AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Application of deep brain stimulation and transcranial magnetic stimulation in stroke neurorestoration: A review

Yanxi Chena,bZhidong XubTingting LiuaDan LicXin TianaRuifang ZhengaYifu MaaSongyang ZhengaJianguo Xingd( )Wen Wanga( )Fangling Suna( )
Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China
School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Hebei Province, Shijiazhuang 050018, Hebei, China
Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi 830004, Xingjiang, China
Show Author Information

Abstract

Stroke is a global cause of death and neurological disability. Survivors of stroke experience impaired quality of life because of post-stroke motor disorders, which are the primary driver of stroke-associated healthcare expenditures. Neuromodulatory techniques offer a promising avenue for addressing these post-stroke motor disorders. Post-stroke motor disorders are thought to be related to ongoing maladaptive responses and abnormal brain network reorganization; this offers insights into the inadequacy of most current treatments. In the present review, we summarize the following models involved in post-stroke motor disorders: the dual-pathway model of the basal ganglia, the cerebrocerebellar model, and the interhemispheric inhibition model. By identifying these critical elements, it will be clinically possible to explore mechanism-based therapeutics. On the basis of this physiological understanding, we review progress in the clinical application of the main therapeutic modalities; namely, invasive deep brain stimulation (DBS) and noninvasive transcranial magnetic stimulation (TMS), both of which are currently under investigation for neuromodulation in stroke. Both DBS and TMS are approved by the Food and Drug Administration because of their safety and efficacy. Although little is known about their underlying molecular mechanisms, recent studies have indicated that DBS and TMS promote post-stroke neurogenesis and neuroplasticity, suggesting potential pathways for restoring post-stroke motor disorders. Moreover, we focus specifically on the interactions between TMS and DBS, and discuss the ways in which combined DBS and TMS—for the future personalization of treatment strategies—will further ameliorate post-stroke motor disorders. For example, TMS can be used safely in movement disorder patients with DBS, and pairing DBS with TMS at specific intervals and patterns produces long-term potentiation-like effects related to cortical plasticity. A further characterization of the precise repair mechanisms, together with technological innovations, is likely to substantially improve the efficacy of treatments for post-stroke motor disorders.

References

1

Hankey GJ. Stroke. Lancet. 2017;389(10069):641–654. https://doi.org/10.1016/s0140-6736(16)30962-x.

2

GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20:795–820. https://doi.org/10.1016/S1474-4422(21)00252-0.

3

Diao L, Liu XY, Chai MZ, et al. Clinical trial of intrathecal injection of protein polymers for apoplexy: a protocol. J Neurorestoratol. 2023;11(2):100052. https://doi.org/10.1016/j.jnrt.2023.100052.

4

Xu L, Yang X, Gao H, et al. Clinical efficacy and safety analysis of argatroban and alteplase treatment regimens for acute cerebral infarction. J Neurorestoratol. 2022;10:100017. https://doi.org/10.1016/j.jnrt.2022.100017.

5

Campbell BC. Thrombolysis and thrombectomy for acute ischemic stroke: strengths and synergies. Semin Thromb Hemost. 2017;43:185–190. https://doi.org/10.1055/s-0036-1585078.

6

Guo X, Xue Q, Zhao J, et al. Clinical diagnostic and therapeutic guidelines of stroke neurorestoration (2020 China version). J Neurorestoratol. 2020;8: 24151. https://doi.org/10.26599/JNR.2020.9040026.

7

Schweizer T, MacDonald LR. The Behavioral Consequences of Stroke. New York, NY. USA: Springer; 2014.

8

Hosomi K, Seymour B, Saitoh Y. Modulating the pain networkd—neurostimulation for central poststroke pain. Nat Rev Neurol. 2015;11(5):290–299. https://doi.org/10.1038/nrneurol.2015.58.

9

Kumar G, Soni CR. Central post-stroke pain: current evidence. J Neurol Sci. 2009;284(1/2):10–17. https://doi.org/10.1016/j.jns.2009.04.030.

