J Physiol. 2004, 558(Pt 3): 953-961.

10.1113/jphysiol.2004.068080
52.
KubotaDColginLLCasaleMEndogenous waves in hippocampal slicesJ Neurophysiol2003891818910.1152/jn.00542.2002

Kubota D, Colgin LL, Casale M, et al. Endogenous waves in hippocampal slices. J Neurophysiol. 2003, 89(1): 81-89.

53.
MaierNNimmrichVDraguhnACellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slicesJ Physiol2003550Pt 3873887

Maier N, Nimmrich V, Draguhn A. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol. 2003, 550(Pt 3): 873-887.

10.1113/jphysiol.2003.044602
54.

O'Neill J, Senior T, Csicsvari J. Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron. 2006, 49(1): 143-155.

55.
PapatheodoropoulosCKoniarisEα5GABAA receptors regulate hippocampal sharp wave-ripple activity in vitroNeuropharmacology2011604662673

Papatheodoropoulos C, Koniaris E. α5GABAA receptors regulate hippocampal sharp wave-ripple activity in vitro. Neuropharmacology. 2011, 60(4): 662-673.

10.1016/j.neuropharm.2010.11.022
56.
Sanchez-VivesMVMattiaMCompteAInhibitory modulation of cortical up statesJ Neurophysiol201010431314132410.1152/jn.00178.2010

Sanchez-Vives MV, Mattia M, Compte A, et al. Inhibitory modulation of cortical up states. J Neurophysiol. 2010, 104(3): 1314-1324.

57.

Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci. 2000, 3(10): 1027-1034.

58.
DupretDO'NeillJPleydell-BouverieBThe reorganization and reactivation of hippocampal maps predict spatial memory performanceNat Neurosci2010138995100210.1038/nn.2599

Dupret D, O'Neill J, Pleydell-Bouverie B, et al. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat Neurosci. 2010, 13(8): 995-1002.

59.

Ego-Stengel V, Wilson MA. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus. 2010, 20(1): 1-10.

60.
KattlerHDijkDJBorbélyAAEffect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humansJ Sleep Res19943315916410.1111/j.1365-2869.1994.tb00123.x

Kattler H, Dijk DJ, Borbély AA. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res. 1994, 3(3): 159-164.

61.

Roumis DK, Frank LM. Hippocampal sharp-wave ripples in waking and sleeping states. Curr Opin Neurobiol. 2015, 35: 6-12.

62.
VyazovskiyVBorbélyAAToblerIUnilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the ratJ Sleep Res200094367371

Vyazovskiy V, Borbély AA, Tobler I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J Sleep Res. 2000, 9(4): 367-371.

10.1046/j.1365-2869.2000.00230.x
63.
MarrosuFPortasCMasciaMSMicrodialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving catsBrain Res19956712329332

Marrosu F, Portas C, Mascia MS, et al. Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res. 1995, 671(2): 329-332.

10.1016/0006-8993(94)01399-3
64.
Teles-Grilo RuivoLMBakerKLConwayMWCoordinated acetylcholine release in prefrontal cortex and Hippocampus is associated with arousal and reward on distinct timescalesCell Rep2017184905917

Teles-Grilo Ruivo LM, Baker KL, Conway MW, et al. Coordinated acetylcholine release in prefrontal cortex and Hippocampus is associated with arousal and reward on distinct timescales. Cell Rep. 2017, 18(4): 905-917.

10.1016/j.celrep.2016.12.085
65.
ZhangHLinSCNicolelisMALSpatiotemporal coupling between hippocampal acetylcholine release and Theta oscillations in vivoJ Neurosci201030401343113440

Zhang H, Lin SC, Nicolelis MAL. Spatiotemporal coupling between hippocampal acetylcholine release and Theta oscillations in vivo. J Neurosci. 2010, 30(40): 13431-13440.

10.1523/JNEUROSCI.1144-10.2010
66.

Buzsáki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 1983, 287(2): 139-171.

67.
NorimotoHMizunumaMIshikawaDMuscarinic receptor activation disrupts hippocampal sharp wave-ripplesBrain Res2012146119

Norimoto H, Mizunuma M, Ishikawa D, et al. Muscarinic receptor activation disrupts hippocampal sharp wave-ripples. Brain Res. 2012, 1461: 1-9.

10.1016/j.brainres.2012.04.037
68.
ZyllaMMZhangXMReichinnekSCholinergic plasticity of oscillating neuronal assemblies in mouse hippocampal slicesPLoS One2013811e8071810.1371/journal.pone.0080718

Zylla MM, Zhang XM, Reichinnek S, et al. Cholinergic plasticity of oscillating neuronal assemblies in mouse hippocampal slices. PLoS One. 2013, 8(11): e80718.

69.
CisséYToossiHIshibashiMDischarge and role of acetylcholine pontomesencephalic neurons in cortical activity and sleep-wake states examined by optogenetics and juxtacellular recording in miceeNeuro201854ENEURO.0270-ENEURO.0218.2018

Cissé Y, Toossi H, Ishibashi M, et al. Discharge and role of acetylcholine pontomesencephalic neurons in cortical activity and sleep-wake states examined by optogenetics and juxtacellular recording in mice. eNeuro. 2018, 5(4): ENEURO.0270-ENEURO.0218.2018.

10.1523/ENEURO.0270-18.2018
70.
HanYShiYFXiWSelective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitionsCurr Biol2014246693698

Han Y, Shi YF, Xi W, et al. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol. 2014, 24(6): 693-698.

10.1016/j.cub.2014.02.011
71.

Irmak SO, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. Sleep. 2014, 37(12): 1941-1951.

72.
MarshallLKirovRBradeJTranscranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humansPLoS One201162e1690510.1371/journal.pone.0016905

Marshall L, Kirov R, Brade J, et al. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One. 2011, 6(2): e16905.

73.
BattagliaFPBenchenaneKSirotaAThe hippocampus: hub of brain network communication for memoryTrends Cognit Sci2011157310318

Battaglia FP, Benchenane K, Sirota A, et al. The hippocampus: hub of brain network communication for memory. Trends Cogn Sci. 2011, 15(7): 310-318.

10.1016/j.tics.2011.05.008
74.
FellJLudowigEStaresinaBPMedial temporal theta/alpha power enhancement precedes successful memory encoding: evidence based on intracranial EEGJ Neurosci2011311453925397

Fell J, Ludowig E, Staresina BP, et al. Medial temporal theta/alpha power enhancement precedes successful memory encoding: evidence based on intracranial EEG. J Neurosci. 2011, 31(14): 5392-5397.

10.1523/JNEUROSCI.3668-10.2011
75.
KahanaMJSekulerRCaplanJBHuman theta oscillations exhibit task dependence during virtual maze navigationNature19993996738781784

Kahana MJ, Sekuler R, Caplan JB, et al. Human theta oscillations exhibit task dependence during virtual maze navigation. Nature. 1999, 399(6738): 781-784.

10.1038/21645
76.

Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999, 29(2/3): 169-195.

77.
KlimeschWHanslmayrSSausengPOscillatory EEG correlates of episodic trace decayCerebr Cortex200616228029010.1093/cercor/bhi107

Klimesch W, Hanslmayr S, Sauseng P, et al. Oscillatory EEG correlates of episodic trace decay. Cereb Cortex. 2006, 16(2): 280-290.

78.

Landfield PW, McGaugh JL, Tusa RJ. Theta rhythm: a temporal correlate of memory storage processes in the rat. Science. 1972, 175(4017): 87-89.

79.

Vertes RP. Hippocampal theta rhythm: a tag for short-term memory. Hippocampus. 2005, 15(7): 923-935.

80.
KirovRWeissCSiebnerHRSlow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encodingProc Natl Acad Sci USA200910636154601546510.1073/pnas.0904438106

Kirov R, Weiss C, Siebner HR, et al. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci USA. 2009, 106(36): 15460-15465.

81.

Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain. 2008, 131(Pt 7): 1806-1817.

82.
HasselmoMEGiocomoLMCholinergic modulation of cortical functionJ Mol Neurosci2006301/213313610.1385/JMN:30:1:133

Hasselmo ME, Giocomo LM. Cholinergic modulation of cortical function. J Mol Neurosci. 2006, 30(1/2): 133-136.

83.
BuzsakiGBickfordRGPonomareffGNucleus basalis and thalamic control of neocortical activity in the freely moving ratJ Neurosci19888114007402610.1523/jneurosci.08-11-04007.1988

Buzsaki G, Bickford RG, Ponomareff G, et al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988, 8(11): 4007-4026.

