AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Integrative insights into cerebrometabolic disease: Understanding, management, and future prospects

Gaili YanaXiangyu Zhanga,bYang Liua,bPingping Guoa,bYuanyuan LiuaXin LiaV. Wee Yongc( )Mengzhou Xuea,b( )
Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary T2N 1N4, Alberta, Canada
Show Author Information

Abstract

Cerebrovascular disease is among the most common causes of permanent disability and mortality in adults and places immense pressure on health care resources. Metabolic diseases caused by susceptibility genes and unhealthy lifestyle play a key role in the development of cerebrovascular disease. Cardiometabolic disease is now well established and rapidly evolving. Cardiometabolic medicine, which considers metabolic issues and cardiovascular disease as an integrated whole, has been implemented in many countries worldwide. However, integrated management of metabolic risk factors and cerebrovascular disease is still in the initial stages. In this minireview, we propose a concept and definition of cerebrometabolic disease, describe its possible pathogenesis, summarize the recently proposed integrative therapeutic approach, and discuss future developments as well as challenges, with the aim of promoting a deeper understanding and integrated management of metabolic issues and cerebrovascular disease.

References

1

Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2020;395(10226): 785–794. https://doi.org/10.1016/S0140-6736(19)32007-0.

2

Sidney S, Quesenberry Jr CP, Jaffe MG, et al. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 2016;1(5): 594–599. https://doi.org/10.1001/jamacardio.2016.1326.

3

Lopez AD, Adair T. Is the long-term decline in cardiovascular-disease mortality in high-income countries over? Evidence from national vital statistics. Int J Epidemiol. 2019;48(6):1815–1823. https://doi.org/10.1093/ije/dyz143.

4

Saxon DR, Reiter-Brennan C, Blaha MJ, et al. Cardiometabolic medicine: development of a new subspecialty. J Clin Endocrinol Metab. 2020;105(7): dgaa261. https://doi.org/10.1210/clinem/dgaa261.

5

Mechanick JI, Farkouh ME, Newman JD, et al. Cardiometabolic-based chronic disease, addressing knowledge and clinical practice gaps: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(5):539–555. https://doi.org/10.1016/j.jacc.2019.11.046.

6

Mechanick JI, Farkouh ME, Newman JD, et al. Cardiometabolic-based chronic disease, adiposity and dysglycemia drivers: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(5):525–538. https://doi.org/10.1016/j.jacc.2019.11.044.

7

Xu J, Wang YJ. Cerebro-metabolic disease: concept, method, challenge and future directions. Chinese J. Stroke. 2023;18:617–627. https://doi.org/10.3969/j.issn.1673-5765.2023.06.001.

8

Zhang XY, Khan S, Wei RX, et al. Application of nanomaterials in the treatment of intracerebral hemorrhage. J Tissue Eng. 2023;14:20417314231157004. https://doi.org/10.1177/20417314231157004.

9

Huang HY, Chen L, Sanberg PR, et al. Beijing declaration of international as-sociation of neurorestoratology (2023 Xi’an version). J Neurorestoratol. 2023;11(2):100055. https://doi.org/10.1016/j.jnrt.2023.100055.

10

Eckel RH, Alberti KG, Grundy SM, et al. The metabolic syndrome. Lancet. 2010;375(9710):181–183. https://doi.org/10.1016/s0140-6736(09)61794-3.

11

Ninomiya JK, L'Italien G, Criqui MH, et al. Association of the metabolic syn-drome with history of myocardial infarction and stroke in the third national health and nutrition examination survey. Circulation. 2004;109(1):42–46. https://doi.org/10.1161/01.CIR.0000108926.04022.0C.

12

Laclaustra M, Moreno-Franco B, Lou-Bonafonte JM, et al. Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome. Dia-betes Care. 2019;42(2):303–310. https://doi.org/10.2337/dc18-1410.