10

Reith J, Jørgensen HS, Nakayama H, et al. Seizures in acute stroke: predictors and prognostic significance. The Copenhagen Stroke Study. Stroke. 1997;28(8):1585–1589. https://doi.org/10.1161/01.str.28.8.1585.

11

Jørgensen HS, Nakayama H, Raaschou HO, et al. Outcome and time course of recovery in stroke. Part Ⅰ: outcome. The Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(5):399–405. https://doi.org/10.1016/s0003-9993(95)80567-2.

12

Tater P, Pandey S. Post-stroke movement disorders: clinical spectrum, pathogenesis, and management. Neurol India. 2021;69(2):272–283. https://doi.org/10.4103/0028-3886.314574.

13

Liampas A, Velidakis N, Georgiou T, et al. Prevalence and management challenges in central post-stroke neuropathic pain: a systematic review and meta-analysis. Adv Ther. 2020;37(7):3278–3291. https://doi.org/10.1007/s12325-020-01388-w.

14

Yang ZQ, Wei MF, Chen L, et al. Research progress in the application of motor-cognitive dual-task training in rehabilitation of walking function in stroke patients. J Neurorestoratol. 2023;11(1):100028. https://doi.org/10.1016/j.jnrt.2022.100028.

15

Richards LG, Cramer SC. Advances in stroke: therapies targeting stroke recovery. Stroke. 2021;52(1):348–350. https://doi.org/10.1161/STROKEAHA.120.033231.

16

Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta, Mol Basis Dis. 2020;1866(4):165260. https://doi.org/10.1016/j.bbadis.2018.09.012.

17

Camacho-Conde JA, Gonzalez-Bermudez MDR, Carretero-Rey M, et al. Brain stimulation: a therapeutic approach for the treatment of neurological disorders. CNS Neurosci Ther. 2022;28(1):5–18. https://doi.org/10.1111/cns.13769.

18

Parker T, Raghu ALB, FitzGerald JJ, et al. Multitarget deep brain stimulation for clinically complex movement disorders. J Neurosurg. 2020:1–6. https://doi.org/10.3171/2019.11.JNS192224.

19

Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol. 2015;133:27–49. https://doi.org/10.1016/j.pneurobio.2015.08.001.

20

Bashir S, Mizrahi I, Weaver K, et al. Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation. Pharm Manag PM R. 2010;2(12 suppl 2):S253–S268. https://doi.org/10.1016/j.pmrj.2010.10.015.

21

Horn A, Kuhn AA. Linking invasive and noninvasive neuromodulation techniques to study network properties of the brain. Clin Neurophysiol. 2019;130: 548–549. https://doi.org/10.1016/j.clinph.2018.12.006.

22

Bostan AC, Dum RP, Strick PL. Functional anatomy of basal Ganglia circuits with the cerebral cortex and the cerebellum. Prog Neurol Surg. 2018;33: 50–61. https://doi.org/10.1159/000480748.

23

Eisinger RS, Cernera S, Gittis A, et al. A review of basal Ganglia circuits and physiology: application to deep brain stimulation. Parkinsonism Relat Disorders. 2019;59:9–20. https://doi.org/10.1016/j.parkreldis.2019.01.009.

24

Wichmann T, Bergman H, DeLong MR. Basal Ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. J Neural Transm. 2018;125(3):419–430. https://doi.org/10.1007/s00702-017-1736-5.

25

Tsanov M. Neurons under genetic control: what are the next steps towards the treatment of movement disorders? Comput Struct Biotechnol J. 2020;18: 3577–3589. https://doi.org/10.1016/j.csbj.2020.11.012.

26

Paro MR, Dyrda M, Ramanan S, et al. Deep brain stimulation for movement disorders after stroke: a systematic review of the literature. J Neurosurg. 2022: 1–14. https://doi.org/10.3171/2022.8.JNS221334.

