AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

New perspectives on the role of mitochondria in Parkinson's disease

Shiyi YinYongjiang ZhangJiannan WuRun SongMengmeng ShenXiaoyi LaiJunqiang Yan( )
Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
Show Author Information

Abstract

Mitochondrial dysfunction is pivotal in the occurrence and development of Parkinson's disease (PD). Interventions to increase mitochondrial biogenesis and maintain the balance in mitochondrial turnover have the potential to protect against neurological damage. In addition to their crucial role in the tricarboxylic acid cycle, mitochondria impact diverse activities, including cellular metabolism, cellular quality control, and the production of reactive oxygen species. Thus, it has become imperative to better understand the regulation and function of mitochondria in PD. With this review, we aim to stimulate research that explores mitochondria-oriented neuroprotection strategies to maintain the balance in mitochondrial turnover. First, we summarize research on newly discovered genes that regulate PD mitochondrial autophagy through PTEN-induced kinase 1 (PINK1), namely AMBRA1, SYNJ2BP, and SIAH3. Second, we review PD-related mitochondrial proteins, including STRT3 and SIRT6, and the mitochondrial unfolded protein response, covering their mechanisms of involvement in PD. Third, we emphasize the roles of the mitochondrial complex, pyroptosis, and copper-induced cell death in mitochondrial damage in PD. Finally, we present a brief overview of new therapeutic strategies to correct mitochondrial defects that may be applicable for targeting mitochondria in PD patients.

References

1

Hayes MT. Parkinson's disease and Parkinsonism. Am J Med. 2019;132(7): 802–807. https://doi.org/10.1016/j.amjmed.2019.03.001.

2

Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397(10291): 2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X.

3

Asghar M, Odeh A, Fattahi AJ, et al. Mitochondrial biogenesis, telomere length and cellular senescence in Parkinson’ s disease and Lewy body dementia. Sci Rep. 2022;12(1):17578. https://doi.org/10.1038/s41598-022-22400-z.

4

Kalia LV, Lang AE. Evolving basic, pathological and clinical concepts in PD. Nat Rev Neurol. 2016;12:65–66. https://doi.org/10.1038/nrneurol.2015.249.

5

Domenighetti C, Sugier PE, Sreelatha AAK, et al. Mendelian randomisation study of smoking, alcohol, and coffee drinking in relation to Parkinson's dis-ease. J Parkinsons Dis. 2022;12(1):267–282. https://doi.org/10.3233/JPD-212851.

6

Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney dis-ease. Nat Rev Nephrol. 2018;14(5):291–312. https://doi.org/10.1038/nrneph.2018.9.

7

Toomey CE, Heywood WE, Evans JR, et al. Mitochondrial dysfunction is a key pathological driver of early stage Parkinson's. Acta Neuropathol Commun. 2022;10(1):134. https://doi.org/10.1186/s40478-022-01424-6.

8

Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neuro-degenerative diseases. Nature. 2006;443(7113):787–795. https://doi.org/10.1038/nature05292.

9

Srinivasan S, Guha M, Kashina A, et al. Mitochondrial dysfunction and mito-chondrial dynamics-The cancer connection. Biochim Biophys Acta Bioenerg. 2017;1858(8):602–614. https://doi.org/10.1016/j.bbabio.2017.01.004.

10

Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020;15:235–259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711.

11

Yang YH, Karakhanova S, Hartwig W, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016;231(12):2570–2581. https://doi.org/10.1002/jcp.25349.

12

Yan YQ, Fang Y, Zheng R, et al. NLRP3 inflammasomes in Parkinson's disease and their regulation by parkin. Neuroscience. 2020;446:323–334. https://doi.org/10.1016/j.neuroscience.2020.08.004.

13

Lin QS, Li S, Jiang N, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019;26:101254. https://doi.org/10.1016/j.redox.2019.101254.

14

Shahmoradian SH, Lewis AJ, Genoud C, et al. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat Neurosci. 2019;22(7):1099–1109. https://doi.org/10.1038/s41593-019-0423-2.

