AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Case Report | Open Access

Repetitive transcranial magnetic stimulation alleviates depression in a young patient with CADASIL: A case report

Mengru Qia,1Mengke Bana,1Zhaoyang LuaShuwen CaoaRanran YangaPing Zhanga( )Jinggui Songb( )
Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China

1 They contributed equally to this work and should be considered co-first authors.

Show Author Information

Abstract

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a relatively common inherited arterial smooth muscle cell disease. The genetic defect is localized to the notch homolog protein 3 (NOTCH3) gene on chromosome 19q12 and is due to a missense variant in NOTCH3. The main clinical manifestations are transient ischemic attacks and repeated stroke, with cognitive impairments leading to dementia, migraine with aura, and mental/emotional disorders. To date, there is no specific therapeutic option, with only symptomatic supportive treatment for the symptoms of acute stroke, migraine, dementia, and mental abnormalities. Here, we provide a case report of a Chinese patient with CADASIL and a mutation in exon 4 of the NOTCH3 gene (p.Arg133Cys). The patient mainly exhibited recurrent cerebral infarction and affective disorder. Antidepressant treatment combined with repetitive transcranial magnetic stimulation significantly improved the depressive symptoms of the patient.

References

1

Uyama E, Tokunaga M, Suenaga A, et al. Arg133Cys mutation of Notch3 in two unrelated Japanese families with CADASIL. Intern Med. 2000;39(9):732–737. https://doi.org/10.2169/internalmedicine.39.732.

2

Dichgans M, Mayer M, Uttner I, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44(5):731–739. https://doi.org/10.1002/ana.410440506.

3

Desmond DW, Moroney JT, Lynch T, et al. The natural history of CADASIL: a pooled analysis of previously published cases. Stroke. 1999;30(6):1230–1233. https://doi.org/10.1161/01.str.30.6.1230.

4

Bousser M, Tournier-Lasserve E. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: from stroke to vessel wall physiology. J Neurol Neurosurg Psychiatry. 2001;70(3):285–287. https://doi.org/10.1136/jnnp.70.3.285.

5

Singhal S, Bevan S, Barrick T, et al. The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain. 2004;127(Pt 9):2031–2038. https://doi.org/10.1093/brain/awh223.

6

Opherk C, Peters N, Herzog J, et al. Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain. 2004;127(Pt 11):2533–2539. https://doi.org/10.1093/brain/awh282.

7

Chabriat H, Joutel A, Dichgans M, et al. Cadasil. Lancet Neurol. 2009;8(7):643–653. https://doi.org/10.1016/S1474-4422(09)70127-9.

8

Dichgans M. Cognition in CADASIL. Stroke. 2009;40(3 suppl l):S45–S47. https://doi.org/10.1161/STROKEAHA.108.534412.

9

Noh SM, Chung SJ, Kim KK, et al. Emotional disturbance in CADASIL: its impact on quality of life and caregiver burden. Cerebrovasc Dis. 2014;37(3):188–194. https://doi.org/10.1159/000357798.

10

Park S, Park B, Koh MK, et al. Case report: bipolar disorder as the first manifestation of CADASIL. BMC Psychiatr. 2014;14:175. https://doi.org/10.1186/1471-244X-14-175.

11

Chabriat H, Bousser MG. Neuropsychiatric manifestations in CADASIL. Dialogues Clin Neurosci. 2007;9(2):199–208. https://doi.org/10.31887/DCNS.2007.9.2/hchabriat.

12

Di Donato I, Bianchi S, De Stefano N, et al. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Med. 2017;15(1):41. https://doi.org/10.1186/s12916-017-0778-8.

13

Singhal S, Rich P, Markus HS. The spatial distribution of MR imaging abnormalities in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and their relationship to age and clinical features. AJNR Am J Neuroradiol. 2005;26(10):2481–2487. pmid: 16286388.

14

Auer DP, Pütz B, Gössl C, et al. Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison. Radiology. 2001;218(2):443–451. https://doi.org/10.1148/radiology.218.2.r01fe24443.

15

O'Sullivan M, Jarosz JM, Martin RJ, et al. MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology. 2001;56(5):628–634. https://doi.org/10.1212/wnl.56.5.628.

16

Lee YC, Liu CS, Chang MH, et al. Population-specific spectrum of NOTCH3 mutations, MRI features and founder effect of CADASIL in Chinese. J Neurol. 2009;256(2):249–255. https://doi.org/10.1007/s00415-009-0091-3.

17

Abramycheva N, Stepanova M, Kalashnikova L, et al. New mutations in the Notch3 gene in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL). J Neurol Sci. 2015;349(1–2):196–201. https://doi.org/10.1016/j.jns.2015.01.018.