84.

Vanderwolf CH. Cerebral activity and behavior: control by central cholinergic and serotonergic systems. Int Rev Neurobiol. 1988, 30: 225-340.

85.

Fadda F, Cocco S, Stancampiano R. Hippocampal acetylcholine release correlates with spatial learning performance in freely moving rats. Neuroreport. 2000, 11(10): 2265-2269.

86.
FadelJRRegulation of cortical acetylcholine release: insights from in vivo microdialysis studiesBehav Brain Res20112212527536

Fadel JR. Regulation of cortical acetylcholine release: insights from in vivo microdialysis studies. Behav Brain Res. 2011, 221(2): 527-536.

10.1016/j.bbr.2010.02.022
87.
GiovanniniMGRakovskaABentonRSEffects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving ratsNeuroscience200110614353

Giovannini MG, Rakovska A, Benton RS, et al. Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience. 2001, 106(1): 43-53.

10.1016/S0306-4522(01)00266-4
88.
JadhavSPKemereCGermanPWAwake hippocampal sharp-wave ripples support spatial memoryScience201233660871454145810.1126/science.1217230

Jadhav SP, Kemere C, German PW, et al. Awake hippocampal sharp-wave ripples support spatial memory. Science. 2012, 336(6087): 1454-1458.

89.
JarzebowskiPTangCSPaulsenOCholinergic suppression of sharp wave-ripples impairs hippocampus-dependent spatial memorybioRxiv202010.1101/2020.05.14.09678410.1101/2020.05.14.096784

Jarzebowski P, Tang CS, Paulsen O, et al. Cholinergic suppression of sharp wave-ripples impairs hippocampus-dependent spatial memory. bioRxiv. 2020, DOI:10.1101/2020.05.14.096784.

90.

McGaugh JL. Memory-a century of consolidation. Science. 2000, 287(5451): 248-251.

91.
PlihalWBornJEffects of early and late nocturnal sleep on declarative and procedural memoryJ Cognit Neurosci19979453454710.1162/jocn.1997.9.4.534

Plihal W, Born J. Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci. 1997, 9(4): 534-547.

92.
ShethBRSerranzanaAAnjumSFSleep's influence on a reflexive form of memory that does not require voluntary attentionSleep201235565766610.5665/sleep.1826

Sheth BR, Serranzana A, Anjum SF, et al. Sleep's influence on a reflexive form of memory that does not require voluntary attention. Sleep. 2012, 35(5): 657-666.

93.
StickgoldRHobsonJAFosseRSleep, learning, and dreams: off-line memory reprocessingScience2001294554410521057

Stickgold R, Hobson JA, Fosse R, et al. Sleep, learning, and dreams: off-line memory reprocessing. Science. 2001, 294(5544): 1052-1057.

10.1126/science.1063530
94.
BorbélyAAA two-process model of sleep regulationHum Neurobiol198213195204

Borbély AA. A two-process model of sleep regulation. Hum Neurobiol. 1982, 1(3): 195-204.

95.
BorbélyAADaanSWirz-JusticeAThe two-process model of sleep regulation: a reappraisalJ Sleep Res201625213114310.1111/jsr.12371

Borbély AA, Daan S, Wirz-Justice A, et al. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016, 25(2): 131-143.

96.

Born J, Wilhelm I. System consolidation of memory during sleep. Psychol Res. 2012, 76(2): 192-203.

97.

Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010, 11(2): 114-126.

98.

Rasch B, Born J. About sleep's role in memory. Physiol Rev. 2013, 93(2): 681-766.

99.

Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004, 44(1): 121-133.

100.

Ackermann S, Rasch B. Differential effects of non-REM and REM sleep on memory consolidation? Curr Neurol Neurosci Rep. 2014, 14(2): 430.

101.

Gais S, Born J. Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem. 2004, 11(6): 679-685.

102.

Maquet P. The role of sleep in learning and memory. Science. 2001, 294(5544): 1048-1052.

103.
RauchsGDesgrangesBForetJThe relationships between memory systems and sleep stagesJ Sleep Res200514212314010.1111/j.1365-2869.2005.00450.x

Rauchs G, Desgranges B, Foret J, et al. The relationships between memory systems and sleep stages. J Sleep Res. 2005, 14(2): 123-140.

104.

Smith C. Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev. 2001, 5(6): 491-506.

105.

Fogel SM, Smith CT, Cote KA. Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems. Behav Brain Res. 2007, 180(1): 48-61.

106.

Eschenko O, Ramadan W, Mölle M, et al. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem. 2008, 15(4): 222-228.

107.
HuberRGhilardiMFMassiminiMArm immobilization causes cortical plastic changes and locally decreases sleep slow wave activityNat Neurosci2006991169117610.1038/nn1758

Huber R, Ghilardi MF, Massimini M, et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci. 2006, 9(9): 1169-1176.

108.
HuberRFelice GhilardiMMassiminiMLocal sleep and learningNature200443069957881

Huber R, Felice Ghilardi M, Massimini M, et al. Local sleep and learning. Nature. 2004, 430(6995): 78-81.

10.1038/nature02663
109.

Ramadan W, Eschenko O, Sara SJ. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS One. 2009, 4(8): e6697.

110.
MarshallLHelgadóttirHMölleMBoosting slow oscillations during sleep potentiates memoryNature2006444711961061310.1038/nature05278

Marshall L, Helgadóttir H, Mölle M, et al. Boosting slow oscillations during sleep potentiates memory. Nature. 2006, 444(7119): 610-613.

111.
MarshallLMölleMHallschmidMTranscranial direct current stimulation during sleep improves declarative memoryJ Neurosci2004244499859992

Marshall L, Mölle M, Hallschmid M, et al. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci. 2004, 24(44): 9985-9992.

10.1523/JNEUROSCI.2725-04.2004
112.
GirardeauGBenchenaneKWienerSISelective suppression of hippocampal ripples impairs spatial memoryNat Neurosci200912101222122310.1038/nn.2384

Girardeau G, Benchenane K, Wiener SI, et al. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci. 2009, 12(10): 1222-1223.

113.

Jasper HH, Tessier J. Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science. 1971, 172(3983): 601-602.

114.
BaghdoyanHARodrigo-AnguloMLMcCarleyRWSite-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regionsBrain Res19843061/23952

Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, et al. Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res. 1984, 306(1/2): 39-52.

10.1016/0006-8993(84)90354-8
115.
VertesRPAn analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronizationJ Neurophysiol19814651140115910.1152/jn.1981.46.5.1140

Vertes RP. An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization. J Neurophysiol. 1981, 46(5): 1140-1159.

116.
ChenPCWuDAChenCCRapid eye movement sleep atonia in patients with cognitive impairmentJ Neurol Sci20113051/23437

Chen PC, Wu DA, Chen CC, et al. Rapid eye movement sleep atonia in patients with cognitive impairment. J Neurol Sci. 2011, 305(1/2): 34-37.

10.1016/j.jns.2011.03.022
117.

Vazquez J, Baghdoyan HA. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am J Physiol Regul Integr Comp Physiol. 2001, 280(2): R598-R601.

118.
MaXZhangYWangLThe firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscillations via muscarinic receptorsJ Neurosci202040183591360310.1523/jneurosci.1568-19.2020

Ma X, Zhang Y, Wang L, et al. The firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscillations via muscarinic receptors. J Neurosci. 2020, 40(18): 3591-3603.

119.
VandecasteeleMVargaVBerényiAOptogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampusProc Natl Acad Sci USA201411137135351354010.1073/pnas.1411233111

Vandecasteele M, Varga V, Berényi A, et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci USA. 2014, 111(37): 13535-13540.

120.
ZhangYYCaoLVargaVCholinergic suppression of hippocampal sharp-wave ripples impairs working memoryProc Natl Acad Sci USA202111815e2016432118

Zhang YY, Cao L, Varga V, et al. Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. Proc Natl Acad Sci USA. 2021, 118(15): e2016432118.

10.1073/pnas.2016432118
121.
LuCLMengZJHeYYInvolvement of gap junctions in astrocyte impairment induced by manganese exposureBrain Res Bull2018140107113

Lu CL, Meng ZJ, He YY, et al. Involvement of gap junctions in astrocyte impairment induced by manganese exposure. Brain Res Bull. 2018, 140: 107-113.