15

Lang AE, Espay AJ. Disease modification in Parkinson's disease: current ap-proaches, challenges, and future considerations. Mov Disord. 2018;33(5): 660–677. https://doi.org/10.1002/mds.27360.

16

Szego EM, Malz L, Bernhardt N, et al. Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. Elife. 2022;11:e81943. https://doi.org/10.7554/eLife.81943.

17

Bertholet AM, Delerue T, Millet AM, et al. Mitochondrial fusion/fission dy-namics in neurodegeneration and neuronal plasticity. Neurobiol Dis. 2016;90: 3–19. https://doi.org/10.1016/j.nbd.2015.10.011.

18

Vos M. Mitochondrial Complex Ⅰ deficiency: guilty in Parkinson's disease. Signal Transduct Targeted Ther. 2022;7(1):136. https://doi.org/10.1038/s41392-022-00983-3.

19

Pradeepkiran JA, Reddy PH. Defective mitophagy in Alzheimer's disease. Ageing Res Rev. 2020;64:101191. https://doi.org/10.1016/j.arr.2020.101191.

20

Gonzalez-Rodríguez P, Zampese E, Stout KA, et al. Disruption of mitochondrial complex Ⅰ induces progressive Parkinsonism. Nature. 2021;599(7886): 650–656. https://doi.org/10.1038/s41586-021-04059-0.

21

O'Hanlon ME, Tweedy C, Scialo F, et al. Mitochondrial electron transport chain defects modify Parkinson's disease phenotypes in a Drosophila model. Neu-robiol Dis. 2022;171:105803. https://doi.org/10.1016/j.nbd.2022.105803.

22

Gonçalves DF, Duarte T, Foletto JVP, et al. Mitochondrial function and cellular energy maintenance during aging in a Drosophila melanogaster model of Parkinson disease. Mitochondrion. 2022;65:166–175. https://doi.org/10.1016/j.mito.2022.06.007.

23

Gan ZY, Callegari S, Cobbold SA, et al. Activation mechanism of PINK1. Nature. 2022;602(7896):328–335. https://doi.org/10.1038/s41586-021-04340-2.

24

Fakih R, Sauve V, Gehring K. Feedforward activation of PRKN/parkin. Auto-phagy. 2023;19(2):729–730. https://doi.org/10.1080/15548627.2022.2100615.

25

Araya J, Tsubouchi K, Sato N, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy. 2019;15(3):510–526. https://doi.org/10.1080/15548627.2018.1532259.

26

Hou X, Chen TH, Koga S, et al. Alpha-synuclein-associated changes in PINK1-PRKN-mediated mitophagy are disease context dependent. Brain Pathol. 2023;33(5):e13175. https://doi.org/10.1111/bpa.13175.

27

Yamada T, Dawson TM, Yanagawa T, et al. SQSTM1/p62 promotes mito-chondrial ubiquitination independently of PINK1 and PRKN/parkin in mitophagy. Autophagy. 2019;15(11):2012–2018. https://doi.org/10.1080/15548627.2019.1643185.

28

Zhu W, Huang XP, Yoon E, et al. Heterozygous PRKN mutations are common but do not increase the risk of Parkinson's disease. Brain. 2022;145(6): 2077–2091. https://doi.org/10.1093/brain/awab456.

29

Chaikovsky AC, Li C, Jeng EE, et al. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature. 2021;592(7856):794–798. https://doi.org/10.1038/s41586-021-03474-7.

30

Maiani E, Milletti G, Nazio F, et al. AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature. 2021;592(7856):799–803. https://doi.org/10.1038/s41586-021-03422-5.

31

Gambarotto L, Metti S, Chrisam M, et al. Ambra1 deficiency impairs mitoph-agy in skeletal muscle. J Cachexia Sarcopenia Muscle. 2022;13(4):2211–2224. https://doi.org/10.1002/jcsm.13010.

