AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

Evaluation of an online SSVEP-BCI with fast system setup

Xiaodong Lia,b( )Junlin Wanga,bXiang CaobYong Huangc,dWei HuangeFeng WanfMichael Kai-Tsun Toa,bSheng Quan Xieg
Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, Guangdong, China
Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 999077, China
School of Biomedical Engineering, Southern Medical University, Guangzhou 510000, Guangdong, China
Lab of Brain-Inspired Computing System, Guangdong Institute of Intelligence Science and Technology, Zhuhai 519000, Guangdong, China
Department of Rehabilitation, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
Department of Electrical and Computer Engineering, University of Macau, Macau 999078, China
School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
Show Author Information

Abstract

The brain–computer interface (BCI) plays an important role in neural restoration. Current BCI systems generally require complex experimental preparation to perform well, but this time-consuming process may hinder their use in clinical applications. To explore the feasibility of simplifying the BCI system setup, a wearable BCI system based on the steady-state visual evoked potential (SSVEP) was developed and evaluated. Fifteen healthy participants were recruited to test the fast-setup system using dry and wet electrodes in a real-life scenario. In this study, the average system setup time for the dry electrode was 38.40 seconds and that for the wet electrode was 103.40 seconds, which are times appreciably shorter than those in previous BCI experiments, enabling a rapid setup of the BCI system. Although the electroencephalogram (EEG) signal quality was low in this fast-setup BCI experiment, the BCI system achieved an information transfer rate of 138.89 bits/min with an eight-channel wet electrode and an information transfer rate of 70.59 bits/min with an eight-channel dry electrode, showing that the overall performance was close to that in traditional experiments. In addition, the results suggest that the solutions of a multi-channel dry electrode or few-channel wet electrode may be suitable for the fast-setup SSEVP-BCI. This fast-setup SSVEP-BCI has the advantages of simple preparation and stable performance and is thus conducive to promoting the use of the BCI in clinical practice.

References

1

Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8(2): 164-173. https://doi.org/10.1109/tre.2000.847807.

2

Mak JN, Wolpaw JR. Clinical applications of brain-computer interfaces: current state and future prospects. IEEE Rev Biomed Eng. 2009;2: 187-199.

3

Kübler A, Furdea A, Halder S, et al. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Ann N Y Acad Sci. 2009;1157: 90-100. https://doi.org/10.1111/j.1749-6632.2008.04122.x.

4

Chaudhary U, Mrachacz-Kersting N, Birbaumer N. Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis. J Physiol. 2021;599(9): 2351-2359. https://doi.org/10.1113/JP278775.

5

Farina D, Mrachacz-Kersting N. Brain-computer interfaces and plasticity of the human nervous system. J Physiol. 2021;599(9): 2349-2350. https://doi.org/10.1113/JP279845.

6

Young MJ, Lin DJ, Hochberg LR. Brain-computer interfaces in neurorecovery and neurorehabilitation. Semin Neurol. 2021;41(2): 206-216. https://doi.org/10.1055/s-0041-1725137.

7

Mane R, Chouhan T, Guan CT. BCI for stroke rehabilitation: motor and beyond. J Neural Eng. 2020;17(4): 041001. https://doi.org/10.1088/1741-2552/aba162.

8

Mane R, Wu ZZ, Wang D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review. Stroke Vasc Neurol. 2022;7(6): 541-549. https://doi.org/10.1136/svn-2022-001506.

9

Nierhaus T, Vidaurre C, Sannelli C, et al. Immediate brain plasticity after one hour of brain-computer interface (BCI). J Physiol. 2021;599(9): 2435-2451. https://doi.org/10.1113/JP278118.

10

Allison B, Luth T, Valbuena D, et al. BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng. 2010;18(2): 107-116. https://doi.org/10.1109/TNSRE.2009.2039495.

11

Lin K, Cinetto A, Wang YJ, et al. An online hybrid BCI system based on SSVEP and EMG. J Neural Eng. 2016;13(2): 026020. https://doi.org/10.1088/1741-2560/13/2/026020.

12

Chen XG, Hu N, Gao XR. Development of a brain-computer interface-based symbol digit modalities test and validation in healthy elderly volunteers and stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2022;30: 1433-1440. https://doi.org/10.1109/TNSRE.2022.3176615.

13

Hsu HT, Lee IH, Tsai HT, et al. Evaluate the feasibility of using frontal SSVEP to implement an SSVEP-based BCI in young, elderly and ALS groups. IEEE Trans Neural Syst Rehabil Eng. 2016;24(5): 603-615. https://doi.org/10.1109/TNSRE.2015.2496184.