10.1016/j.brainresbull.2018.04.009
122.
ShenJXYakelJLFunctional α7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slicesJ Mol Neurosci2012481142110.1007/s12031-012-9719-3

Shen JX, Yakel JL. Functional α7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices. J Mol Neurosci. 2012, 48(1): 14-21.

123.
AraqueAMartínEDPereaGSynaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slicesJ Neurosci20022272443245010.1523/jneurosci.22-07-02443.2002

Araque A, Martin ED, Perea G, et al. Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci. 2002, 22(7): 2443-2450.

124.
CaoMJMacDonaldJWLiuHLα7 nicotinic acetylcholine receptor signaling modulates ovine fetal brain astrocytes transcriptome in response to endotoxinFront Immunol2019101063

Cao MJ, MacDonald JW, Liu HL, et al. α7 nicotinic acetylcholine receptor signaling modulates ovine fetal brain astrocytes transcriptome in response to endotoxin. Front Immunol. 2019, 10: 1063.

10.3389/fimmu.2019.01063
125.
GeSYDaniJANicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiationJ Neurosci2005252660846091

Ge SY, Dani JA. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci. 2005, 25(26): 6084-6091.

10.1523/JNEUROSCI.0542-05.2005
126.

Sarter M, Parikh V, Howe WM. Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci. 2009, 10(5): 383-390.

127.

Stone TW. Relationships and interactions between ionotropic glutamate receptors and nicotinic receptors in the CNS. Neuroscience. 2021, 468: 321-365.

128.

Lee I, Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci. 2002, 5(2): 162-168.

129.

Niciu MJ, Kelmendi B, Sanacora G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav. 2012, 100(4): 656-664.

130.
O'dellTJHawkinsRDKandelERTests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messengerProc Natl Acad Sci USA19918824112851128910.1073/pnas.88.24.11285

O'dell TJ, Hawkins RD, Kandel ER, et al. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA. 1991, 88(24): 11285-11289.

131.
BlissTVCollingridgeGLA synaptic model of memory: long-term potentiation in the hippocampusNature199336164073139

Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993, 361(6407): 31-39.

10.1038/361031a0
132.

Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000, 23: 649-711.

133.

Edwards TM, Rickard NS. New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci Biobehav Rev. 2007, 31(3): 413-425.

134.
HosseiniMHeadariROryanSThe effect of chronic administration of L-arginine on the learning and memory of estradiol-treated ovariectomized rats tested in the Morris water mazeClinics2010658803807

Hosseini M, Headari R, Oryan S, et al. The effect of chronic administration of L-arginine on the learning and memory of estradiol-treated ovariectomized rats tested in the Morris water maze. Clinics. 2010, 65(8): 803-807.

135.
WangSPanDXWangDNitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrusBehav Brain Res2014271177183

Wang S, Pan DX, Wang D, et al. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus. Behav Brain Res. 2014, 271: 177-183.

10.1016/j.bbr.2014.06.011
136.
MatsunoMHoriuchiJOfusaKInhibiting glutamate activity during consolidation suppresses age-related long-term memory impairment in DrosophilaiScience2019155565

Matsuno M, Horiuchi J, Ofusa K, et al. Inhibiting glutamate activity during consolidation suppresses age-related long-term memory impairment in Drosophila. iScience. 2019, 15: 55-65.

10.1016/j.isci.2019.04.014
137.
MatsunoMHoriuchiJYuasaYLong-term memory formation in Drosophila requires training-dependent glial transcriptionJ Neurosci2015351455575565

Matsuno M, Horiuchi J, Yuasa Y, et al. Long-term memory formation in Drosophila requires training-dependent glial transcription. J Neurosci. 2015, 35(14): 5557-5565.

10.1523/JNEUROSCI.3865-14.2015
138.
MatsunoMHoriuchiJTullyTThe Drosophila cell adhesion molecule klingon is required for long-term memory formation and is regulated by NotchProc Natl Acad Sci USA2009106131031510.1073/pnas.0807665106

Matsuno M, Horiuchi J, Tully T, et al. The Drosophila cell adhesion molecule klingon is required for long-term memory formation and is regulated by Notch. Proc Natl Acad Sci USA. 2009, 106(1): 310-315.

139.
RivalTSoustelleLCattaertDPhysiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junctionJ Neurobiol200666101061107410.1002/neu.20270

Rival T, Soustelle L, Cattaert D, et al. Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction. J Neurobiol. 2006, 66(10): 1061-1074.

140.
RivalTSoustelleLStrambiCDecreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brainCurr Biol2004147599605

Rival T, Soustelle L, Strambi C, et al. Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol. 2004, 14(7): 599-605.

10.1016/j.cub.2004.03.039
141.

Dawson TM, Dawson VL. Nitric oxide signaling in neurodegeneration and cell death. Adv Pharmacol. 2018, 82: 57-83.

142.

Wang JJ, Swanson RA. Superoxide and non-ionotropic signaling in neuronal excitotoxicity. Front Neurosci. 2020, 4: 861.

143.

Maltsev AV, Bal NV, Balaban PM. LTP suppression by protein synthesis inhibitors is NO-dependent. Neuropharmacology. 2019, 146: 276-288.

144.
RenPXiaoBWangLPNitric oxide impairs spatial learning and memory in a rat model of Alzheimer's disease via disturbance of glutamate response in the hippocampal dentate gyrus during spatial learningBehav Brain Res2022422113750

Ren P, Xiao B, Wang LP, et al. Nitric oxide impairs spatial learning and memory in a rat model of Alzheimer's disease via disturbance of glutamate response in the hippocampal dentate gyrus during spatial learning. Behav Brain Res. 2022, 422: 113750.

10.1016/j.bbr.2022.113750
145.
Crous-BouMMinguillónCGramuntNAlzheimer's disease prevention: from risk factors to early interventionAlzheimer's Res Ther20179171

Crous-Bou M, Minguillón C, Gramunt N, et al. Alzheimer's disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017, 9(1): 71.

10.1186/s13195-017-0297-z
146.
ZhaoJHDuALLuCBBrain gamma rhythm and potential treatment of neurodegenerative diseaseJ Neurorestoratol202081263110.26599/jnr.2020.9040002

Zhao JH, Du AL, Lu CB. Brain gamma rhythm and potential treatment of neurodegenerative disease. J Neurorestoratol. 2020, 8(1): 26-31.

147.
GuoXLWangYLLiYA pilot study of clinical cell therapies in Alzheimer's diseaseJ Neurorestoratol20219426928410.26599/jnr.2021.9040023

Guo XL, Wang YL, Li Y, et al. A pilot study of clinical cell therapies in Alzheimer's disease. J Neurorestoratol. 2021, 9(4): 269-284.

148.
ZhangZZhangSQLuiCNPTraditional Chinese medicine-based neurorestorative therapy for Alzheimer's and Parkinson's diseaseJ Neurorestoratol20197420722210.26599/jnr.2019.9040026

Zhang Z, Zhang SQ, Lui CNP, et al. Traditional Chinese medicine-based neurorestorative therapy for Alzheimer's and Parkinson's disease. J Neurorestoratol. 2019, 7(4): 207-222.

149.
AlbertMSDeKoskySTDicksonDThe diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's diseaseAlzheimers Dement20117327027910.1016/j.jalz.2011.03.008

Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011, 7(3): 270-279.

150.
Lazarevic-PastiTLeskovacAMomicTModulators of acetylcholinesterase activity: from Alzheimer's disease to anti-cancer drugsCurr Med Chem2017243032833309

Lazarevic-Pasti T, Leskovac A, Momic T, et al. Modulators of acetylcholinesterase activity: from Alzheimer's disease to anti-cancer drugs. Curr Med Chem. 2017, 24(30): 3283-3309.

10.2174/0929867324666170705123509
151.
ShiFLiuBZhouYHippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: meta-analyses of MRI studiesHippocampus200919111055106410.1002/hipo.20573

Shi F, Liu B, Zhou Y, et al. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta-analyses of MRI studies. Hippocampus. 2009, 19(11): 1055-1064.

152.
YoungALMarinescuRVOxtobyNPUncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage InferenceNat Commun2018914273

Young AL, Marinescu RV, Oxtoby NP, et al. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nat Commun. 2018, 9(1): 4273.

153.
HaenseCKalbeEHerholzKCholinergic system function and cognition in mild cognitive impairmentNeurobiol Aging2012335867877

Haense C, Kalbe E, Herholz K, et al. Cholinergic system function and cognition in mild cognitive impairment. Neurobiol Aging. 2012, 33(5): 867-877.