32

Spinazzi M, De Strooper B. PARL: the mitochondrial rhomboid protease. Semin Cell Dev Biol. 2016;60:19–28. https://doi.org/10.1016/j.semcdb.2016.07.034.

33

Di Rienzo M, Romagnoli A, Ciccosanti F, et al. AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability. Autophagy. 2022;18(8):1752–1762. https://doi.org/10.1080/15548627.2021.1997052.

34

Brunelli F, Torosantucci L, Gelmetti V, et al. PINK1 protects against staurosporine-induced apoptosis by interacting with Beclin1 and impairing its pro-apoptotic cleavage. Cells. 2022;11(4):678. https://doi.org/10.3390/cells11040678.

35

Zhao YY, Hu D, Wang RH, et al. ATAD3A oligomerization promotes neuro-pathology and cognitive deficits in Alzheimer's disease models. Nat Commun. 2022;13(1):1121. https://doi.org/10.1038/s41467-022-28769-9.

36

Zhao YY, Sun XY, Hu D, et al. ATAD3A oligomerization causes neuro-degeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nat Commun. 2019;10(1):1371. https://doi.org/10.1038/s41467-019-09291-x.

37

Watanabe S, Horiuchi M, Murata Y, et al. Sigma-1 receptor maintains ATAD3A as a monomer to inhibit mitochondrial fragmentation at the mitochondria-associated membrane in amyotrophic lateral sclerosis. Neurobiol Dis. 2023;179:106031. https://doi.org/10.1016/j.nbd.2023.106031.

38

Mårtensson CU, Priesnitz C, Song JY, et al. Mitochondrial protein translocation-associated degradation. Nature. 2019;569(7758):679–683. https://doi.org/10.1038/s41586-019-1227-y.

39

Kato H, Lu QP, Rapaport D, Kozjak-Pavlovic V. Tom70 is essential for PINK1 import into mitochondria. PLoS One. 2013;8(3):1932–6203. https://doi.org/10.1371/journal.pone.0058435.

40

Yang WL, Guo XY, Tu ZC, et al. PINK1 kinase dysfunction triggers neuro-degeneration in the primate brain without impacting mitochondrial homeostasis. Protein Cell. 2022;13(1):26–46. https://doi.org/10.1007/s13238-021-00888-x.

41

Wasner K, Smajic S, Ghelfi J, et al. Parkin deficiency impairs mitochondrial DNA dynamics and propagates inflammation. Mov Disord. 2022;37(7): 1405–1415. https://doi.org/10.1002/mds.29025.

42

Panicker N, Kam TI, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease. Neuron. 2022;110(15): 2422–2437.e9. https://doi.org/10.1016/j.neuron.2022.05.009.

43

Harbauer AB, Hees JT, Wanderoy S, et al. Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron. 2022;110(9):1516–1531.e9. https://doi.org/10.1016/j.neuron.2022.01.035.

44

Hou W, Li GS, Gao L, et al. SYNJ2 is a novel and potential biomarker for the prediction and treatment of cancers: from lung squamous cell carcinoma to pan-cancer. BMC Med Genom. 2022;15(1):114. https://doi.org/10.1186/s12920-022-01266-0.

45

Du QG, Guo XY, Zhang XY, et al. SYNJ2 variant Rs9365723 is associated with colorectal cancer risk in Chinese Han population. Int J Biol Markers. 2016;31(2):138–143. https://doi.org/10.5301/jbm.5000182.

46

Abd Elghani F, Safory H, Hamza H, et al. SIAH proteins regulate the degra-dation and intra-mitochondrial aggregation of PINK1: implications for mito-chondrial pathology in Parkinson's disease. Aging Cell. 2022;21(12):e13731. https://doi.org/10.1111/acel.13731.

47

Zhuang XX, Wang SF, Tan Y, et al. Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson's disease models. Cell Death Dis. 2020;11(2):128. https://doi.org/10.1038/s41419-020-2322-6.