27

Elias GJB, Namasivayam AA, Lozano AM. Deep brain stimulation for stroke: current uses and future directions. Brain Stimul. 2018;11(1):3–28. https://doi.org/10.1016/j.brs.2017.10.005.

28

Kühn AA, Volkmann J. Innovations in deep brain stimulation methodology. Mov Disord. 2017;32(1):11–19. https://doi.org/10.1002/mds.26703.

29

Wathen CA, Frizon LA, Maiti TK, et al. Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial. Neurosurg Focus. 2018;45(2):E13. https://doi.org/10.3171/2018.5.FOCUS18164.

30

Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–8444. https://doi.org/10.1523/JNEUROSCI.23-23-08432.2003.

31

Stoodley CJ, Schmahmann JD. Functional topography of the human cerebellum. Handb Clin Neurol. 2018;154:59–70. https://doi.org/10.1016/B978-0-444-63956-1.00004-7.

32

Akakin A, Peris-Celda M, Kilic T, et al. The dentate nucleus and its projection system in the human cerebellum: the dentate nucleus microsurgical anatomical study. Neurosurgery. 2014;74(4):401–424. https://doi.org/10.1227/NEU.0000000000000293.

33

Ou SQ, Wei PH, Fan XT, et al. Delineating the decussating dentato-rubro-thalamic tract and its connections in humans using diffusion spectrum imaging techniques. Cerebellum. 2022;21(1):101–115. https://doi.org/10.1007/s12311-021-01283-2.

34

França C, de Andrade DC, Teixeira MJ, et al. Cerebellum as a possible target for neuromodulation after stroke. Brain Stimul. 2018;11(5):1175–1176. https://doi.org/10.1016/j.brs.2018.04.017.

35

Baker KB, Plow EB, Nagel S, et al. Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: a phase Ⅰ trial. Nat Med. 2023;29(9):2366–2374. https://doi.org/10.1038/s41591-023-02507-0.

36

Infeld B, Davis SM, Lichtenstein M, et al. Crossed cerebellar diaschisis and brain recovery after stroke. Stroke. 1995;26(1):90–95. https://doi.org/10.1161/01.str.26.1.90.

37

Dionísio A, Duarte IC, Patrício M, et al. The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review. J Stroke Cerebrovasc Dis. 2018;27(1):1–31. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.008.

38

Graef P, Dadalt MLR, Rodrigués DAMDS, et al. Transcranial magnetic stimulation combined with upper-limb training for improving function after stroke: a systematic review and meta-analysis. J Neurol Sci. 2016;369:149–158. https://doi.org/10.1016/j.jns.2016.08.016.

39

Di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608. https://doi.org/10.1038/nrneurol.2014.162.

40

Wang Q, Zhang D, Zhao YY, et al. Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: a randomized clinical trial. Brain Stimul. 2020;13(4):979–986. https://doi.org/10.1016/j.brs.2020.03.020.

41

Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016;115(1):19–38. https://doi.org/10.1152/jn.00281.2015.

42

Bari AA, Thum J, Babayan D, et al. Current and expected advances in deep brain stimulation for movement disorders. Prog Neurol Surg. 2018;33: 222–229. https://doi.org/10.1159/000481106.

43

Guidetti M, Marceglia S, Loh A, et al. Clinical perspectives of adaptive deep brain stimulation. Brain Stimul. 2021;14(5):1238–1247. https://doi.org/10.1016/j.brs.2021.07.063.

44

Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013;77(3):406–424. https://doi.org/10.1016/j.neuron.2013.01.020.

45

Ramirez-Zamora A, Eisinger RS, Haider SA, et al. Pallidal deep brain stimulation and intraoperative neurophysiology for treatment of poststroke hemiballism. Ann Clin Transl Neurol. 2018;5(7):865–869. https://doi.org/10.1002/acn3.573.

46

Witt J, Starr PA, Ostrem JL. Use of pallidal deep brain stimulation in postinfarct hemidystonia. Stereotact Funct Neurosurg. 2013;91(4):243–247. https://doi.org/10.1159/000345262.