10.1016/j.neurobiolaging.2010.08.015
154.

Herholz K. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease. Eur J Nucl Med Mol Imag. 2008, 35(Suppl 1): S25-S29.

155.
RichterNMichelAOnurOAWhite matter lesions and the cholinergic deficit in aging and mild cognitive impairmentNeurobiol Aging2017532735

Richter N, Michel A, Onur OA, et al. White matter lesions and the cholinergic deficit in aging and mild cognitive impairment. Neurobiol Aging. 2017, 53: 27-35.

10.1016/j.neurobiolaging.2017.01.012
156.
BartusRTDean RL3rdBeerBThe cholinergic hypothesis of geriatric memory dysfunctionScience1982217455840841410.1126/science.7046051

Bartus RT, Dean RL 3rd, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982, 217(4558): 408-414.

157.
DavisKLMohsRCTinklenbergJRPhysostigmine: improvement of long-term memory processes in normal humansScience1978201435227227410.1126/science.351807

Davis KL, Mohs RC, Tinklenberg JR, et al. Physostigmine: improvement of long-term memory processes in normal humans. Science. 1978, 201(4352): 272-274.

158.
PerryEKPerryRHBlessedGNecropsy evidence of central cholinergic deficits in senile dementiaLancet197718004189

Perry EK, Perry RH, Blessed G, et al. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet. 1977, 1(8004): 189.

10.1016/S0140-6736(77)91780-9
159.

Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer's disease. Biol Psychiatry. 2012, 71(9): 805-813.

160.
GrotheMJSchusterCBauerFAtrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer's disease dementiaJ Neurol2014261101939194810.1007/s00415-014-7439-z

Grothe MJ, Schuster C, Bauer F, et al. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer's disease dementia. J Neurol. 2014, 261(10): 1939-1948.

161.
TeipelSHeinsenHAmaro EJrCholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer's diseaseNeurobiol Aging2014353482491

Teipel S, Heinsen H, Amaro E Jr, et al. Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer's disease. Neurobiol Aging. 2014, 35(3): 482-491.

10.1016/j.neurobiolaging.2013.09.029
162.
DamasioARGraff-RadfordNREslingerPJAmnesia following basal forebrain lesionsArch Neurol198542326327110.1001/archneur.1985.04060030081013

Damasio AR, Graff-Radford NR, Eslinger PJ, et al. Amnesia following basal forebrain lesions. Arch Neurol. 1985, 42(3): 263-271.

163.

Decker MW, McGaugh JL. The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse. 1991, 7(2): 151-168.

164.
NewhousePAPotterACorwinJAge-related effects of the nicotinic antagonist mecamylamine on cognition and behaviorNeuropsychopharmacology19941029310710.1038/npp.1994.11

Newhouse PA, Potter A, Corwin J, et al. Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology. 1994, 10(2): 93-107.

165.
VitielloBMartinAHillJCognitive and behavioral effects of cholinergic, dopaminergic, and serotonergic blockade in humansNeuropsychopharmacology19971611524

Vitiello B, Martin A, Hill J, et al. Cognitive and behavioral effects of cholinergic, dopaminergic, and serotonergic blockade in humans. Neuropsychopharmacology. 1997, 16(1): 15-24.

10.1016/S0893-133X(96)00134-0
166.
BuccafuscoJJTerry AVJrMultiple central nervous system targets for eliciting beneficial effects on memory and cognitionJ Pharmacol Exp Therapeut20002952438446

Buccafusco JJ, Terry AV Jr. Multiple central nervous system targets for eliciting beneficial effects on memory and cognition. J Pharmacol Exp Ther. 2000, 295(2): 438-446.

167.
SummersWKMajovskiLVMarshGMOral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer typeN Engl J Med19863152012411245

Summers WK, Majovski LV, Marsh GM, et al. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N Engl J Med. 1986, 315(20): 1241-1245.

10.1056/NEJM198611133152001
168.
CorbettAPickettJBurnsADrug repositioning for Alzheimer's diseaseNat Rev Drug Discov2012111183384610.1038/nrd3869

Corbett A, Pickett J, Burns A, et al. Drug repositioning for Alzheimer's disease. Nat Rev Drug Discov. 2012, 11(11): 833-846.

169.
HowardRMcShaneRLindesayJDonepezil and memantine for moderate-to-severe Alzheimer's diseaseN Engl J Med201236610893903

Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer's disease. N Engl J Med. 2012, 366(10): 893-903.

10.1056/NEJMoa1106668
170.

National Institute for Health and Clinical Excellence. Donepezil, Galantamine, Rivastigmine and Memantine for the Treatment of Alzheimer's Disease. National Institute for Health and Clinical Excellence; 2011: 1-84

171.
DouKXTanMSTanCCComparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer's disease: a network meta-analysis of 41 randomized controlled trialsAlzheimer's Res Ther2018101126

Dou KX, Tan MS, Tan CC, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer's disease: a network meta-analysis of 41 randomized controlled trials. Alzheimer's Res Ther. 2018, 10(1): 126.

10.1186/s13195-018-0457-9
172.
HansenRAGartlehnerGWebbAPEfficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer's disease: a systematic review and meta-analysisClin Interv Aging200832211225

Hansen RA, Gartlehner G, Webb AP, et al. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer's disease: a systematic review and meta-analysis. Clin Interv Aging. 2008, 3(2): 211-225.

173.
PetersenRCLopezOArmstrongMJPractice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of NeurologyNeurology201890312613510.1212/wnl.0000000000004826

Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2018, 90(3): 126-135.

174.
RichterNBeckersNOnurOAEffect of cholinergic treatment depends on cholinergic integrity in early Alzheimer's diseaseBrain2018141390391510.1093/brain/awx356

Richter N, Beckers N, Onur OA, et al. Effect of cholinergic treatment depends on cholinergic integrity in early Alzheimer's disease. Brain. 2018, 141(3): 903-915.

175.
CouplandCACHillTDeningTAnticholinergic drug exposure and the risk of dementia: a nested case-control studyJAMA Intern Med201917981084109310.1001/jamainternmed.2019.0677

Coupland CAC, Hill T, Dening T, et al. Anticholinergic drug exposure and the risk of dementia: a nested case-control study. JAMA Intern Med. 2019, 179(8): 1084-1093.

176.

Drachman DA, Leavitt J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol. 1974, 30(2): 113-121.

177.

Izquierdo I. Mechanism of action of scopolamine as an amnestic. Trends Pharmacol Sci. 1989, 10(5): 175-177.

178.

Mewaldt SP, Ghoneim MM. The effects and interactions of scopolamine, physostigmine and methamphetamine on human memory. Pharmacol Biochem Behav. 1979, 10(2): 205-210.

179.

Petersen RC. Scopolamine induced learning failures in man. Psychopharmacology. 1977, 52(3): 283-289.

180.
TalerVPhillipsNALanguage performance in Alzheimer's disease and mild cognitive impairment: a comparative reviewJ Clin Exp Neuropsychol200830550155610.1080/13803390701550128

Taler V, Phillips NA. Language performance in Alzheimer's disease and mild cognitive impairment: a comparative review. J Clin Exp Neuropsychol. 2008, 30(5): 501-556.

181.
PriceBHGurvitHWeintraubSNeuropsychological patterns and language deficits in 20 consecutive cases of autopsy-confirmed Alzheimer's diseaseArch Neurol199350993193710.1001/archneur.1993.00540090038008

Price BH, Gurvit H, Weintraub S, et al. Neuropsychological patterns and language deficits in 20 consecutive cases of autopsy-confirmed Alzheimer's disease. Arch Neurol. 1993, 50(9): 931-937.

182.
NicholasMOblerLKAlbertMLEmpty speech in Alzheimer's disease and fluent aphasiaJ Speech Hear Res198528340541010.1044/jshr.2803.405

Nicholas M, Obler LK, Albert ML, et al. Empty speech in Alzheimer's disease and fluent aphasia. J Speech Hear Res. 1985, 28(3): 405-410.

183.
BickelCPantelJEysenbachKSyntactic comprehension deficits in Alzheimer's diseaseBrain Lang2000713432448

Bickel C, Pantel J, Eysenbach K, et al. Syntactic comprehension deficits in Alzheimer's disease. Brain Lang. 2000, 71(3): 432-448.