13

Penna GC, Bianco AC, Ettleson MD. A cross-sectional analysis of cardiovascular and bone healthcare utilization during treatment with thyroid hormone. J Clin Endocrinol. 2023;109(3):e1143–e1150. https://doi.org/10.1210/clinem/dgad629.

14

Wong SK, Chin KY, Suhaimi FH, et al. The relationship between metabolic syndrome and osteoporosis: a review. Nutrients. 2016;8(6):347. https://doi.org/10.3390/nu8060347.

15

Richter-Stretton GL, Fenning AS, Vella RK. Skeletal muscle - a bystander or influencer of metabolic syndrome? Diabetes Metabol Syndr. 2020;14(5): 867–875. https://doi.org/10.1016/j.dsx.2020.06.006.

16

Ng CH, Huang DQ, Nguyen MH. Nonalcoholic fatty liver disease versus metabolic-associated fatty liver disease: prevalence, outcomes and implica-tions of a change in Name. Clin Mol Hepatol. 2022;28(4):790–801. https://doi.org/10.3350/cmh.2022.0070.

17

Zhang RY, Dong YF, Liu Y, et al. Enhanced liver X receptor signalling reduces brain injury and promotes tissue regeneration following experimental intra-cerebral haemorrhage: roles of microglia/macrophages. Stroke Vasc Neurol. 2023;8(6):486–502. https://doi.org/10.1136/svn-2023-002331.

18

Ogdie A, Yu YD, Haynes K, et al. Risk of major cardiovascular events in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: a population-based cohort study. Ann Rheum Dis. 2015;74(2):326–332. https://doi.org/10.1136/annrheumdis-2014-205675.

19

Ahlehoff O, Gislason GH, Jørgensen CH, et al. Psoriasis and risk of atrial fibril-lation and ischaemic stroke: a Danish Nationwide Cohort Study. Eur Heart J. 2012;33(16):2054–2064. https://doi.org/10.1093/eurheartj/ehr285.

20

Meissner Y, Richter A, Manger B, et al. Serious adverse events and the risk of stroke in patients with rheumatoid arthritis: results from the German RABBIT cohort. Ann Rheum Dis. 2017;76(9):1583–1590. https://doi.org/10.1136/annr-heumdis-2017-211209.

21

Lindhardsen J, Ahlehoff O, Gislason GH, et al. Risk of atrial fibrillation and stroke in rheumatoid arthritis: Danish nationwide cohort study. BMJ. 2012;344:e1257. https://doi.org/10.1136/bmj.e1257.

22

Arkema EV, Svenungsson E, Von Euler M, et al. Stroke in systemic lupus ery-thematosus: a Swedish population-based cohort study. Ann Rheum Dis. 2017;76(9):1544–1549. https://doi.org/10.1136/annrheumdis-2016-210973.

23

Singh S, Kullo IJ, Pardi DS, et al. Epidemiology, risk factors and management of cardiovascular diseases in IBD. Nat Rev Gastroenterol Hepatol. 2015;12(1): 26–35. https://doi.org/10.1038/nrgastro.2014.202.

24

Dregan A, Charlton J, Chowienczyk P, et al. Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation. 2014;130(10):837–844. https://doi.org/10.1161/CIRCULATIONAHA.114.009990.

25

Kuo HK, Yen CJ, Chang CH, et al. Relation of C-reactive protein to stroke, cognitive disorders, and depression in the general population: systematic re-view and meta-analysis. Lancet Neurol. 2005;4(6):371–380. https://doi.org/10.1016/S1474-4422(05)70099-5.

26

Xue MZ, Yong VW. Neuroinflammation in intracerebral haemorrhage: immu-notherapies with potential for translation. Lancet Neurol. 2020;19(12): 1023–1032. https://doi.org/10.1016/S1474-4422(20)30364-1.

27

Li HM, Ghorbani S, Ling CC, et al. The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hem-orrhage. Neurobiol Dis. 2023;186:106282. https://doi.org/10.1016/j.nbd.2023.106282.