47

Tambirajoo K, Furlanetti L, Samuel M, et al. Subthalamic nucleus deep brain stimulation in post-infarct dystonia. Stereotact Funct Neurosurg. 2020;98(6):386–398. https://doi.org/10.1159/000509317.

48

Gonzalez V, Le Bars E, Cif L, et al. The reorganization of motor network in hemidystonia from the perspective of deep brain stimulation. Brain Imag Behav. 2015;9(2):223–235. https://doi.org/10.1007/s11682-014-9300-5.

49

Baumgartner AJ, Thompson JA, Kern DS, et al. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev. 2022;45(4):2593–2613. https://doi.org/10.1007/s10143-022-01770-y.

50

O'Gorman RL, Shmueli K, Ashkan K, et al. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol. 2011;21(1):130–136. https://doi.org/10.1007/s00330-010-1885-5.

51

Deng ZD, Pan YX, Zhang CC, et al. Subthalamic deep brain stimulation in patients with primary dystonia: a ten-year follow-up study. Parkinsonism Relat Disorders. 2018;55:103–110. https://doi.org/10.1016/j.parkreldis.2018.05.024.

52

Margolesky J, Schoen N, Jermakowicz W, et al. Subthalamic nucleus deep brain stimulation for the treatment of secondary dystonia: a case series and review of literature. Brain Stimul. 2017;10(4):870–872. https://doi.org/10.1016/j.brs.2017.04.123.

53

Slow EJ, Hamani C, Lozano AM, et al. Deep brain stimulation for treatment of dystonia secondary to stroke or trauma. J Neurol Neurosurg Psychiatry. 2015;86(9):1046–1048. https://doi.org/10.1136/jnnp-2014-308943.

54

Slotty PJ, Poologaindran A, Honey CR. A prospective, randomized, blinded assessment of multitarget thalamic and pallidal deep brain stimulation in a case of hemidystonia. Clin Neurol Neurosurg. 2015;138:16–19. https://doi.org/10.1016/j.clineuro.2015.07.012.

55

Koerbel A, Amaral ARD, Zeh HB, et al. Treatment of hemichoreoathetosis with arrhythmic proximal tremor after stroke: the role of zona incerta as a target for deep brain stimulation. J Mov Disord. 2019;12(1):47–51. https://doi.org/10.14802/jmd.18032.

56

Macerollo A, Hammersley B, Bonello M, et al. Deep brain stimulation for post-thalamic stroke complex movement disorders. Neurol Sci. 2021;42(1):337–342. https://doi.org/10.1007/s10072-020-04572-6.

57

O'Shea SA, Elkind M, Pullman SL, et al. Holmes tremor due to artery of Percheron infarct: clinical case and treatment using deep brain stimulation of the vim and ZI targets. Tremor Other Hyperkinet Mov. 2020;10:10. https://doi.org/10.7916/tohm.v0.732.

58

Franzini A, Messina G, Marras C, et al. Poststroke fixed dystonia of the foot relieved by chronic stimulation of the posterior limb of the internal capsule. J Neurosurg. 2009;111(6):1216–1219. https://doi.org/10.3171/2009.4.JNS08785.

59

Franzini A, Cordella R, Nazzi V, et al. Long-term chronic stimulation of internal capsule in poststroke pain and spasticity. Case report, long-term results and review of the literature. Stereotact Funct Neurosurg. 2008;86(3):179–183. https://doi.org/10.1159/000120431.

60

Holland MT, Zanaty M, Li LY, et al. Successful deep brain stimulation for central post-stroke pain and dystonia in a single operation. J Clin Neurosci. 2018;50:190–193. https://doi.org/10.1016/j.jocn.2018.01.036.

61

Papuć EW, Obszańska K, Trojanowski T, et al. Reduction of thalamic tremor with deep brain stimulation performed for post stroke chronic central pain. Ann Agric Environ Med. 2013;(1):45–47.