48

Segur-Bailach E, Ugarteburu O, Tort F, et al. Over-mutated mitochondrial, lysosomal and TFEB-regulated genes in Parkinson's disease. J Clin Med. 2022;11(6):1749. https://doi.org/10.3390/jcm11061749.

49

Cheng FB, Zheng WX, Liu C, et al. Intronic enhancers of the human SNCA gene predominantly regulate its expression in brain in vivo. Sci Adv. 2022;8(47): eabq6324. https://doi.org/10.1126/sciadv.abq6324.

50

Kon T, Forrest SL, Lee S, et al. Neuronal SNCA transcription during Lewy body formation. Acta Neuropathol Commun. 2023;11(1):185. https://doi.org/10.1186/s40478-023-01687-7.

51

Fedotova EY, Iakovenko EV, Abramycheva NY, et al. SNCA gene methylation in Parkinson's disease and multiple system atrophy. Epigenomes. 2023;7(1):5. https://doi.org/10.3390/epigenomes7010005.

52

Morales-Martínez A, Martínez-Gomez PA, Martinez-Fong D, et al. Oxidative stress and mitochondrial complex Ⅰ dysfunction correlate with neuro-degeneration in an a-synucleinopathy animal model. Int J Mol Sci. 2022;23(19):11394. https://doi.org/10.3390/ijms231911394.

53

Eysert F, Kinoshita PF, Mary A, et al. Molecular dysfunctions of mitochondria-associated membranes (MAMs) in Alzheimer's disease. Int J Mol Sci. 2020;21(24):9521. https://doi.org/10.3390/ijms21249521.

54

Tang YL, Li L, Hu TY, et al. In vivo 18F-florzolotau tau positron emission to-mography imaging in Parkinson's disease dementia. Mov Disord. 2023;38(1): 147–152. https://doi.org/10.1002/mds.29273.

55

Bassil F, Meymand ES, Brown HJ, et al. a-Synuclein modulates tau spreading in mouse brains. J Exp Med. 2021;218(1):e20192193. https://doi.org/10.1084/jem.20192193.

56

Chen X, He JL, Liu XT, et al. DI-3-n-butylphthalide mitigates stress-induced cognitive deficits in mice through inhibition of NLRP3-Mediated neuro-inflammation. Neurobiol Stress. 2022;20:100486. https://doi.org/10.1016/j.ynstr.2022.100486.

57

Yuan JX, Liu HH, Zhang H, et al. Controlled activation of TRPV1 channels on microglia to boost their autophagy for clearance of alpha-synuclein and enhance therapy of Parkinson's disease. Adv Mater. 2022;34(11):e2108435. https://doi.org/10.1002/adma.202108435.

58

Wood H. Parkinson disease: peripheral a-synuclein deposits - prodromal markers for Parkinson disease? Nat Rev Neurol. 2016;12(5):249. https://doi.org/10.1038/nrneurol.2016.54.

59

Lu J, Wang CF, Cheng X, et al. A breakdown in microglial metabolic reprog-ramming causes internalization dysfunction of a-synuclein in a mouse model of Parkinson's disease. J Neuroinflammation. 2022;19(1):113. https://doi.org/10.1186/s12974-022-02484-0.

60

Park H, Kam TI, Peng HJ, et al. PAAN/MIF nuclease inhibition prevents neu-rodegeneration in Parkinson's disease. Cell. 2022;185(11):1943–1959.e21. https://doi.org/10.1016/j.cell.2022.04.020.

61

Xin N, Durieux J, Yang CX, et al. The UPRmt preserves mitochondrial import to extend lifespan. J Cell Biol. 2022;221(7):e202201071. https://doi.org/10.1083/jcb.202201071.

62

Kumar R, Chaudhary AK, Woytash J, et al. A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. J Clin Invest. 2022;132(13):e149906. https://doi.org/10.1172/JCI149906.

63

Wang Y, Jasper H, Toan S, et al. Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol. 2021;45:102049. https://doi.org/10.1016/j.redox.2021.102049.