10.1006/brln.1999.2277
184.
GrossmanMD'EspositoMHughesELanguage comprehension profiles in Alzheimer's disease, multi-infarct dementia, and frontotemporal degenerationNeurology1996471183189

Grossman M, D'Esposito M, Hughes E, et al. Language comprehension profiles in Alzheimer's disease, multi-infarct dementia, and frontotemporal degeneration. Neurology. 1996, 47(1): 183-189.

10.1212/WNL.47.1.183
185.

Kemper S, Marquis J, Thompson M. Longitudinal change in language production: effects of aging and dementia on grammatical complexity and propositional content. Psychol Aging. 2001, 16(4): 600-614.

186.
MacDonaldMCAlmorAHendersonVWAssessing working memory and language comprehension in Alzheimer's diseaseBrain Lang20017811742

MacDonald MC, Almor A, Henderson VW, et al. Assessing working memory and language comprehension in Alzheimer's disease. Brain Lang. 2001, 78(1): 17-42.

10.1006/brln.2000.2436
187.

Martin A, Fedio P. Word production and comprehension in Alzheimer's disease: the breakdown of semantic knowledge. Brain Lang. 1983, 19(1): 124-141.

188.
BlairMMarczinskiCADavis-FaroqueNA longitudinal study of language decline in Alzheimer's disease and frontotemporal dementiaJ Int Neuropsychol Soc2007132237245

Blair M, Marczinski CA, Davis-Faroque N, et al. A longitudinal study of language decline in Alzheimer's disease and frontotemporal dementia. J Int Neuropsychol Soc. 2007, 13(2): 237-245.

10.1017/S1355617707070269
189.
HartDJCraigDComptonSAA retrospective study of the behavioural and psychological symptoms of mid and late phase Alzheimer's diseaseInt J Geriatr Psychiatr2003181110371042

Hart DJ, Craig D, Compton SA, et al. A retrospective study of the behavioural and psychological symptoms of mid and late phase Alzheimer's disease. Int J Geriatr Psychiatry. 2003, 18(11): 1037-1042.

10.1002/gps.1013
190.
FrisoniGBFratiglioniLFastbomJMortality in nondemented subjects with cognitive impairment: the influence of health-related factorsAm J Epidemiol1999150101031104410.1093/oxfordjournals.aje.a009927

Frisoni GB, Fratiglioni L, Fastbom J, et al. Mortality in nondemented subjects with cognitive impairment: the influence of health-related factors. Am J Epidemiol. 1999, 150(10): 1031-1044.

191.

Chung JA, Cummings JL. Neurobehavioral and neuropsychiatric symptoms in Alzheimer's disease: characteristics and treatment. Neurol Clin. 2000, 18(4): 829-846.

192.
RipichDNTerrellBYPatterns of discourse cohesion and coherence in Alzheimer's diseaseJ Speech Hear Disord198853181510.1044/jshd.5301.08

Ripich DN, Terrell BY. Patterns of discourse cohesion and coherence in Alzheimer's disease. J Speech Hear Disord. 1988, 53(1): 8-15.

193.
MarconeAGaribottoVMorescoRM[11C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer's disease, and dementia with lewy bodies: a Bayesian method and voxel-based analysisJ Alzheim Dis201231238739910.3233/jad-2012-111748

Marcone A, Garibotto V, Moresco RM, et al. [11C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer's disease, and dementia with lewy bodies: a Bayesian method and voxel-based analysis. J Alzheimer's Dis. 2012, 31(2): 387-399.

194.

Birks J, Flicker L. Donepezil for mild cognitive impairment. Cochrane Database Syst Rev. 2006(3): CD006104.

195.

Loy C, Schneider L. Galantamine for Alzheimer's disease and mild cognitive impairment. Cochrane Database Syst Rev. 2006(1): CD001747.

196.
RaschettiRAlbaneseEVanacoreNCholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trialsPLoS Med2007411e33810.1371/journal.pmed.0040338

Raschetti R, Albanese E, Vanacore N, et al. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med. 2007, 4(11): e338.

197.

Hogan DB. Long-term efficacy and toxicity of cholinesterase inhibitors in the treatment of Alzheimer disease. Can J Psychiatry. 2014, 59(12): 618-623.

198.
SchneiderLSInselPSWeinerMWTreatment with cholinesterase inhibitors and memantine of patients in the Alzheimer's disease neuroimaging initiativeArch Neurol2011681586610.1001/archneurol.2010.343

Schneider LS, Insel PS, Weiner MW, et al. Treatment with cholinesterase inhibitors and memantine of patients in the Alzheimer's disease neuroimaging initiative. Arch Neurol. 2011, 68(1): 58-66.

199.
SonaAZhangPAmesDPredictors of rapid cognitive decline in Alzheimer's disease: results from the Australian imaging, biomarkers and lifestyle (AIBL) study of ageingInt Psychogeriatr2012242197204

Sona A, Zhang P, Ames D, et al. Predictors of rapid cognitive decline in Alzheimer's disease: results from the Australian imaging, biomarkers and lifestyle (AIBL) study of ageing. Int Psychogeriatr. 2012, 24(2): 197-204.

10.1017/S1041610211001335
200.
BlennowKZetterbergHMinthonLLongitudinal stability of CSF biomarkers in Alzheimer's diseaseNeurosci Lett200741911822

Blennow K, Zetterberg H, Minthon L, et al. Longitudinal stability of CSF biomarkers in Alzheimer's disease. Neurosci Lett. 2007, 419(1): 18-22.

10.1016/j.neulet.2007.03.064
201.
ParnettiLAmiciSLanariACerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitorsNeurol Sci200223suppl 2S95S96

Parnetti L, Amici S, Lanari A, et al. Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol Sci. 2002, 23(Suppl 2): S95-S96.

10.1007/s100720200086
202.
ParnettiLChiasseriniDAndreassonUChanges in CSF acetyl- and butyrylcholinesterase activity after long-term treatment with AChE inhibitors in Alzheimer's diseaseActa Neurol Scand2011124212212910.1111/j.1600-0404.2010.01435.x

Parnetti L, Chiasserini D, Andreasson U, et al. Changes in CSF acetyl- and butyrylcholinesterase activity after long-term treatment with AChE inhibitors in Alzheimer's disease. Acta Neurol Scand. 2011, 124(2): 122-129.

203.
ChalmersKAWilcockGKVintersHVCholinesterase inhibitors may increase phosphorylated tau in Alzheimer's diseaseJ Neurol2009256571772010.1007/s00415-009-5000-2

Chalmers KA, Wilcock GK, Vinters HV, et al. Cholinesterase inhibitors may increase phosphorylated tau in Alzheimer's disease. J Neurol. 2009, 256(5): 717-720.

204.
LeeYFGerashchenkoDTimofeevISlow wave sleep is a promising intervention target for Alzheimer's diseaseFront Neurosci20201470510.22246/jikm.2020.41.5.705

Lee YF, Gerashchenko D, Timofeev I, et al. Slow wave sleep is a promising intervention target for Alzheimer's disease. Front Neurosci. 2020, 14: 705.

205.
WesterbergCEManderBAFlorczakSMConcurrent impairments in sleep and memory in amnestic mild cognitive impairmentJ Int Neuropsychol Soc2012183490500

Westerberg CE, Mander BA, Florczak SM, et al. Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. J Int Neuropsychol Soc. 2012, 18(3): 490-500.

10.1017/S135561771200001X
206.
JuYESOomsSJSutphenCSlow wave sleep disruption increases cerebrospinal fluid amyloid-β levelsBrain201714082104211110.1093/brain/awx148

Ju YES, Ooms SJ, Sutphen C, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain. 2017, 140(8): 2104-2111.

207.
LuceyBPMcCulloughALandsnessECReduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer's diseaseSci Transl Med

Lucey BP, McCullough A, Landsness EC, et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer's disease. Sci Transl Med. 2019, 11(474): eaau6550.

208.
JarzebowskiPTangCSPaulsenOImpaired spatial learning and suppression of sharp wave ripples by cholinergic activation at the goal locationElife202110e65998

Jarzebowski P, Tang CS, Paulsen O, et al. Impaired spatial learning and suppression of sharp wave ripples by cholinergic activation at the goal location. Elife. 2021, 10: e65998.

