AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Efficacy of a combination of troxerutin and cerebroprotein hydrolysate in acute cerebral infarction: Meta-analysis and systematic review

Qingli Wanga,bYang Liua,bXiangyu Zhanga,bZhe Lia,bNan Lia,bV. Wee Yongc( )Mengzhou Xuea,b( )
Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary T2N 1N4, Alberta, Canada
Show Author Information

Abstract

Objective

To evaluate the efficacy and safety of combining troxerutin and cerebroprotein hydrolysate (TCH) for treating acute cerebral infarction via a systematic review.

Methods

The computer-based search encompassed eight databases—PubMed, Cochrane Library, Embase, Web of Science, China Biomedical Literature Database, China National Knowledge Infrastructure, Wanfang Data, and China Science and Technology Journal Database—from their establishment until December 2023. Randomized controlled trials that assessed TCH for acute cerebral infarction were selected according to inclusion and exclusion criteria. The data extraction, data quality evaluation, and meta-analysis were performed using RevMan 5.4.1 software.

Results

The analysis incorporated 18 studies encompassing 1,957 cases. Compared with the control group, the TCH treatment group had superior outcomes in effective rates (risk ratio [RR] = 1.24, 95% confidence interval [CI; 1.18, 1.30], Z = 8.84, p < 0.05), neurological deficit scores (mean difference [MD] = −3.71, 95% CI [−4.32, −3.10], Z = 11.92, p < 0.05), activity of daily living scores (MD = 13.32, 95% CI [11.66, 14.98], Z = 15.75, p < 0.05), changes in low shear viscosity (MD = −1.82, 95% CI [−2.57, −1.06], Z = 4.73, p < 0.05), and plasma fibrinogen levels (MD = −0.43, 95% CI [−0.47, −0.39], Z = 20.01, p < 0.05). However, there was no significant difference in adverse reaction between the two groups (RR = 0.72, 95% CI [0.45, 1.14], Z = 1.39, p = 0.16). No severe adverse drug reactions were observed in either group.

Conclusion

Combined TCH is effective and safe for treating acute cerebral infarction.

References

1

Takeda H, Yamaguchi T, Yano H, et al. Microglial metabolic disturbances and neuroinflammation in cerebral infarction. J Pharmacol Sci. 2021;145(1):130-139. https://doi.org/10.1016/j.jphs.2020.11.007.

2

Huang P, He XY, Xu M. Effect of argatroban injection on clinical efficacy in patients with acute cerebral infarction: preliminary findings. Eur Neurol. 2021;84(1):38-42. https://doi.org/10.1159/000512813.

3

Zhao YF, Zhang XJ, Chen XY, et al. Neuronal injuries in cerebral infarction and ischemic stroke: from mechanisms to treatment. Int J Mol Med. 2021;49(2):15. https://doi.org/10.3892/ijmm.2021.5070.

4

Xu LF, Yang XF, Gao H, et al. Clinical efficacy and safety analysis of argatroban and alteplase treatment regimens for acute cerebral infarction. J Neurorestoratol. 2022;10(3):100017. https://doi.org/10.1016/j.jnrt.2022.100017.

5

Lee TL, Chang YM, Sung PS. Clinical Updates on antiplatelet therapy for secondary prevention in acute ischemic stroke. Acta Neurol Taiwan. 2023;32(3): 138-144.

6

Azad TD, Veeravagu A, Steinberg GK. Neurorestoration after stroke. Neurosurg Focus. 2016;40(5):E2. https://doi.org/10.3171/2016.2.focus15637.

7

Nogueira RC, Lam MY, Llwyd O, et al. Cerebral autoregulation and response to intravenous thrombolysis for acute ischemic stroke. Sci Rep. 2020;10(1):10554. https://doi.org/10.1038/s41598-020-67404-9.

8

Li FY, Mao QQ, Wang JY, et al. Salidroside inhibited cerebral ischemia/ reperfusion-induced oxidative stress and apoptosis via Nrf2/Trx1 signaling pathway. Metab Brain Dis. 2022;37(8):2965-2978. https://doi.org/10.1007/s11011-022-01061-x.

9

Li SP, Bian LG, Fu XY, et al. Gastrodin pretreatment alleviates rat brain injury caused by cerebral ischemic-reperfusion. Brain Res. 2019;1712:207-216. https://doi.org/10.1016/j.brainres.2019.02.006.

10

Zhang HS, Liu MF, Ji XY, et al. Gastrodin combined with rhynchophylline inhibits cerebral ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p. Life Sci. 2019;239:116935. https://doi.org/10.1016/j.lfs.2019.116935.

11

Zhu T, Wang L, Wang LP, et al. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: applications for natural compounds from medicinal herbs. Biomed Pharmacother. 2022;148:112719. https://doi.org/10.1016/j.biopha.2022.112719.