64

Zhu L, Zhou QL, He L, et al. Mitochondrial unfolded protein response: an emerging pathway in human diseases. Free Radic Biol Med. 2021;163: 125–134. https://doi.org/10.1016/j.freeradbiomed.2020.12.013.

65

Wang P, Deng JW, Dong J, et al. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet. 2019;15(5):e1007947. https://doi.org/10.1371/journal.pgen.1007947.

66

Berendzen KM, Durieux J, Shao LW, et al. Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell. 2016;166(6): 1553–1563.e10. https://doi.org/10.1016/j.cell.2016.08.042.

67

Eesmaa A, Yu LY, Göös H, et al. CDNF interacts with ER chaperones and re-quires UPR sensors to promote neuronal survival. Int J Mol Sci. 2022;23(16): 9489. https://doi.org/10.3390/ijms23169489.

68

Martinez BA, Petersen DA, Gaeta AL, et al. Dysregulation of the mitochondrial unfolded protein response induces non-apoptotic dopaminergic neuro-degeneration in C. elegans models of Parkinson's disease. J Neurosci. 2017;37(46):11085–11100. https://doi.org/10.1523/JNEUROSCI.1294-17.2017.

69

Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol. 2018;19(2): 109–120. https://doi.org/10.1038/nrm.2017.110.

70

Wang TS, Cao Y, Zheng Q, et al. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell. 2019;75(4):823–834.e5. https://doi.org/10.1016/j.molcel.2019.06.008.

71

Xin T, Lu CZ. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging. 2020;12(16): 16224–16237. https://doi.org/10.18632/aging.103644.

72

Park JH, Burgess JD, Faroqi AH, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol Neuro-degener. 2020;15(1):5. https://doi.org/10.1186/s13024-019-0349-x.

73

Gleave JA, Arathoon LR, Trinh D, et al. Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant a-synuclein rat model of Parkinsonism. Neurobiol Dis. 2017;106:133–146. https://doi.org/10.1016/j.nbd.2017.06.009.

74

Nicholatos JW, Francisco AB, Bender CA, et al. Nicotine promotes neuron survival and partially protects from Parkinson's disease by suppressing SIRT6. Acta Neuropathol Commun. 2018;6(1):120. https://doi.org/10.1186/s40478-018-0625-y.

75

Smirnov D, Eremenko E, Stein D, et al. SIRT6 is a key regulator of mitochon-drial function in the brain. Cell Death Dis. 2023;14(1):35. https://doi.org/10.1038/s41419-022-05542-w.

76

Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21:204–224. https://doi.org/10.1038/s41580-020-0210-7.

77

Soubannier V, McLelland GL, Zunino R, et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol. 2012;22(2): 135–141. https://doi.org/10.1016/j.cub.2011.11.057.

78

König T, Nolte H, Aaltonen MJ, et al. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat Cell Biol. 2021;23(12):1271–1286. https://doi.org/10.1038/s41556-021-00798-4.

79

Lopez-Domenech G, Howden JH, Covill-Cooke C, et al. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J. 2021;40(14):e100715. https://doi.org/10.15252/embj.2018100715.

80

Hung CM, Lombardo PS, Malik N, et al. AMPK/ULK1-mediated phosphoryla-tion of Parkin ACT domain mediates an early step in mitophagy. Sci Adv. 2021;7(15):eabg4544. https://doi.org/10.1126/sciadv.abg4544.

81

Schirinzi T, Salvatori I, Zenuni H, et al. Pattern of mitochondrial respiration in peripheral blood cells of patients with Parkinson's disease. Int J Mol Sci. 2022;23(18):10863. https://doi.org/10.3390/ijms231810863.

82

Chen C, Mossman E, Malko P, et al. Astrocytic changes in mitochondrial oxidative phosphorylation protein levels in Parkinson's disease. Mov Disord. 2022;37(2):302–314. https://doi.org/10.1002/mds.28849.

