Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
STXBP1 encephalopathy (STXBP1-E) is a rare neurodevelopmental disorder that includes epilepsy; it is caused by de novo STXBP1 mutations. In clinical settings, pharmaceutical interventions to treat STXBP1-E predominantly concentrate on seizure control. However, effective treatments for seizure recurrence, treatment resistance, and common comorbidities remain scarce. Patients with STXBP1-E display a wide range of pathogenic variations that manifest as loss-of-function, gain-of-function, or dominant-negative effects. However, recent studies have primarily investigated the pathogenic mechanisms resulting from loss-of-function mutations using STXBP1 haploinsufficiency models. This approach fails to accurately assess the impact of disease-causing mutations. Moreover, to evaluate new syntaxin-binding protein 1 (STXBP1)-targeting drugs, novel models that incorporate disease-causing mutations or even the genetic backgrounds of patients are needed. Here, we discuss the clinical symptoms of STXBP1-E and the relationship between this disorder and STXBP1 mutations. We also review recent progress toward understanding the biological function of STXBP1 and its deficiency-induced cellular defects. We then discuss recent discoveries concerning the pathogenesis of STXBP1-E and the limitations and challenges associated with the current research model. Additionally, we underscore the value of leveraging stem cell technology to study the pathogenic mechanisms of STXBP1-E, and review stem cell transplantation as a potential approach for treating this disorder. We also discuss potential future research directions that need to be resolved.
Stamberger H, Nikanorova M, Willemsen MH, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology. 2016;86(10):954–962. https://doi.org/10.1212/WNL.0000000000002457.
López-Rivera JA, Pérez-Palma E, Symonds J, et al. A catalogue of new incidence estimates of monogenic neurodevelopmental disorders caused by de novo variants. Brain. 2020;143(4):1099–1105. https://doi.org/10.1093/brain/awaa051.
Xian JL, Thalwitzer KM, McKee J, et al. Delineating clinical and developmental outcomes in STXBP1-related disorders. Brain. 2023;146(12):5182–5197. https://doi.org/10.1093/brain/awad287.
Xian JL, Parthasarathy S, Ruggiero SM, et al. Assessing the landscape of STXBP1-related disorders in 534 individuals. Brain. 2022;145(5):1668–1683. https://doi.org/10.1093/brain/awab327.
Kovacevic J, Maroteaux G, Schut D, et al. Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain. 2018;141(5):1350–1374. https://doi.org/10.1093/brain/awy046.
Guiberson NGL, Pineda A, Abramov D, et al. Mechanism-based rescue of Munc 18-1 dysfunction in varied encephalopathies by chemical chaperones. Nat Commun. 2018;9(1):3986. https://doi.org/10.1038/s41467-018-06507-4.
Lammertse HCA, van Berkel AA, Iacomino M, et al. Homozygous STXBP1 variant causes encephalopathy and gain-of-function in synaptic transmission. Brain. 2020;143(2):441–451. https://doi.org/10.1093/brain/awz391.
Houtman SJ, Lammertse HCA, van Berkel AA, et al. STXBP1 syndrome is characterized by inhibition-dominated dynamics of resting-state EEG. Front Physiol. 2021;12:775172. https://doi.org/10.3389/fphys.2021.775172.
Weckhuysen S, Holmgren P, Hendrickx R, et al. Reduction of seizure frequency after epilepsy surgery in a patient with STXBP1 encephalopathy and clinical description of six novel mutation carriers. Epilepsia. 2013;54(5):e74–e80. https://doi.org/10.1111/epi.12124.
Brunger AT, Choi UB, Lai Y, et al. The pre-synaptic fusion machinery. Curr Opin Struct Biol. 2019;54:179–188. https://doi.org/10.1016/j.sbi.2019.03.007.
Südhof TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013;80(3):675–690. https://doi.org/10.1016/j.neuron.2013.10.022.
Geppert M, Goda Y, Hammer RE, et al. Synaptotagmin Ⅰ: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994;79(4):717–727. https://doi.org/10.1016/0092-8674(94)90556-8.
Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92(6):759–772. https://doi.org/10.1016/s0092-8674(00)81404-x.
Chen Y, Wang YH, Zheng Y, et al. Synaptotagmin-1 interacts with PI(4, 5)P2 to initiate synaptic vesicle docking in hippocampal neurons. Cell Rep. 2021;34(11):108842. https://doi.org/10.1016/j.celrep.2021.108842.
Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science. 2009;323(5913):474–477. https://doi.org/10.1126/science.1161748.
Wang S, Li Y, Gong JH, et al. Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly. Nat Commun. 2019;10(1):69. https://doi.org/10.1038/s41467-018-08028-6.
Jiao JY, He MZ, Port SA, et al. Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association. Elife. 2018;7:e41771. https://doi.org/10.7554/eLife.41771.
Toonen RFG, Wierda K, Sons MS, et al. Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size. Proc Natl Acad Sci USA. 2006;103(48):18332–18337. https://doi.org/10.1073/pnas.0608507103.