62

Teixeira MJ, Cury RG, Galhardoni R, et al. Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. Neurology. 2015;85(23):2075–2076. https://doi.org/10.1212/WNL.0000000000002204.

63

Cury RG, França C, Barbosa ER, et al. Dentate nucleus stimulation in a patient with cerebellar ataxia and tremor after cerebellar stroke: a long-term follow-up. Parkinsonism Relat Disorders. 2019;60:173–175. https://doi.org/10.1016/j.parkreldis.2018.10.001.

64

Pozzilli V, Marano M, Magliozzi A, et al. Deep brain stimulation of the dentato-rubro-thalamic tract in a case of Holmes tremor: a constrained spherical deconvolution (CSD)-guided procedure. Neurol Sci. 2023;44(1):411–415. https://doi.org/10.1007/s10072-022-06514-w.

65

Brown EG, Bledsoe IO, Luthra NS, et al. Cerebellar deep brain stimulation for acquired hemidystonia. Mov Disord Clin Pract. 2020;7(2):188–193. https://doi.org/10.1002/mdc3.12876.

66

Baker KB, Schuster D, Cooperrider J, et al. Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo. Exp Neurol. 2010;226(2):259–264. https://doi.org/10.1016/j.expneurol.2010.08.019.

67

Park HJ, Furmaga H, Cooperrider J, et al. Modulation of cortical motor evoked potential after stroke during electrical stimulation of the lateral cerebellar nucleus. Brain Stimul. 2015;8(6):1043–1048. https://doi.org/10.1016/j.brs.2015.06.020.

68

Machado A, Baker KB. Upside down crossed cerebellar diaschisis: proposing chronic stimulation of the dentatothalamocortical pathway for post-stroke motor recovery. Front Integr Neurosci. 2012;6:20. https://doi.org/10.3389/fnint.2012.00020.

69

Carmichael ST. Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann Neurol. 2016;79(6):895–906. https://doi.org/10.1002/ana.24653.

70

Machado AG, Cooperrider J, Furmaga HT, et al. Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery. 2013;73(2):344–353. https://doi.org/10.1227/01.neu.0000430766.80102.ac.

71

Cooperrider J, Furmaga H, Plow E, et al. Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. J Neurosci. 2014;34(27):9040–9050. https://doi.org/10.1523/JNEUROSCI.0953-14.2014.

72

Ohab JJ, Carmichael ST. Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist. 2008;14(4):369–380. https://doi.org/10.1177/1073858407309545.

73

Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11(4):369–380. https://doi.org/10.1016/S1474-4422(12)70039-X.

74

Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabilitation Neural Repair. 2013;27(5):469–478. https://doi.org/10.1177/1545968312474119.

75

Wu Z, Sun FL, Li ZJ, et al. Electrical stimulation of the lateral cerebellar nucleus promotes neurogenesis in rats after motor cortical ischemia. Sci Rep. 2020;10(1):16563. https://doi.org/10.1038/s41598-020-73332-5.

76

Chan HH, Cooperrider J, Chen ZH, et al. Lateral cerebellar nucleus stimulation has selective effects on glutamatergic and GABAergic perilesional neurogenesis after cortical ischemia in the rodent model. Neurosurgery. 2018;83(5):1057–1067. https://doi.org/10.1093/neuros/nyx473.

77

Morimoto T, Yasuhara T, Kameda M, et al. Striatal stimulation nurtures endogenous neurogenesis and angiogenesis in chronic-phase ischemic stroke rats. Cell Transplant. 2011;20(7):1049–1064. https://doi.org/10.3727/096368910X544915.

78

Rumalla K, Smith KA, Follett KA, et al. Rates, causes, risk factors, and outcomes of readmission following deep brain stimulation for movement disorders: analysis of the U.S. Nationwide Readmissions Database. Clin Neurol Neurosurg. 2018;171:129–134. https://doi.org/10.1016/j.clineuro.2018.06.013.