83

Bandara AB, Drake JC, James CC, et al. Complex Ⅰ protein NDUFS2 is vital for growth, ROS generation, membrane integrity, apoptosis, and mitochondrial energetics. Mitochondrion. 2021;58:160–168. https://doi.org/10.1016/j.mito.2021.03.003.

84

Li HZ, Sun BH, Huang YT, et al. Gene therapy of yeast NDI1 on mitochondrial complex Ⅰ dysfunction in rotenone-induced Parkinson's disease models in vitro and vivo. Mol Med. 2022;28(1):29. https://doi.org/10.1186/s10020-022-00456-x.

85

Funayama M, Ohe K, Amo TK, et al. CHCHD2 mutations in autosomal domi-nant late-onset Parkinson's disease: a genome-wide linkage and sequencing study. Lancet Neurol. 2015;14(3):274–282. https://doi.org/10.1016/S1474-4422(14)70266-2.

86

Ruan Y, Hu JQ, Che YP, et al. CHCHD2 and CHCHD10 regulate mitochondrial dynamics and integrated stress response. Cell Death Dis. 2022;13(2):156. https://doi.org/10.1038/s41419-022-04602-5.

87

Lu L, Mao HX, Zhou MM, et al. CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson's disease. Chin Med J. 2022;135(13):1588–1596. https://doi.org/10.1097/cm9.0000000000002053.

88

Sato S, Noda S, Torii S, et al. Homeostatic p62 levels and inclusion body for-mation in CHCHD2 knockout mice. Hum Mol Genet. 2021;30(6):443–453. https://doi.org/10.1093/hmg/ddab057.

89

Nguyen MK, McAvoy K, Liao SC, et al. Mouse midbrain dopaminergic neurons survive loss of the PD-associated mitochondrial protein CHCHD2. Hum Mol Genet. 2022;31(9):1500–1518. https://doi.org/10.1093/hmg/ddab329.

90

Georgakopoulos ND, Wells G, Campanella M. The pharmacological regulation of cellular mitophagy. Nat Chem Biol. 2017;13:136–146. https://doi.org/10.1038/nchembio.2287.

91

Ramalingam M, Huh YJ, Lee YI. The impairments of a-synuclein and mecha-nistic target of rapamycin in rotenone-induced SH-SY5Y cells and mice model of Parkinson's disease. Front Neurosci. 2019;13:1028. https://doi.org/10.3389/fnins.2019.01028.

92

Oduro PK, Zheng XX, Wei JN, et al. The cGAS-STING signaling in cardiovascular and metabolic diseases: future novel target option for pharmacotherapy. Acta Pharm Sin B. 2022;12(1):50–75. https://doi.org/10.1016/j.apsb.2021.05.011.

93

Xue CY, Dong N, Shan AS. Putative role of STING-mitochondria associated membrane crosstalk in immunity. Trends Immunol. 2022;43(7):513–522. https://doi.org/10.1016/j.it.2022.04.011.

94

Han WH, Du CH, Zhu YG, et al. Targeting myocardial mitochondria-STING-polyamine axis prevents cardiac hypertrophy in chronic kidney disease. JACC Basic Transl Sci. 2022;7(8):820–840. https://doi.org/10.1016/j.jacbts.2022.03.006.

95

West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17(6):363–375. https://doi.org/10.1038/nri.2017.21.

96

Barnett KC, Coronas-Serna JM, Zhou W, et al. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction be-tween self- and viral DNA. Cell. 2019;176(6):1432–1446.e11. https://doi.org/10.1016/j.cell.2019.01.049.

97

Hinkle JT, Patel J, Panicker N, et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal a-synucleinopathy. Proc Natl Acad Sci U S A. 2022;119(15):e2118819119. https://doi.org/10.1073/pnas.2118819119.

98

Hancock-Cerutti W, Wu Z, Xu P, et al. ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling. J Cell Biol. 2022;221(7):e202106046. https://doi.org/10.1083/jcb.202106046.