Abramov D, Guiberson NGL, Burré J. STXBP1 encephalopathies: clinical spectrum, disease mechanisms, and therapeutic strategies. J Neurochem. 2021;157(2):165–178. https://doi.org/10.1111/jnc.15120.
Santos TC, Wierda K, Broeke JH, et al. Early Golgi abnormalities and neurodegeneration upon loss of presynaptic proteins Munc18-1, syntaxin-1, or SNAP-25. J Neurosci. 2017;37(17):4525–4539. https://doi.org/10.1523/jneurosci.3352-16.2017.
Hamada N, Iwamoto I, Tabata H, et al. MUNC18-1 gene abnormalities are involved in neurodevelopmental disorders through defective cortical architecture during brain development. Acta Neuropathol Commun. 2017;5(1):92. https://doi.org/10.1186/s40478-017-0498-5.
van Berkel AA, Santos TC, Shaweis H, et al. Loss of MUNC18-1 leads to retrograde transport defects in neurons. J Neurochem. 2021;157(3):450–466. https://doi.org/10.1111/jnc.15256.
Feringa FM, van Berkel AA, Nair A, et al. An atypical, staged cell death pathway induced by depletion of SNARE-proteins MUNC18-1 or syntaxin-1. J Neurosci. 2023;43(3):347–358. https://doi.org/10.1523/jneurosci.0611-22.2022.
Law C, Schaan Profes M, Levesque M, et al. Normal molecular specification and neurodegenerative disease-like death of spinal neurons lacking the SNARE-associated synaptic protein Munc18-1. J Neurosci. 2016;36(2):561–576. https://doi.org/10.1523/JNEUROSCI.1964-15.2016.
van Berkel AA, Koopmans F, Gonzalez-Lozano MA, et al. Dysregulation of synaptic and developmental transcriptomic/proteomic profiles upon depletion of MUNC18-1. eNeuro. 2022;9(6). https://doi.org/10.1523/ENEURO.0186-22.2022.ENEURO.0186eENEURO.0122.2022.
Chai YJ, Sierecki E, Tomatis VM, et al. Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. J Cell Biol. 2016;214(6):705–718. https://doi.org/10.1083/jcb.201512016.
de Wit H, Walter AM, Milosevic I, et al. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell. 2009;138(5):935–946. https://doi.org/10.1016/j.cell.2009.07.027.
Pons-Vizcarra M, Kurps J, Tawfik B, et al. Correction: MUNC18-1 regulates the submembrane F-actin network, independently of syntaxin1 targeting, via hydrophobicity in β-sheet 10. J Cell Sci. 2019;132(24):jcs242552. https://doi.org/10.1242/jcs.242552.
Guiberson NGL, Black LS, Haller JE, et al. Disease-linked mutations in Munc18-1 deplete synaptic Doc2. Brain. 2024:awae019. https://doi.org/10.1093/brain/awae019.
Lanoue V, Chai YJ, Brouillet JZ, et al. STXBP1 encephalopathy: connecting neurodevelopmental disorders with α-synucleinopathies? Neurology. 2019;93(3):114–123. https://doi.org/10.1212/WNL.0000000000007786.
Abramov D, Guiberson NGL, Daab A, et al. Targeted stabilization of Munc18-1 function via pharmacological chaperones. EMBO Mol Med. 2021;13(1):e12354. https://doi.org/10.15252/emmm.202012354.
Novick P, Schekman R. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1979;76(4):1858–1862. https://doi.org/10.1073/pnas.76.4.1858.
Peng Y, Lee JE, Rowland K, et al. Regulation of dendrite growth and maintenance by exocytosis. J Cell Sci. 2015;128(23):4279–4292. https://doi.org/10.1242/jcs.174771.
Zhu BF, Mak JCH, Morris AP, et al. Functional analysis of epilepsy-associated variants in STXBP1/Munc18-1 using humanized Caenorhabditis elegans. Epilepsia. 2020;61(4):810–821. https://doi.org/10.1111/epi.16464.
Grone BP, Marchese M, Hamling KR, et al. Epilepsy, behavioral abnormalities, and physiological comorbidities in syntaxin-binding protein 1 (STXBP1) mutant zebrafish. PLoS One. 2016;11(3):e0151148. https://doi.org/10.1371/journal.pone.0151148.
Verhage M, Maia AS, Plomp JJ, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science. 2000;287(5454):864–869. https://doi.org/10.1126/science.287.5454.864.
Hager T, Maroteaux G, du Pont P, et al. Munc18-1 haploinsufficiency results in enhanced anxiety-like behavior as determined by heart rate responses in mice. Behav Brain Res. 2014;260:44–52. https://doi.org/10.1016/j.bbr.2013.11.033.
Miyamoto H, Tatsukawa T, Shimohata A, et al. Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat Commun. 2019;10(1):1917. https://doi.org/10.1038/s41467-019-09954-9.