10.7554/eLife.65998
209.
EspositoZBelliLTonioloSAmyloid β, glutamate, excitotoxicity in Alzheimer's disease: are we on the right track?CNS Neurosci Ther201319854955510.1111/cns.12095

Esposito Z, Belli L, Toniolo S, et al. Amyloid β, glutamate, excitotoxicity in Alzheimer's disease: are we on the right track? CNS Neurosci Ther. 2013, 19(8): 549-555.

210.

Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int. 2004, 45(5): 583-595.

211.

Rothman SM, Olney JW. Glutamate and the pathophysiology of hypoxic—ischemic brain damage. Ann Neurol. 1986, 19(2): 105-111.

212.

Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988, 1(8): 623-634.

213.
LiptonSARosenbergPAExcitatory amino acids as a final common pathway for neurologic disordersN Engl J Med19943309613622

Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994, 330(9): 613-622.

10.1056/NEJM199403033300907
214.
AriasCArrietaITapiaRBeta-Amyloid peptide fragment 25-35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slicesJ Neurosci Res199541456156610.1002/jnr.490410416

Arias C, Arrieta I, Tapia R. Beta-Amyloid peptide fragment 25-35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J Neurosci Res. 1995, 41(4): 561-566.

215.
Fernández-ToméPBreraBArévaloMABeta-amyloid25-35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanismNeurobiol Dis2004153580589

Fernández-Tomé P, Brera B, Arévalo MA, et al. Beta-amyloid25-35 inhibits glutamate uptake in cultured neurons and astrocytes: modulation of uptake as a survival mechanism. Neurobiol Dis. 2004, 15(3): 580-589.

10.1016/j.nbd.2003.12.006
216.

Parpura-Gill A, Beitz D, Uemura E. The inhibitory effects of beta-amyloid on glutamate and glucose uptakes by cultured astrocytes. Brain Res. 1997, 754(1/2): 65-71.

217.

Chang CH, Lin CH, Lane HY. D-glutamate and gut microbiota in Alzheimer's disease. Int J Mol Sci. 2020, 21(8): E2676.

218.
ChoiDWIonic dependence of glutamate neurotoxicityJ Neurosci19877236937910.1523/jneurosci.07-02-00369.1987

Choi DW. Ionic dependence of glutamate neurotoxicity. J Neurosci. 1987, 7(2): 369-379.

219.
ChoiDWKohJYPetersSPharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonistsJ Neurosci19888118519610.1523/jneurosci.08-01-00185.1988

Choi DW, Koh JY, Peters S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988, 8(1): 185-196.

220.

Koh JY, Choi DW. Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced neuronal death. Brain Res. 1991, 548(1/2): 318-321.

221.
TymianskiMCharltonMPCarlenPLSource specificity of early calcium neurotoxicity in cultured embryonic spinal neuronsJ Neurosci19931352085210410.1523/jneurosci.13-05-02085.1993

Tymianski M, Charlton MP, Carlen PL, et al. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci. 1993, 13(5): 2085-2104.

222.
ChoiDWExcitotoxic cell deathJ Neurobiol19922391261127610.1002/neu.480230915

Choi DW. Excitotoxic cell death. J Neurobiol. 1992, 23(9): 1261-1276.

223.

Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004, 10(Suppl): S18-S25.

224.
FarboodYShabaniSSarkakiAPeripheral and central administration of T3 improved the histological changes, memory and the dentate gyrus electrophysiological activity in an animal model of Alzheimer's diseaseMetab Brain Dis201732369370110.1007/s11011-016-9947-2

Farbood Y, Shabani S, Sarkaki A, et al. Peripheral and central administration of T3 improved the histological changes, memory and the dentate gyrus electrophysiological activity in an animal model of Alzheimer's disease. Metab Brain Dis. 2017, 32(3): 693-701.

225.
JeltschHBertrandFLazarusCCognitive performances and locomotor activity following dentate granule cell damage in rats: role of lesion extent and type of memory testedNeurobiol Learn Mem200176181105

Jeltsch H, Bertrand F, Lazarus C, et al. Cognitive performances and locomotor activity following dentate granule cell damage in rats: role of lesion extent and type of memory tested. Neurobiol Learn Mem. 2001, 76(1): 81-105.

10.1006/nlme.2000.3986
226.

Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol. 2008, 21(1): 172-188.

227.
TeaktongTGrahamACourtJAlzheimer's disease is associated with a selective increase in alpha7 nicotinic acetylcholine receptor immunoreactivity in astrocytesGlia2003412207211

Teaktong T, Graham A, Court J, et al. Alzheimer's disease is associated with a selective increase in alpha7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia. 2003, 41(2): 207-211.

10.1002/glia.10132
228.
XiuJNordbergAZhangJTExpression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the alpha7, alpha4 and beta2 subunits in response to nanomolar concentrations of the beta-amyloid peptide(1-42)Neurochem Int2005474281290

Xiu J, Nordberg A, Zhang JT, et al. Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the alpha7, alpha4 and beta2 subunits in response to nanomolar concentrations of the beta-amyloid peptide(1-42). Neurochem Int. 2005, 47(4): 281-290.

10.1016/j.neuint.2005.04.023
229.
NageleRGWegielJVenkataramanVContribution of glial cells to the development of amyloid plaques in Alzheimer's diseaseNeurobiol Aging2004255663674

Nagele RG, Wegiel J, Venkataraman V, et al. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiol Aging. 2004, 25(5): 663-674.

10.1016/j.neurobiolaging.2004.01.007
230.
YuWFGuanZZBogdanovicNHigh selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer's disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaquesExp Neurol20051921215225

Yu WF, Guan ZZ, Bogdanovic N, et al. High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer's disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol. 2005, 192(1): 215-225.

10.1016/j.expneurol.2004.12.015
231.
OrellanaJAFrogerNEzanPATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannelsJ Neurochem2011118582684010.1111/j.1471-4159.2011.07210.x

Orellana JA, Froger N, Ezan P, et al. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem. 2011, 118(5): 826-840.

232.
OrellanaJAShojiKFAbudaraVAmyloid β-induced death in neurons involves glial and neuronal hemichannelsJ Neurosci2011311349624977

Orellana JA, Shoji KF, Abudara V, et al. Amyloid β-induced death in neurons involves glial and neuronal hemichannels. J Neurosci. 2011, 31(13): 4962-4977.

10.1523/JNEUROSCI.6417-10.2011
233.
YiCMeiXEzanPAstroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer's diseaseCell Death Differ201623101691170110.1038/cdd.2016.63

Yi C, Mei X, Ezan P, et al. Astroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer's disease. Cell Death Differ. 2016, 23(10): 1691-1701.

234.
ObesoJARodríguez-OrozMCRodríguezMPathophysiology of the basal ganglia in Parkinson's diseaseTrends Neurosci20002310 suppl lS8S19

Obeso JA, Rodriguez-Oroz MC, Rodriguez M, et al. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci. 2000, 23(10 Suppl): S8-S19.

10.1016/S1471-1931(00)00028-8
235.
HanFBHanZCChenCTransplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's diseaseJ Neurorestoratol201623

Han FB, Han ZC, Chen C, et al. Transplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's disease. J Neurorestoratol. 2016: 23.

10.2147/JN.S98835
236.
LuJCFengZHShiXCorrelation between programmed stimulation parameters and their efficacy after deep brain electrode implantation for Parkinson's diseaseJ Neurorestoratol2020815359

Lu JC, Feng ZH, Shi X, et al. Correlation between programmed stimulation parameters and their efficacy after deep brain electrode implantation for Parkinson's disease. J Neurorestoratol. 2020, 8(1): 53-59.

10.26599/JNR.2019.9040018
237.
BrimblecombeKRThrelfellSDautanDTargeted activation of cholinergic interneurons accounts for the modulation of dopamine by striatal nicotinic receptorseNeuro201855ENEURO.0397-ENEURO.0317.2018

Brimblecombe KR, Threlfell S, Dautan D, et al. Targeted activation of cholinergic interneurons accounts for the modulation of dopamine by striatal nicotinic receptors. eNeuro. 2018, 5(5): ENEURO.0397-ENEURO.0317.2018.

10.1523/ENEURO.0397-17.2018
238.
Goldberg JA, Wilson CJ. Chapter 7 - The Cholinergic Interneurons of the Striatum: Intrinsic Properties Underlie Multiple Discharge Patterns. In: Steiner H, Tseng KY, eds. 2010: Handbook of Behavioral Neuroscience. 20.
239.
DoJKimJIBakesJFunctional roles of neurotransmitters and neuromodulators in the dorsal striatumLearn Mem20122012128

Do J, Kim JI, Bakes J, et al. Functional roles of neurotransmitters and neuromodulators in the dorsal striatum. Learn Mem. 2012, 20(1): 21-28.