18

Ayrignac X, Carra-Dalliere C, Menjot de Champfleur N, et al. Adult-onset genetic leukoencephalopathies: a MRI pattern-based approach in a comprehensive study of 154 patients. Brain. 2015;138(Pt 2):284–292. https://doi.org/10.1093/brain/awu353.

19

Algahtani H, Shirah B, Alharbi SY, et al. A novel heterozygous variant in exon 19 of NOTCH3 in a Saudi family with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Stroke Cerebrovasc Dis. 2020;29(7):104832. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104832.

20

Pantoni L, Pescini F, Nannucci S, et al. Comparison of clinical, familial, and MRI features of CADASIL and NOTCH3-negative patients. Neurology. 2010;74(1):57–63. https://doi.org/10.1212/WNL.0b013e3181c7da7c.

21

van den Boom R, Lesnik Oberstein SA, Ferrari MD, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages—3rd-6th decades. Radiology. 2003;229(3):683–690. https://doi.org/10.1148/radiol.2293021354.

22

Schneider LS. Does donepezil improve executive function in patients with CADASIL? Lancet Neurol. 2008;7(4):287–289. https://doi.org/10.1016/S1474-4422(08)70047-4.

23

Shin D, Oh YH, Eom CS, et al. Use of selective serotonin reuptake inhibitors and risk of stroke: a systematic review and meta-analysis. J Neurol. 2014;261(4):686–695. https://doi.org/10.1007/s00415-014-7251-9.

24

del Río-Espínola A, Mendióroz M, Domingues-Montanari S, et al. CADASIL management or what to do when there is little one can do. Expert Rev Neurother. 2009;9(2):197–210. https://doi.org/10.1586/14737175.9.2.197.

25

Kwok CS, Shoamanesh A, Copley HC, et al. Efficacy of antiplatelet therapy in secondary prevention following lacunar stroke: pooled analysis of randomized trials. Stroke. 2015;46(4):1014–1023. https://doi.org/10.1161/STROKEAHA.114.008422.

26

Kim BJ, Kwon SU, Park JH, et al. Cilostazol versus aspirin in ischemic stroke patients with high-risk cerebral hemorrhage: subgroup analysis of the PICASSO trial. Stroke. 2020;51(3):931–937. https://doi.org/10.1161/STROKEAHA.119.023855.

27

Shinohara Y, Katayama Y, Uchiyama S, et al. Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurol. 2010;9(10):959–968. https://doi.org/10.1016/S1474-4422(10)70198-8.

28

Rizzo M, Corrado E, Patti AM, et al. Cilostazol and atherogenic dyslipidemia: a clinically relevant effect? Expet Opin Pharmacother. 2011;12(4):647–655. https://doi.org/10.1517/14656566.2011.557359.

29

Kwon SU, Cho YJ, Koo JS, et al. Cilostazol prevents the progression of the symptomatic intracranial arterial stenosis: the multicenter double-blind placebo-controlled trial of cilostazol in symptomatic intracranial arterial stenosis. Stroke. 2005;36(4):782–786. https://doi.org/10.1161/01.STR.0000157667.06542.b7.

30

Law ZK, Tan HJ, Chin SP, et al. The effects of intravenous infusion of autologous mesenchymal stromal cells in patients with subacute middle cerebral artery infarct: a phase 2 randomized controlled trial on safety, tolerability and efficacy. Cytotherapy. 2021;23(9):833–840. https://doi.org/10.1016/j.jcyt.2021.03.005.

31

Bornstein NM, Saver JL, Diener HC, et al. An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT-24B): an international, randomised, double-blind, sham-controlled, pivotal trial. Lancet. 2019;394(10194):219–229. https://doi.org/10.1016/S0140-6736(19)31192-4.

32

Chen LT, Peng JJ, Huang XL, et al. Research on the electroacupuncture promoting learning and memory of rats with cerebral hypoperfusion through NGF/TrkA signal pathway (in Chinese). Chin J Rehabil Med. 2020;35(2):129–134, 1001-1242(2020)-02-0129-06.

Journal of Neurorestoratology
Article number: 100093
Cite this article:
Qi M, Ban M, Lu Z, et al. Repetitive transcranial magnetic stimulation alleviates depression in a young patient with CADASIL: A case report. Journal of Neurorestoratology, 2024, 12(1): 100093. https://doi.org/10.1016/j.jnrt.2023.100093

230

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 15 February 2023
Revised: 14 November 2023
Accepted: 05 December 2023
Published: 22 December 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return