Miyamoto H, Shimohata A, Abe M, et al. Potentiation of excitatory synaptic transmission ameliorates aggression in mice with Stxbp1 haploinsufficiency. Hum Mol Genet. 2017;26(24):4961–4974. https://doi.org/10.1093/hmg/ddx379.
Chen W, Cai ZL, Chao ES, et al. Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. Elife. 2020;9:e48705. https://doi.org/10.7554/eLife.48705.
Kim JH, Chen W, Chao ES, et al. GABAergic/glycinergic and glutamatergic neurons mediate distinct neurodevelopmental phenotypes of STXBP1 encephalopathy. J Neurosci. 2024;44(14):e1806232024. https://doi.org/10.1523/jneurosci.1806-23.2024.
Lu Z, He S, Jiang J, et al. Base-edited Cynomolgus Monkeys mimic core symptoms of STXBP1 encephalopathy. Mol Ther. 2022;30(6):2163–2175. https://doi.org/10.1016/j.ymthe.2022.03.001.
dos Santos AB, Larsen SD, Guo LC, et al. Microcircuit failure in STXBP1 encephalopathy leads to hyperexcitability. Cell Rep Med. 2023;4(12):101308. https://doi.org/10.1016/j.xcrm.2023.101308.
Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17(3):183–193. https://doi.org/10.1038/nrm.2016.8.
Yang N, Chanda S, Marro S, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods. 2017;14(6):621–628. https://doi.org/10.1038/nmeth.4291.
Zhang YS, Pak C, Han Y, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78(5):785–798. https://doi.org/10.1016/j.neuron.2013.05.029.
Herdy J, Schafer S, Kim Y, et al. Chemical modulation of transcriptionally enriched signaling pathways to optimize the conversion of fibroblasts into neurons. Elife. 2019;8:41356. https://doi.org/10.7554/elife.41356.
Parent JM, Anderson SA. Reprogramming patient-derived cells to study the epilepsies. Nat Neurosci. 2015;18(3):360–366. https://doi.org/10.1038/nn.3944.
Patzke C, Han Y, Covy J, et al. Analysis of conditional heterozygous STXBP1 mutations in human neurons. J Clin Invest. 2015;125(9):3560–3571. https://doi.org/10.1172/JCI78612.
Shen C, Liu YH, Yu HJ, et al. The N-peptide–binding mode is critical to Munc18-1 function in synaptic exocytosis. J Biol Chem. 2018;293(47):18309–18317. https://doi.org/10.1074/jbc.ra118.005254.
Yamamoto T, Otsu M, Okumura T, et al. Generation of three induced pluripotent stem cell lines from postmortem tissue derived following sudden death of a young patient with STXBP1 mutation. Stem Cell Res. 2019;39:101485. https://doi.org/10.1016/j.scr.2019.101485.
Ichise E, Chiyonobu T, Ishikawa M, et al. Impaired neuronal activity and differential gene expression in STXBP1 encephalopathy patient iPSC-derived GABAergic neurons. Hum Mol Genet. 2021;30(14):1337–1348. https://doi.org/10.1093/hmg/ddab113.
van Berkel AA, Lammertse HCA, Öttl M, et al. Reduced MUNC18-1 levels, synaptic proteome changes, and altered network activity in STXBP1-related disorder patient neurons. Biol Psychiatry Glob Open Sci. 2024;4(1):284–298. https://doi.org/10.1016/j.bpsgos.2023.05.004.
Öttl M, Toonen RF, Verhage M. Reduced synaptic depression in human neurons carrying homozygous disease-causing STXBP1 variant L446F. Hum Mol Genet. 2024:ddae035. https://doi.org/10.1093/hmg/ddae035.
McLeod F, Dimtsi A, Marshall AC, et al. Altered synaptic connectivity in an in vitro human model of STXBP1 encephalopathy. Brain. 2023;146(3):850–857. https://doi.org/10.1093/brain/awac396.
Colasante G, Rubio A, Massimino L, et al. Direct neuronal reprogramming reveals unknown functions for known transcription factors. Front Neurosci. 2019;13:283. https://doi.org/10.3389/fnins.2019.00283.
Paşca SP. Assembling human brain organoids. Science. 2019;363(6423):126–127. https://doi.org/10.1126/science.aau5729.
Upadhya D, Attaluri S, Liu Y, et al. Grafted hPSC-derived GABA-ergic interneurons regulate seizures and specific cognitive function in temporal lobe epilepsy. NPJ Regen Med. 2022;7(1):38. https://doi.org/10.1038/s41536-022-00234-7.
Zhu Q, Mishra A, Park JS, et al. Human cortical interneurons optimized for grafting specifically integrate, abort seizures, and display prolonged efficacy without over-inhibition. Neuron. 2023;111(6):807–823.e7. https://doi.org/10.1016/j.neuron.2022.12.014.
Huang HY, Bach JR, Sharma HS, et al. The 2022 yearbook of neurorestoratology. J Neurorestoratol. 2023;11(2):100054. https://doi.org/10.1016/j.jnrt.2023.100054.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).