10.1101/lm.025015.111
240.

Alexander GE. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci. 2004, 6(3): 259-280.

241.

Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in Parkinson's disease: focus on anti-parkinsonian drugs. Curr Drug Ther. 2015, 10(2): 66-81.

242.

di Chiara G, Morelli M, Consolo S. Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci. 1994, 17(6): 228-233.

243.

Fahn S, Burke R, Stern Y. Antimuscarinic drugs in the treatment of movement disorders. Prog Brain Res. 1990, 84: 389-397.

244.
Hornykiewicz O. Brain neurotransmitter changes in Parkinson's disease. In: Fahn S, ed. Movement Disorders. Marsden CD. Amsterdam: Elsevier, 1981: 41-58.
245.
PisaniABernardiGDingJRe-emergence of striatal cholinergic interneurons in movement disordersTrends Neurosci20073010545553

Pisani A, Bernardi G, Ding J, et al. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 2007, 30(10): 545-553.

10.1016/j.tins.2007.07.008
246.

Lees A. Alternatives to levodopa in the initial treatment of early Parkinson's disease. Drugs Aging. 2005, 22(9): 731-740.

247.

LeWitt PA. Levodopa therapy for Parkinson's disease: pharmacokinetics and pharmacodynamics. Mov Disord. 2015, 30(1): 64-72.

248.
DingYMWonLBrittJPEnhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian miceProc Natl Acad Sci USA2011108284084510.1073/pnas.1006511108

Ding YM, Won L, Britt JP, et al. Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci USA. 2011, 108(2): 840-845.

249.
Standaert DG, Roberson ED. Treatment of central nervous system degenerative disorders. In: Brunton LL, Chabner BA, Knollmann BC, eds. Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 12ed. New York: McGraw Hill, 2015
250.
XiangZXThompsonADJonesCKRoles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson's diseaseJ Pharmacol Exp Therapeut2012340359560310.1124/jpet.111.187856

Xiang ZX, Thompson AD, Jones CK, et al. Roles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson's disease. J Pharmacol Exp Ther. 2012, 340(3): 595-603.

251.
ZtaouSMauriceNCamonJInvolvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson's diseaseJ Neurosci2016363591619172

Ztaou S, Maurice N, Camon J, et al. Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson's disease. J Neurosci. 2016, 36(35): 9161-9172.

10.1523/JNEUROSCI.0873-16.2016
252.
BonsiPCuomoDMartellaGCentrality of striatal cholinergic transmission in basal ganglia functionFront Neuroanat201156

Bonsi P, Cuomo D, Martella G, et al. Centrality of striatal cholinergic transmission in basal ganglia function. Front Neuroanat. 2011, 5: 6.

10.3389/fnana.2011.00006
253.
ZhangWLBasileASGomezaJCharacterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out miceJ Neurosci20022251709171710.1523/jneurosci.22-05-01709.2002

Zhang WL, Basile AS, Gomeza J, et al. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci. 2002, 22(5): 1709-1717.

254.

Zhou FM, Wilson C, Dani JA. Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist. 2003, 9(1): 23-36.

255.
BernardVNormandEBlochBPhenotypical characterization of the rat striatal neurons expressing muscarinic receptor genesJ Neurosci19921293591360010.1523/jneurosci.12-09-03591.1992

Bernard V, Normand E, Bloch B. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci. 1992, 12(9): 3591-3600.

256.
HerschSMGutekunstCAReesHDDistribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodiesJ Neurosci1994145 Pt 23351336310.1523/jneurosci.14-05-03351.1994

Hersch SM, Gutekunst CA, Rees HD, et al. Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci. 1994, 14(5 Pt 2): 3351-3363.

257.
KlawonnAMWilhelmsDBLindströmSHMuscarinic M4 receptors on cholinergic and dopamine D1 receptor-expressing neurons have opposing functionality for positive reinforcement and influence impulsivityFront Mol Neurosci201811139

Klawonn AM, Wilhelms DB, Lindström SH, et al. Muscarinic M4 receptors on cholinergic and dopamine D1 receptor-expressing neurons have opposing functionality for positive reinforcement and influence impulsivity. Front Mol Neurosci. 2018, 11: 139.

10.3389/fnmol.2018.00139
258.
LeveyAIKittCASimondsWFIdentification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodiesJ Neurosci199111103218322610.1523/jneurosci.11-10-03218.1991

Levey AI, Kitt CA, Simonds WF, et al. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci. 1991, 11(10): 3218-3226.

259.
NairAGCastroLRVEl KhouryMThe high efficacy of muscarinic M4 receptor in D1 medium spiny neurons reverses striatal hyperdopaminergiaNeuropharmacology20191467483

Nair AG, Castro LRV, El Khoury M, et al. The high efficacy of muscarinic M4 receptor in D1 medium spiny neurons reverses striatal hyperdopaminergia. Neuropharmacology. 2019, 146: 74-83.

10.1016/j.neuropharm.2018.11.029
260.
TiceMAHashemiTTaylorLADistribution of muscarinic receptor subtypes in rat brain from postnatal to old ageBrain Res Dev Brain Res19969217076

Tice MA, Hashemi T, Taylor LA, et al. Distribution of muscarinic receptor subtypes in rat brain from postnatal to old age. Brain Res Dev Brain Res. 1996, 92(1): 70-76.

10.1016/0165-3806(95)01515-9
261.
FosterDJWilsonJMRemkeDHAntipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine releaseNeuron201691612441252

Foster DJ, Wilson JM, Remke DH, et al. Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron. 2016, 91(6): 1244-1252.

10.1016/j.neuron.2016.08.017
262.
DenckerDWörtweinGWeikopPInvolvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomelineJ Neurosci2011311659055908

Dencker D, Wörtwein G, Weikop P, et al. Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J Neurosci. 2011, 31(16): 5905-5908.

10.1523/JNEUROSCI.0370-11.2011
263.
JeonJDenckerDWörtweinGA subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviorsJ Neurosci201030623962405

Jeon J, Dencker D, Wörtwein G, et al. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci. 2010, 30(6): 2396-2405.

10.1523/JNEUROSCI.3843-09.2010
264.
MoehleMSPancaniTByunNCholinergic projections to the substantia nigra pars reticulata inhibit dopamine modulation of basal ganglia through the M4 muscarinic receptorNeuron201796613581372

Moehle MS, Pancani T, Byun N, et al. Cholinergic projections to the substantia nigra pars reticulata inhibit dopamine modulation of basal ganglia through the M4 muscarinic receptor. Neuron. 2017, 96(6): 1358-1372.e4.

10.1016/j.neuron.2017.12.008
265.

Onali P, Olianas MC. Muscarinic M4 receptor inhibition of dopamine D1-like receptor signalling in rat nucleus accumbens. Eur J Pharmacol. 2002, 448(2/3): 105-111.

266.
SchmidtLSThomsenMWeikopPIncreased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout micePsychopharmacology2011216336737810.1007/s00213-011-2225-4

Schmidt LS, Thomsen M, Weikop P, et al. Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology. 2011, 216(3): 367-378.

267.

Kilbinger H. Presynaptic muscarine receptors modulating acetylcholine release. Trends Pharmacol Sci. 1984, 5: 103-105.

268.

Starke K, Göthert M, Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev. 1989, 69(3): 864-989.

269.
AosakiTMiuraMSuzukiTAcetylcholine-dopamine balance hypothesis in the striatum: an updateGeriatr Gerontol Int201010suppl 1S148S15710.1111/j.1447-0594.2010.00588.x

Aosaki T, Miura M, Suzuki T, et al. Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int. 2010, 10(Suppl 1): S148-S157.

270.
DautanDHacioğlu BayHBolamJPExtrinsic sources of cholinergic innervation of the striatal complex: a whole-brain mapping analysisFront Neuroanat2016101

Dautan D, Hacioglu Bay H, Bolam JP, et al. Extrinsic sources of cholinergic innervation of the striatal complex: a whole-brain mapping analysis. Front Neuroanat. 2016, 10: 1.

10.3389/fnana.2016.00001
271.
ZuccaSZuccaANakanoTPauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivoElife20187e32510

Zucca S, Zucca A, Nakano T, et al. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo. Elife. 2018, 7: e32510.