14
Mah WL, Chin SS, Mok SY, et al. SSVEP-based BCI for a DMD patient-A case study. In: IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET). IEEE; 2019. https://doi.org/10.1109/CSUDET47057.2019.9214663.
15

Guo N, Wang XJ, Duanmu DH, et al. SSVEP-based brain computer interface controlled soft robotic glove for post-stroke hand function rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1737-1744. https://doi.org/10.1109/TNSRE.2022.3185262.

16

Li L, Zhang YL, Huang L, et al. Robot assisted treatment of hand functional rehabilitation based on visual motor imagination. Front Aging Neurosci. 2022;14:870871. https://doi.org/10.3389/fnagi.2022.870871.

17

Mihajlović V, Grundlehner B, Vullers R, et al. Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J Biomed Health Inform. 2015;19(1):6-21. https://doi.org/10.1109/JBHI.2014.2328317.

18

Huggins JE, Wren PA, Gruis KL. What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;12(5):318-324. https://doi.org/10.3109/17482968.2011.572978.

19

Huggins JE, Moinuddin AA, Chiodo AE, et al. What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch Phys Med Rehabil. 2015;96(3 suppl l). https://doi.org/10.1016/j.apmr.2014.05.028.S38-S45.e1-5.

20

Gargiulo G, Calvo RA, Bifulco P, et al. A new EEG recording system for passive dry electrodes. Clin Neurophysiol. 2010;121(5):686-693. https://doi.org/10.1016/j.clinph.2009.12.025.

21

Zander TO, Lehne M, Ihme K, et al. A dry EEG-system for scientific research and brain-computer interfaces. Front Neurosci. 2011;5:53. https://doi.org/10.3389/fnins.2011.00053.

22

Grant AC, Abdel-Baki SG, Omurtag A, et al. Diagnostic accuracy of microEEG: a miniature, wireless EEG device. Epilepsy Behav. 2014;34:81-85. https://doi.org/10.1016/j.yebeh.2014.03.015.

23

Chen YY, Atnafu AD, Schlattner I, et al. A high-security EEG-based login system with RSVP stimuli and dry electrodes. IEEE Trans Inf Forensics Secur. 2016;11(12):2635-2647. https://doi.org/10.1109/TIFS.2016.2577551.

24

di Fronso S, Fiedler P, Tamburro G, et al. Dry EEG in sports sciences: a fast and reliable tool to assess individual alpha peak frequency changes induced by physical effort. Front Neurosci. 2019;13:982. https://doi.org/10.3389/fnins.2019.00982.

25

Hinrichs H, Scholz M, Baum AK, et al. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci Rep. 2020;10(1):5218. https://doi.org/10.1038/s41598-020-62154-0.

26

Zhao HQ, Zheng L, Yuan M, et al. Optimization of ear electrodes for SSVEP-based BCI. J Neural Eng. 2023;20(4). https://doi.org/10.1088/1741-2552/acdf85.

27

Habibzadeh Tonekabony Shad E, Molinas M, Ytterdal T. Impedance and noise of passive and active dry EEG electrodes: a review. IEEE Sensor J. 2020;20(24):14565-14577. https://doi.org/10.1109/JSEN.2020.3012394.

28

Kawana T, Yoshida Y, Kudo Y, et al. Design and characterization of an EEG-hat for reliable EEG measurements. Micromachines. 2020;11(7):635. https://doi.org/10.3390/mi11070635.

29

Yuan XY, Sun Q, Zhang L, et al. Enhancing detection of SSVEP-based BCIs via a novel CCA-based method. Biomed Sig Proc Control. 2022;74:103482. https://doi.org/10.1016/j.bspc.2022.103482.

30

Liu BC, Chen XG, Shi NL, et al. Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1998-2007. https://doi.org/10.1109/TNSRE.2021.3114340.

31
Cecotti H, Graeser A. Convolutional Neural Network with embedded Fourier Transform for EEG classification. In: 2008 19th International Conference on Pattern Recognition. USA: Tampa, FL; 2008: 1-4. https://doi.org/10.1109/ICPR.2008.4761638.
32

Lawhern VJ, Solon AJ, Waytowich NR, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng. 2018;15(5):056013. https://doi.org/10.1088/1741-2552/aace8c.

33

Chen XG, Wang YJ, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci USA. 2015;112(44):E6058-E6067. https://doi.org/10.1073/pnas.1508080112.

34

Wong CM, Wang Z, Nakanishi M, et al. Online adaptation boosts SSVEP-based BCI performance. IEEE Trans Biomed Eng. 2022;69(6):2018-2028. https://doi.org/10.1109/TBME.2021.3133594.

35

Yi CZ, Wu YX, Ye F, et al. Overview of recognition methods for SSVEP-based BCIs in World Robot Contest 2022: MATLAB undergraduate group. Brain Sci Adv. 2023;9(3):224-236. https://doi.org/10.26599/bsa.2023.9050018.

36

Chen XG, Wang YJ, Gao SK, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng. 2015;12(4):046008. https://doi.org/10.1088/1741-2560/12/4/046008.