99

Weindel CG, Martinez EL, Zhao X, et al. Mitochondrial ROS promotes sus-ceptibility to infection via gasdermin D-mediated necroptosis. Cell. 2022;185(17):3214–3231.e23. https://doi.org/10.1016/j.cell.2022.06.038.

100

Toyofuku T, Okamoto Y, Ishikawa T, et al. LRRK2 regulates endoplasmic reticulum-mitochondrial tethering through the PERK-mediated ubiquitina-tion pathway. EMBO J. 2020;39(2):e100875. https://doi.org/10.15252/embj.2018100875.

101

Puigros M, Calderon A, Perez-Soriano A, et al. Cell-free mitochondrial DNA deletions in idiopathic, but not LRRK2, Parkinson's disease. Neurobiol Dis. 2022;174:105885. https://doi.org/10.1016/j.nbd.2022.105885.

102

Müller-Nedebock AC, Meldau S, Lombard C, et al. Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Par-kinson's disease. Parkinsonism Relat Disorders. 2022;101:1–5. https://doi.org/10.1016/j.parkreldis.2022.06.003.

103

Jennings D, Huntwork-Rodriguez S, Henry AG, et al. Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson's disease. Sci Transl Med. 2022;14(648):eabj2658. https://doi.org/10.1126/scitranslmed.abj2658.

104

Imberechts D, Kinnart I, Wauters F, et al. DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy. Brain. 2022;145(12): 4368–4384. https://doi.org/10.1093/brain/awac313.

105

De Lazzari F, Agostini F, Plotegher N, et al. DJ-1 promotes energy balance by regulating both mitochondrial and autophagic homeostasis. Neurobiol Dis. 2023;176:105941. https://doi.org/10.1016/j.nbd.2022.105941.

106

Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mito-chondrial apoptosis. Nat Rev Mol Cell Biol. 2023;24(10):732–748. https://doi.org/10.1038/s41580-023-00629-4.

107

Liu J, Liu WJ, Lu YQ, et al. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Par-kinson disease models. Autophagy. 2018;14(5):845–861. https://doi.org/10.1080/15548627.2017.1390636.

108

Shanesazzade Z, Peymani M, Ghaedi K, et al. MiR-34a/BCL-2 signaling axis contributes to apoptosis in MPP(+)-induced SH-SY5Y cells. Mol Genet Genomic Med. 2018;6(6):975–981. https://doi.org/10.1002/mgg3.469.

109

Offen D, Ziv I, Panet H, et al. Dopamine-induced apoptosis is inhibited in PC12 cells expressing bcl-2. Cell Mol Neurobiol. 1997;17(3):289–304. https://doi.org/10.1023/A:1026390201168.

110

Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441(7097):1157–1161. https://doi.org/10.1038/nature04788.

111

Han XJ, Liu Y, Dai Y, et al. Neuronal SH2B1 attenuates apoptosis in an MPTP mouse model of Parkinson's disease via promoting PLIN4 degradation. Redox Biol. 2022;52:102308. https://doi.org/10.1016/j.redox.2022.102308.

112

Santucci R, Sinibaldi F, Cozza P, et al. Cytochrome c: an extreme multifunc-tional protein with a key role in cell fate. Int J Biol Macromol. 2019;136: 1237–1246. https://doi.org/10.1016/j.ijbiomac.2019.06.180.

113

Shi JJ, Gao WQ, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004.

114

Li ZT, Mo FY, Wang YX, et al. Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments anti-tumor immune response. Nat Commun. 2022;13(1):6321. https://doi.org/10.1038/s41467-022-34036-8.

115

He X, Fan XH, Bai B, et al. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res. 2021;165:105447. https://doi.org/10.1016/j.phrs.2021.105447.

116

Lin J, Sun SH, Zhao K, et al. Oncolytic Parapoxvirus induces Gasdermin E-mediated pyroptosis and activates antitumor immunity. Nat Commun. 2023;14(1):224. https://doi.org/10.1038/s41467-023-35917-2.