10.7554/eLife.32510
272.
BeelerJAFrankMJMcDaidJA role for dopamine-mediated learning in the pathophysiology and treatment of Parkinson's diseaseCell Rep20122617471761

Beeler JA, Frank MJ, McDaid J, et al. A role for dopamine-mediated learning in the pathophysiology and treatment of Parkinson's disease. Cell Rep. 2012, 2(6): 1747-1761.

10.1016/j.celrep.2012.11.014
273.

Berke JD. What does dopamine mean? Nat Neurosci. 2018, 21(6): 787-793.

274.

Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004, 5(6): 483-494.

275.
AarslandDAndersenKLarsenJPPrevalence and characteristics of dementia in Parkinson disease: an 8-year prospective studyArch Neurol2003603387392

Aarsland D, Andersen K, Larsen JP, et al. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol. 2003, 60(3): 387-392.

10.1001/archneur.60.3.387
276.

Gomperts SN. Lewy body dementias: dementia with lewy bodies and parkinson disease dementia. Continuum. 2016, 22(2 Dementia): 435-463.

277.
HughesTARossHFMusaSA 10-year study of the incidence of and factors predicting dementia in Parkinson's diseaseNeurology200054815961602

Hughes TA, Ross HF, Musa S, et al. A 10-year study of the incidence of and factors predicting dementia in Parkinson's disease. Neurology. 2000, 54(8): 1596-1602.

10.1212/WNL.54.8.1596
278.
MayeuxRChenJMirabelloEAn estimate of the incidence of dementia in idiopathic Parkinson's diseaseNeurology1990401015131517

Mayeux R, Chen J, Mirabello E, et al. An estimate of the incidence of dementia in idiopathic Parkinson's disease. Neurology. 1990, 40(10): 1513-1517.

10.1212/WNL.40.10.1513
279.
UcEYMcDermottMPMarderKSIncidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohortNeurology2009731814691477

Uc EY, McDermott MP, Marder KS, et al. Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology. 2009, 73(18): 1469-1477.

10.1212/WNL.0b013e3181bf992f
280.
LocascioJJCorkinSGrowdonJHRelation between clinical characteristics of Parkinson's disease and cognitive declineJ Clin Exp Neuropsychol200325194109

Locascio JJ, Corkin S, Growdon JH. Relation between clinical characteristics of Parkinson's disease and cognitive decline. J Clin Exp Neuropsychol. 2003, 25(1): 94-109.

10.1076/jcen.25.1.94.13624
281.
MortimerJAPirozzoloFJHanschECRelationship of motor symptoms to intellectual deficits in Parkinson diseaseNeurology1982322133137

Mortimer JA, Pirozzolo FJ, Hansch EC, et al. Relationship of motor symptoms to intellectual deficits in Parkinson disease. Neurology. 1982, 32(2): 133-137.

10.1212/WNL.32.2.133
282.
AarslandDCreeseBPolitisMCognitive decline in Parkinson diseaseNat Rev Neurol201713421723110.1038/nrneurol.2017.27

Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017, 13(4): 217-231.

283.
WismanLABSahinGMaingayMFunctional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memoryJ Neurosci2008283177977807

Wisman LAB, Sahin G, Maingay M, et al. Functional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memory. J Neurosci. 2008, 28(31): 7797-7807.

10.1523/JNEUROSCI.1885-08.2008
284.
ZurkovskyLBychkovETsakemELCognitive effects of dopamine depletion in the context of diminished acetylcholine signaling capacity in miceDis Model Mech201361171183

Zurkovsky L, Bychkov E, Tsakem EL, et al. Cognitive effects of dopamine depletion in the context of diminished acetylcholine signaling capacity in mice. Dis Model Mech. 2013, 6(1): 171-183.

10.1242/dmm.010363
285.
BranchiID'AndreaIArmidaMNonmotor symptoms in Parkinson's disease: investigating early-phase onset of behavioral dysfunction in the 6-hydroxydopamine-lesioned rat modelJ Neurosci Res20088692050206110.1002/jnr.21642

Branchi I, D'Andrea I, Armida M, et al. Nonmotor symptoms in Parkinson's disease: investigating early-phase onset of behavioral dysfunction in the 6-hydroxydopamine-lesioned rat model. J Neurosci Res. 2008, 86(9): 2050-2061.

286.
de LeonibusEPascucciTLopezSSpatial deficits in a mouse model of Parkinson diseasePsychopharmacology2007194451752510.1007/s00213-007-0862-4

de Leonibus E, Pascucci T, Lopez S, et al. Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology. 2007, 194(4): 517-525.

287.
CampbellNBoustaniMLimbilTThe cognitive impact of anticholinergics: a clinical reviewClin Interv Aging20094225233

Campbell N, Boustani M, Limbil T, et al. The cognitive impact of anticholinergics: a clinical review. Clin Interv Aging. 2009, 4: 225-233.

10.2147/CIA.S5358
288.

Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 2010, 34(8): 1307-1350.

289.

Gratwicke J, Jahanshahi M, Foltynie T. Parkinson's disease dementia: a neural networks perspective. Brain. 2015, 138(Pt 6): 1454-1476.

290.

Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 2011, 221(2): 555-563.

291.
WangHFYuJTTangSWEfficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysisJ Neurol Neurosurg Psychiatry201586213514310.1136/jnnp-2014-307659

Wang HF, Yu JT, Tang SW, et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. J Neurol Neurosurg Psychiatry. 2015, 86(2): 135-143.

292.
AarslandDBallardCWalkerZMemantine in patients with Parkinson's disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trialLancet Neurol200987613618

Aarsland D, Ballard C, Walker Z, et al. Memantine in patients with Parkinson's disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009, 8(7): 613-618.

10.1016/S1474-4422(09)70146-2
293.

Boot BP. Comprehensive treatment of dementia with Lewy bodies. Alzheimers Res Ther. 2015, 7(1): 45.

294.
IkedaMMoriEMatsuoKDonepezil for dementia with Lewy bodies: a randomized, placebo-controlled, confirmatory phase III trialAlzheimer's Res Ther2015714

Ikeda M, Mori E, Matsuo K, et al. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled, confirmatory phase III trial. Alzheimers Res Ther. 2015, 7(1): 4.

10.1186/s13195-014-0083-0
295.
KleinJCEggersCKalbeENeurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivoNeurology20107411885892

Klein JC, Eggers C, Kalbe E, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology. 2010, 74(11): 885-892.

10.1212/WNL.0b013e3181d55f61
296.
MoriEIkedaMNakagawaMPretreatment cognitive profile likely to benefit from donepezil treatment in dementia with lewy bodies: pooled analyses of two randomized controlled trialsDement Geriatr Cognit Disord2016421/2586810.1159/000447586

Mori E, Ikeda M, Nakagawa M, et al. Pretreatment cognitive profile likely to benefit from donepezil treatment in dementia with lewy bodies: pooled analyses of two randomized controlled trials. Dement Geriatr Cogn Disord. 2016, 42(1/2): 58-68.

297.
EmreMAarslandDBrownRClinical diagnostic criteria for dementia associated with Parkinson's diseaseMov Disord200722121689170710.1002/mds.21507

Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson's disease. Mov Disord. 2007, 22(12): 1689-1707.

298.

Growdon JH, Corkin S, Rosen TJ. Distinctive aspects of cognitive dysfunction in Parkinson's disease. Adv Neurol. 1990, 53: 365-376.

299.
ZtaouSLhostJWatabeIStriatal cholinergic interneurons regulate cognitive and affective dysfunction in partially dopamine-depleted miceEur J Neurosci20184892988300410.1111/ejn.14153

Ztaou S, Lhost J, Watabe I, et al. Striatal cholinergic interneurons regulate cognitive and affective dysfunction in partially dopamine-depleted mice. Eur J Neurosci. 2018, 48(9): 2988-3004.

Journal of Neurorestoratology
Article number: 100002
Cite this article:
Huang Q, Liao C, Ge F, et al. Acetylcholine bidirectionally regulates learning and memory. Journal of Neurorestoratology, 2022, 10(2): 100002. https://doi.org/10.1016/j.jnrt.2022.100002

1973

Views

33

Crossref

32

Web of Science

32

Scopus

Altmetrics

Received: 11 February 2022
Revised: 05 March 2022
Accepted: 11 March 2022
Published: 14 June 2022
© 2022 The Author(s). Published by Elsevier Ltd on behalf of Tsinghua University Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return