28

Xue CX, Chen KY, Gao ZZ, et al. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal. 2023;21(1):298. https://doi.org/10.1186/s12964-022-01016-w.

29

Guix FX, Uribesalgo I, Coma M, et al. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol. 2005;76(2):126–152. https://doi.org/10.1016/j.pneurobio.2005.06.001.

30

Habashy KJ, Ahmad F, Ibeh S, et al. Western and ketogenic diets in neurological disorders: can you tell the difference? Nutr Rev. 2022;80(8):1927–1941. https://doi.org/10.1093/nutrit/nuac008.

31

Förstermann U, Xia N, Li HG. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–735. https://doi.org/10.1161/circresaha.116.309326.

32

Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016;118(11):1808–1829. https://doi.org/10.1161/CIRCRESAHA.116.306923.

33

Creager MA, Lüscher TF, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circula-tion. 2003;108(12):1527–1532. https://doi.org/10.1161/01.CIR.0000091257.27563.32.

34

Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017;70(4):660–667. https://doi.org/10.1161/HYPERTENSIONAHA.117.07802.

35

Air EL, Kissela BM. Diabetes, the metabolic syndrome, and ischemic stroke: epidemiology and possible mechanisms. Diabetes Care. 2007;30(12): 3131–3140. https://doi.org/10.2337/dc06-1537.

36

Jensen MD, Ryan DH, Apovian CM, et al. AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American college of cardiology/American heart association task force on practice guidelines and the obesity society. Circulation 2014. 2013;129(25 suppl 2):S102–S138. https://doi.org/10.1161/01.cir.0000437739.71477.ee.

37

Chen GC, Neelakantan N, Martín-Calvo N, et al. Adherence to the Mediterra-nean diet and risk of stroke and stroke subtypes. Eur J Epidemiol. 2019;34(4): 337–349. https://doi.org/10.1007/s10654-019-00504-7.

38

Xie ZB, Sun YN, Ye YQ, et al. Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. Nat Commun. 2022;13(1):1003. https://doi.org/10.1038/s41467-022-28662-5.

39

Varady KA, Cienfuegos S, Ezpeleta M, et al. Clinical application of intermittent fasting for weight loss: progress and future directions. Nat Rev Endocrinol. 2022;18(5):309–321. https://doi.org/10.1038/s41574-022-00638-x.

40

Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32(4):515–531. https://doi.org/10.1210/er.2010-0029.

41

Georgianos PI, Agarwal R. Ambulatory blood pressure reduction with SGLT-2 inhibitors: dose-response meta-analysis and comparative evaluation with low-dose hydrochlorothiazide. Diabetes Care. 2019;42(4):693–700. https://doi.org/10.2337/dc18-2207.

42

Kario K, Okada K, Kato M, et al. Twenty-four-hour blood pressure-lowering effect of a sodium-glucose cotransporter 2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA study. Circulation. 2019;139(18):2089–2097. https://doi.org/10.1161/CIRCULATIONAHA.118.037076.

43

Hussain M, Elahi A, Hussain A, et al. Sodium-glucose cotransporter-2 (SGLT-2) attenuates serum uric acid (SUA) level in patients with type 2 diabetes. J Diabetes Res. 2021;2021:9973862. https://doi.org/10.1155/2021/9973862.

44

Kuchay MS, Krishan S, Mishra SK, et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a random-ized controlled trial (E-LIFT trial). Diabetes Care. 2018;41(8):1801–1808. https://doi.org/10.2337/dc18-0165.

45

Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128. https://doi.org/10.1056/NEJMoa1504720.

46

Imprialos KP, Boutari C, Stavropoulos K, et al. Stroke paradox with SGLT-2 in-hibitors: a play of chance or a viscosity-mediated reality? J Neurol Neurosurg Psychiatry. 2017;88(3):249–253. https://doi.org/10.1136/jnnp-2016-314704.

47

Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–657. https://doi.org/10.1056/NEJMoa1611925.

48

Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357. https://doi.org/10.1056/NEJMoa1812389.