37
Lao KF, Wong CM, Wang Z, et al. Learning prototype spatial filters for subject-independent SSVEP-based brain-computer interface. In: 2018 IEEE International Conference On Systems, Man, and Cybernetics (SMC). Japan: Miyazaki; 2018: 485-490. https://doi.org/10.1109/SMC.2018.00092.
38

Wong CM, Wan F, Wang BY, et al. Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs. J Neural Eng. 2020;17(1):016026. https://doi.org/10.1088/1741-2552/ab2373.

39

Liu BC, Huang XS, Wang YJ, et al. BETA: a large benchmark database toward SSVEP-BCI application. Front Neurosci. 2020;14:627. https://doi.org/10.3389/fnins.2020.00627.

40

Wang YJ, Chen XG, Gao XR, et al. A benchmark dataset for SSVEP-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1746-1752. https://doi.org/10.1109/TNSRE.2016.2627556.

41
Liu Y, Jiang X, Cao T, et al. Implementation of SSVEP based BCI with Emotiv EPOC. In: IEEE International Conference on Virtual Environments Human-Computer Interfaces & Measurement Systems. IEEE; 2012: 34-37. https://doi.org/10.1109/VECIMS.2012.6273184.
42

Dilshad A, Uddin V, Tanweer MR, et al. A low cost SSVEP-EEG based human-computer-interaction system for completely locked-in patients. Bulletin EEI. 2021;10(4):2245-2253. https://doi.org/10.11591/eei.v10i4.2923.

43

Barham MP, Clark GM, Hayden MJ, et al. Acquiring research-grade ERPs on a shoestring budget: a comparison of a modified Emotiv and commercial SynAmps EEG system. Psychophysiology. 2017;54(9):1393-1404. https://doi.org/10.1111/psyp.12888.

44

Zerafa R, Camilleri T, Falzon O, et al. A comparison of a broad range of EEG acquisition devices-is there any difference for SSVEP BCIs? Brain Comput Interf. 2018;5(4):121-131. https://doi.org/10.1080/2326263x.2018.1550710.

45

Lievesley R, Wozencroft M, Ewins D. The Emotiv EPOC neuroheadset: an inexpensive method of controlling assistive technologies using facial expressions and thoughts? J Assist Technol. 2011;5(2):67-82. https://doi.org/10.1108/17549451111149278.

46
Harrison T. The Emotiv Mind: Investigating the Accuracy of the Emotiv EPOC in Identifying Emotions and its Use in an Intelligent Tutoring System. University of Canterbury; 2013. https://ir.canterbury.ac.nz/server/api/core/bitstreams/a6b5d36d-6a8f-4c35-a62f-eef3851981ed/content. Accessed March 7, 2024.
47

Jochumsen M, Knoche H, Kidmose P, et al. Evaluation of EEG headset mounting for brain-computer interface-based stroke rehabilitation by patients, therapists, and relatives. Front Hum Neurosci. 2020;14:13. https://doi.org/10.3389/fnhum.2020.00013.

48

Wu ZH. SSVEP extraction based on the similarity of background EEG. PLoS One. 2014;9(4):e93884. https://doi.org/10.1371/journal.pone.0093884.

49

Jiang L, Pei WH, Wang YJ. A user-friendly SSVEP-based BCI using imperceptible phase-coded flickers at 60Hz. China Commun. 2022;19(2):1-14. https://doi.org/10.23919/JCC.2022.02.001.

50
Chu YQ, Zhao XG, Han JD, et al. SSVEP based brain-computer interface controlled functional electrical stimulation system for upper extremity rehabilitation. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Indonesia: Bali; 2014: 2244-2249. https://doi.org/10.1109/ROBIO.2014.7090671.
51

Wang JJ, Wang TJ, Liu HY, et al. Flexible electrodes for brain-computer interface system. Adv Mater. 2023;35(47):e2211012. https://doi.org/10.1002/adma.202211012.

52

Chen YH, de Beeck MO, Vanderheyden L, et al. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors. 2014;14(12):23758-23780. https://doi.org/10.3390/s141223758.

53

Pei WH, Wu XT, Zhang X, et al. A pre-gelled EEG electrode and its application in SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng. 2022;30:843-850. https://doi.org/10.1109/TNSRE.2022.3161989.

Journal of Neurorestoratology
Article number: 100122
Cite this article:
Li X, Wang J, Cao X, et al. Evaluation of an online SSVEP-BCI with fast system setup. Journal of Neurorestoratology, 2024, 12(2): 100122. https://doi.org/10.1016/j.jnrt.2024.100122

135

Views

2

Crossref

1

Web of Science

2

Scopus

Altmetrics

Received: 15 January 2024
Revised: 07 March 2024
Accepted: 02 April 2024
Published: 18 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return