79

Wang Y, Liu HB, Li P, et al. Deep brain stimulation could cause delayed and recurrent cerebral ischemia: a case report. Acta Neurochir. 2016;158(12):2369–2372. https://doi.org/10.1007/s00701-016-2983-1.

80

Mercure-Cyr R, Persad ARL, Vitali AM. Delayed stroke in globus pallidus internus deep brain stimulation. Can J Neurol Sci. 2022;49(3):458–459. https://doi.org/10.1017/cjn.2021.117.

81

Hernandez-Pavon JC, Harvey RL. Noninvasive transcranial magnetic brain stimulation in stroke. Phys Med Rehabil Clin. 2019;30(2):319–335. https://doi.org/10.1016/j.pmr.2018.12.010.

82

Edwards JD, Black SE, Boe S, et al. Canadian platform for trials in noninvasive brain stimulation (CanStim) consensus recommendations for repetitive transcranial magnetic stimulation in upper extremity motor stroke rehabilitation trials. Neurorehabilitation Neural Repair. 2021;35(2):103–116. https://doi.org/10.1177/1545968320981960.

83

Tosun A, Türe S, Askin A, et al. Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study. Top Stroke Rehabil. 2017;24(5):361–367. https://doi.org/10.1080/10749357.2017.1305644.

84

Bai ZF, Zhang JQ, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis. J NeuroEng Rehabil. 2022;19(1):24. https://doi.org/10.1186/s12984-022-00999-4.

85

Zhang L, Xing GQ, Fan YL, et al. Short- and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clin Rehabil. 2017;31(9):1137–1153. https://doi.org/10.1177/0269215517692386.

86

Houben ML, Chettouf S, Van Der Werf YD, et al. Theta-burst transcranial magnetic stimulation for the treatment of unilateral neglect in stroke patients: a systematic review and best evidence synthesis. Restor Neurol Neurosci. 2021;39(6):447–465. https://doi.org/10.3233/RNN-211228.

87

Guo ZW, Jin Y, Bai X, et al. Distinction of high- and low-frequency repetitive transcranial magnetic stimulation on the functional reorganization of the motor network in stroke patients. Neural Plast. 2021;2021:8873221. https://doi.org/10.1155/2021/8873221.

88

Long H, Wang HB, Zhao CG, et al. Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restor Neurol Neurosci. 2018;36(1):21–30. https://doi.org/10.3233/RNN-170733.

89

Yang YW, Pan HJ, Pan WX, et al. Repetitive transcranial magnetic stimulation on the affected hemisphere enhances hand functional recovery in subacute adult stroke patients: a randomized trial. Front Aging Neurosci. 2021;13: 636184. https://doi.org/10.3389/fnagi.2021.636184.

90

Vabalaite B, Petruseviciene L, Savickas R, et al. Effects of high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) on upper extremity motor function in stroke patients: a systematic review. Medicina. 2021;57(11):1215. https://doi.org/10.3390/medicina57111215.

91

Xiang HF, Sun J, Tang X, et al. The effect and optimal parameters of repetitive transcranial magnetic stimulation on motor recovery in stroke patients: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil. 2019;33(5):847–864. https://doi.org/10.1177/0269215519829897.

92

Bertolucci F, Chisari C, Fregni F. The potential dual role of transcallosal inhibition in post-stroke motor recovery. Restor Neurol Neurosci. 2018;36(1):83–97. https://doi.org/10.3233/RNN-170778.

93

Corti M, Patten C, Triggs W. Repetitive transcranial magnetic stimulation of motor cortex after stroke: a focused review. Am J Phys Med Rehabil. 2012;91(3):254–270. https://doi.org/10.1097/PHM.0b013e318228bf0c.

94

Li X, Lin YL, Cunningham DA, et al. Repetitive transcranial magnetic stimulation of the contralesional dorsal premotor cortex for upper extremity motor improvement in severe stroke: study protocol for a pilot randomized clinical trial. Cerebrovasc Dis. 2022;51(5):557–564. https://doi.org/10.1159/000521514.