49

Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384(2):129–139. https://doi.org/10.1056/NEJMoa2030186.

50

Koufakis T, Mustafa OG, Tsimihodimos V, et al. Insights into the results of sotagliflozin cardiovascular outcome trials: is dual inhibition the cherry on the cake of cardiorenal protection? Drugs. 2021;81(12):1365–1371. https://doi.org/10.1007/s40265-021-01559-1.

51

Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metabol. 2018;27(4):740–756. https://doi.org/10.1016/j.cmet.2018.03.001.

52

Maida A, Hansotia T, Longuet C, et al. Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice. Gastroenterology. 2009;137(6): 2146–2157. https://doi.org/10.1053/j.gastro.2009.09.004.

53

Urva S, Coskun T, Loghin C, et al. The novel dual glucose-dependent insulino-tropic polypeptide and glucagon-like peptide-1 (GLP-1) receptor agonist tir-zepatide transiently delays gastric emptying similarly to selective long-acting GLP-1 receptor agonists. Diabetes Obes Metabol. 2020;22(10):1886–1891. https://doi.org/10.1111/dom.14110.

54

Huang HY, Chen L, Chopp M, et al. The 2020 yearbook of neurorestoratology. J Neurorestoratol. 2021;9(1):1–12. https://doi.org/10.26599/JNR.2021.9040002.

55

Knop FK, Aroda VR, do Vale RD, et al. Oral semaglutide 50 Mg taken once per day in adults with overweight or obesity (OASIS 1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023;402(10403):705–719. https://doi.org/10.1016/S0140-6736(23)01185-6.

56

Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844. https://doi.org/10.1056/NEJMoa1607141.

57

Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–130. https://doi.org/10.1016/S0140-6736(19)31149-3.

58

Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 dia-betes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–2257. https://doi.org/10.1056/NEJMoa1509225.

59

Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13): 1228–1239. https://doi.org/10.1056/NEJMoa1612917.

60

Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Har-mony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–1529. https://doi.org/10.1016/S0140-6736(18)32261-X.

61

Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–322. https://doi.org/10.1056/NEJMoa1603827.

62

Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovas-cular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381(9): 841–851. https://doi.org/10.1056/NEJMoa1901118.

63

Buse JB, Bain SC, Mann JFE, et al. Cardiovascular risk reduction with liraglutide: an exploratory mediation analysis of the LEADER trial. Diabetes Care. 2020;43(7):1546–1552. https://doi.org/10.2337/dc19-2251.

64

Dormandy JA, Charbonnel B, Eckland DJA, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a rando-mised controlled trial. Lancet. 2005;366(9493):1279–1289. https://doi.org/10.1016/S0140-6736(05)67528-9.

65

Wilcox R, Bousser MG, Betteridge DJ, et al. Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROactive (PROspective pioglitAzone Clinical Trial in macroVascular Events 04). Stroke. 2007;38(3):865–873. https://doi.org/10.1161/01.STR.0000257974.06317.49.

66

Kernan WN, Viscoli CM, Furie KL. Pioglitazone after ischemic stroke or tran-sient ischemic attack. J Vasc Surg. 2016;64(1):260. https://doi.org/10.1016/j.jvs.2016.05.060.

67

Spence JD, Viscoli CM, Inzucchi SE, et al. Pioglitazone therapy in patients with stroke and prediabetes: a post hoc analysis of the IRIS randomized clinical trial. JAMA Neurol. 2019;76(5):526–535. https://doi.org/10.1001/jamaneurol.2019.0079.

Journal of Neurorestoratology
Article number: 100107
Cite this article:
Yan G, Zhang X, Liu Y, et al. Integrative insights into cerebrometabolic disease: Understanding, management, and future prospects. Journal of Neurorestoratology, 2024, 12(2): 100107. https://doi.org/10.1016/j.jnrt.2024.100107

192

Views

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 20 December 2023
Revised: 20 January 2024
Accepted: 24 January 2024
Published: 29 February 2024
© 2024 The Author(s).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return