117

Wang YP, Gao WQ, Shi XY, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547(7661):99–103. https://doi.org/10.1038/nature22393.

118

Ding JJ, Wang K, Liu W, et al. Pore-forming activity and structural auto-inhibition of the gasdermin family. Nature. 2016;535(7610):111–116. https://doi.org/10.1038/nature18590.

119

Huang PT, Zhang ZY, Zhang P, et al. TREM2 deficiency aggravates NLRP3 inflammasome activation and pyroptosis in MPTP-induced Parkinson's dis-ease mice and LPS-induced BV2 cells. Mol Neurobiol. 2023:1–16. https://doi.org/10.1007/s12035-023-03713-0.

120

Ryan SK, Zelic M, Han YN, et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci. 2023;26(1):12–26. https://doi.org/10.1038/s41593-022-01221-3.

121

Tian Y, Lu J, Hao XQ, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson's disease. Neurotherapeutics. 2020;17(4): 1796–1812. https://doi.org/10.1007/s13311-020-00929-z.

122

Schulz V, Basu S, Freibert SA, et al. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol. 2023;19(2): 206–217. https://doi.org/10.1038/s41589-022-01159-4.

123

Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–1261.

124

Jiang ZY, Yin X, Wang M, et al. b-Hydroxybutyrate alleviates pyroptosis in MPPþ/MPTP-induced Parkinson's disease models via inhibiting STAT3/NLRP3/GSDMD pathway. Int Immunopharm. 2022;113:109451. https://doi.org/10.1016/j.intimp.2022.109451.

125

Huan PF, Sun X, He ZQ, et al. Qiji Shujiang Granules alleviates dopaminergic neuronal injury of Parkinson's disease by inhibiting NLRP3/Caspase-1 pathway mediated pyroptosis. Phytomedicine. 2023;120:155019. https://doi.org/10.1016/j.phymed.2023.155019.

126

Zhang X, Zhang YM, Li R, et al. Salidroside ameliorates Parkinson's disease by inhibiting NLRP3-dependent pyroptosis. Aging. 2020;12(10):9405–9426. https://doi.org/10.18632/aging.103215.

127

Ma XX, Hao JN, Wu JR, et al. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv Mater. 2022;34(15):e2106723. https://doi.org/10.1002/adma.202106723.

128

Rui WJ, Li S, Xiao H, et al. Baicalein attenuates neuroinflammation by inhib-iting NLRP3/caspase-1/GSDMD pathway in MPTP-induced mice model of Parkinson's disease. Int J Neuropsychopharmacol. 2020;23(11):762–773. https://doi.org/10.1093/ijnp/pyaa060.

129

Liu TY, Wang PH, Yin H, et al. Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP+-induced models of Parkinson's disease. Neural Regen Res. 2023;18(11):2514–2519. https://doi.org/10.4103/1673-5374.371381.

130

Lin ZH, Liu Y, Xue NJ, et al. Quercetin protects against MPP+/MPTP-induced dopaminergic neuron death in Parkinson's disease by inhibiting ferroptosis. Oxid Med Cell Longev. 2022;2022:7769355. https://doi.org/10.1155/2022/7769355.

131

Chung I, Park HA, Kang J, et al. Neuroprotective effects of ATPase inhibitory factor 1 preventing mitochondrial dysfunction in Parkinson's disease. Sci Rep. 2022;12(1):3874. https://doi.org/10.1038/s41598-022-07851-8.

Journal of Neurorestoratology
Article number: 100112
Cite this article:
Yin S, Zhang Y, Wu J, et al. New perspectives on the role of mitochondria in Parkinson's disease. Journal of Neurorestoratology, 2024, 12(2): 100112. https://doi.org/10.1016/j.jnrt.2024.100112

174

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 16 October 2023
Revised: 06 January 2024
Accepted: 23 January 2024
Published: 16 March 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return