95

Sankarasubramanian V, Machado AG, Conforto AB, et al. Inhibition versus facilitation of contralesional motor cortices in stroke: deriving a model to tailor brain stimulation. Clin Neurophysiol. 2017;128(6):892–902. https://doi.org/10.1016/j.clinph.2017.03.030.

96

Chieffo R, Giatsidis F, Santangelo R, et al. Repetitive transcranial magnetic stimulation with H-coil coupled with cycling for improving lower limb motor function after stroke: an exploratory study. Neuromodulation. 2021;24(5):916–922. https://doi.org/10.1111/ner.13228.

97

Gottlieb A, Boltzmann M, Schmidt SB, et al. Treatment of upper limb spasticity with inhibitory repetitive transcranial magnetic stimulation: a randomized placebo-controlled trial. NeuroRehabilitation. 2021;49(3):425–434. https://doi.org/10.3233/NRE-210088.

98

Kuzu Ö, Adiguzel E, Kesikburun S, et al. The effect of sham controlled continuous Theta burst stimulation and low frequency repetitive transcranial magnetic stimulation on upper extremity spasticity and functional recovery in chronic ischemic stroke patients. J Stroke Cerebrovasc Dis. 2021;30(7):105795. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105795.

99

Wanni Arachchige PR, Ryo U, Karunarathna S, et al. Evaluation of fMRI activation in hemiparetic stroke patients after rehabilitation with low-frequency repetitive transcranial magnetic stimulation and intensive occupational therapy. Int J Neurosci. 2023;133(7):705–713. https://doi.org/10.1080/00207454.2021.1968858.

100

Li Y, Fan JJ, Yang JY, et al. Effects of repetitive transcranial magnetic stimulation on walking and balance function after stroke: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2018;97(11):773–781. https://doi.org/10.1097/PHM.0000000000000948.

101

Xie YJ, Chen Y, Tan HX, et al. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network meta-analysis. Neural Regen Res. 2021;16(6):1168–1176. https://doi.org/10.4103/1673-5374.300341.

102

Liu Y, Li H, Zhang J, et al. A meta-analysis: whether repetitive transcranial magnetic stimulation improves dysfunction caused by stroke with lower limb spasticity. Evid Based Compl Alternat Med. 2021;2021:7219293. https://doi.org/10.1155/2021/7219293.

103

Huang YZ, Lin LF, Chang KH, et al. Priming with 1-hz repetitive transcranial magnetic stimulation over contralesional leg motor cortex does not increase the rate of regaining ambulation within 3 months of stroke: a randomized controlled trial. Am J Phys Med Rehabil. 2018;97(5):339–345. https://doi.org/10.1097/PHM.0000000000000850.

104

Cui MC, Ge HF, Zeng H, et al. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation and differentiation after intracerebral hemorrhage in mice. Cell Transplant. 2019;28(5):568–584. https://doi.org/10.1177/0963689719834870.

105

Xing Y, Zhang YQ, Li CQ, et al. Repetitive transcranial magnetic stimulation of the brain after ischemic stroke: mechanisms from animal models. Cell Mol Neurobiol. 2023;43(4):1487–1497. https://doi.org/10.1007/s10571-022-01264-x.

106

Deng YG, Guo F, Han XH, et al. Repetitive transcranial magnetic stimulation increases neurological function and endogenous neural stem cell migration via the SDF-1α/CXCR4 axis after cerebral infarction in rats. Exp Ther Med. 2021;22(3):1037. https://doi.org/10.3892/etm.2021.10469.

107

Baek A, Kim JH, Pyo S, et al. The differential effects of repetitive magnetic stimulation in an in vitro neuronal model of ischemia/reperfusion injury. Front Neurol. 2018;9:50. https://doi.org/10.3389/fneur.2018.00050.

108

Luo J, Zheng HQ, Zhang LY, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int J Mol Sci. 2017;18(2):455. https://doi.org/10.3390/ijms18020455.

109

Caglayan AB, Beker MC, Caglayan B, et al. Acute and post-acute neuromodulation induces stroke recovery by promoting survival signaling, neurogenesis, and pyramidal tract plasticity. Front Cell Neurosci. 2019;13:144. https://doi.org/10.3389/fncel.2019.00144.

110

Peng JJ, Sha R, Li MX, et al. Repetitive transcranial magnetic stimulation promotes functional recovery and differentiation of human neural stem cells in rats after ischemic stroke. Exp Neurol. 2019;313:1–9. https://doi.org/10.1016/j.expneurol.2018.12.002.

111

Ni Z, Udupa K, Hallett M, et al. Effects of deep brain stimulation on the primary motor cortex: insights from transcranial magnetic stimulation studies. Clin Neurophysiol. 2019;130(4):558–567. https://doi.org/10.1016/j.clinph.2018.10.020.

112

Casula EP, Stampanoni Bassi M, Pellicciari MC, et al. Subthalamic stimulation and levodopa modulate cortical reactivity in Parkinson's patients. Parkinsonism Relat Disorders. 2017;34:31–37. https://doi.org/10.1016/j.parkreldis.2016.10.009.

113

Molnar GF, Sailer A, Gunraj CA, et al. Thalamic deep brain stimulation activates the cerebellothalamocortical pathway. Neurology. 2004;63(5):907–909. https://doi.org/10.1212/01.wnl.0000137419.85535.c7.

114

Yuan TF, Li WG, Zhang CC, et al. Targeting neuroplasticity in patients with neurodegenerative diseases using brain stimulation techniques. Transl Neurodegener. 2020;9(1):44. https://doi.org/10.1186/s40035-020-00224-z.

115

Neumann WJ, Gilron R, Little S, et al. Adaptive deep brain stimulation: from experimental evidence toward practical implementation. Mov Disord. 2023;38(6):937–948. https://doi.org/10.1002/mds.29415.

116

Ni Z, Kim SJ, Phielipp N, et al. Pallidal deep brain stimulation modulates cortical excitability and plasticity. Ann Neurol. 2018;83(2):352–362. https://doi.org/10.1002/ana.25156,10.1016/j.clinph.2018.12.006.

117

Tisch S, Limousin P, Rothwell JC, et al. Changes in forearm reciprocal inhibition following pallidal stimulation for dystonia. Neurology. 2006;66(7):1091–1093. https://doi.org/10.1212/01.wnl.0000204649.36458.8f.

118

Udupa K, Bahl N, Ni Z, et al. Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson's disease. J Neurosci. 2016;36(2):396–404. https://doi.org/10.1523/JNEUROSCI.2499-15.2016.

119

Tisch S, Limousin P. Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res. 2020;238(7/8):1645–1657. https://doi.org/10.1007/s00221-020-05833-8.

120

Magsood H, Syeda F, Holloway K, et al. Safety study of combination treatment: deep brain stimulation and transcranial magnetic stimulation. Front Hum Neurosci. 2020;14:123. https://doi.org/10.3389/fnhum.2020.00123.

121

Deng ZD, Lisanby SH, Peterchev AV. Transcranial magnetic stimulation in the presence of deep brain stimulation implants: induced electrode currents. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6821–6824. https://doi.org/10.1109/IEMBS.2010.5625958.

Journal of Neurorestoratology
Article number: 100120
Cite this article:
Chen Y, Xu Z, Liu T, et al. Application of deep brain stimulation and transcranial magnetic stimulation in stroke neurorestoration: A review. Journal of Neurorestoratology, 2024, 12(2): 100120. https://doi.org/10.1016/j.jnrt.2024.100120

191

Views

2

Crossref

0

Web of Science

2

Scopus

Altmetrics

Received: 18 September 2023
Revised: 17 January 2024
Accepted: 02 April 2024
Published: 18 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return