12

Huang HY, Mao GS, Chen L, et al. Clinical neurorestorative cell therapies for stroke. Prog Brain Res. 2021;265:231-247. https://doi.org/10.1016/bs.pbr.2021.06.006.

13

Huang HY, Chen L, Mao GS, et al. Clinical neurorestorative cell therapies: developmental process, current state and future prospective. J Neurorestoratol. 2020;8(2):61-82. https://doi.org/10.26599/jnr.2020.9040009.

14

Sun JC, Xu GZ. Mesenchymal stem cell-derived exosomal miR-150-3p affects intracerebral hemorrhage by regulating TRAF6/NF-κB axis, gut microbiota and metabolism. Stem Cell Rev Rep. 2023;19(6):1907-1921. https://doi.org/10.1007/s12015-023-10541-1.

15

Yu QB, Jian Z, Yang D, et al. Perspective insights into hydrogels and nanomaterials for ischemic stroke. Front Cell Neurosci. 2023;16:1058753. https://doi.org/10.3389/fncel.2022.1058753.

16

Liu K, Li Y, Wang HM, et al. The immunohistochemical characterization of human fetal olfactory bulb and olfactory ensheathing cells in culture as a source for clinical CNS restoration. Anat Rec. 2010;293(3):359-369. https://doi.org/10.1002/ar.21030.

17

Chen D, Xi HT, Tan K, et al. Recovering voiding and sex function in a patient with chronic complete spinal cord injury by olfactory ensheathing cell transplantation. Case Rep Neurol Med. 2022;2022:9496652. https://doi.org/10.1155/ 2022/9496652.

18

Leng ZK, Kethidi N, Chang AJ, et al. Muse cells and neurorestoratology. J Neurorestoratol. 2019;7(1):18-25. https://doi.org/10.26599/jnr.2019.9040005.

19

Khan Malik AA, Ahmad W, Younas F, et al. Pretreatment with troxerutin protects/improves neurological deficits in a mouse model of traumatic brain injury. Heliyon. 2023;9(7):e18033. https://doi.org/10.1016/j.heliyon.2023.e18033.

20

Arab HH, Abd El-Aal SA, Eid AH, et al. Targeting inflammation, autophagy, and apoptosis by troxerutin attenuates methotrexate-induced renal injury in rats. Int Immunopharm. 2022;103:108284. https://doi.org/10.1016/j.intimp.2021.108284.

21

Sui RB, Zang L, Bai YJ. Administration of troxerutin and cerebroprotein hydrolysate injection alleviates cerebral ischemia/reperfusion injury by down-regulating caspase molecules. Neuropsychiatric Dis Treat. 2019;15: 2345-2352. https://doi.org/10.2147/NDT.S213212.

22

Zhào H, Wang R, Zhang Y, et al. Neuroprotective effects of troxerutin and cerebroprotein hydrolysate injection on the neurovascular unit in a rat model of Middle cerebral artery occlusion. Int J Neurosci. 2021;131(3):264-278. https://doi.org/10.1080/00207454.2020.1738431.

23

Chinese Society of Neurology and Chinese Society of Neurology Cerebrovascular Disease Group. Chinese guidelines for the diagnosis and treatment of acute ischemic stroke 2014. Chin J Neurol. 2015;48(4):246-257. https://doi.org/10.3760/cma.j.issn.1006-7876.2015.04.002.

25
Chinese Society of Neurology. Scoring criteria for the degree of clinical neurologic deficit in stroke patients. Chin J Neurol. 1996;6:62-64. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3U-fH-9bOx3lghTmrUThxliBPjPFipTNpCPhXm1TbS3AVaPB8MOf1RCy-OIMtVX9zqNRCGbPKk830MhgN0w5dUoIj8s9mFZ8m-3KOm9MPbbqoU3AWxLXaUj&uniplatform=NZKPT&flag=copy.
26

Chang HY, Ding Y. Effect of troxerutin cerebroprotein hydrolysate combined with shuxuening on neurological function and blood hypercoagulability in patients with acute cerebral infarction (in Chinese) China Pharm. 2018;27(23): 47-49. https://doi.org/10.3969/j.issn.1006-4931.2018.23.015.

27

Chen HB, Liang KS, Zhou SX, et al. Curative effect and security of troxerutin and cerebroprotein hydrolysate injection in acute cerebral infarction, a mul-ticenter, randomized, single blind and placebo control study (in Chinese) Chin J Neuroimmunol Neurol. 2016;23(4):251-255. https://doi.org/10.3969/j.issn.1006-2963.2016.04.006.

28

Ding DY. Effect of vinpocetine injection combined with cerebroprotein hydrolysate in the treatment of cerebral infarction. Shenzhen J Integ Med. 2020;30(1):180-182. https://doi.org/10.16458/j.cnki.1007-0893.2020.01.089.

29

Dong WT, Qu JG, Liu CY, et al. Therapeutic effect of Danhong combined with troxerutin cerebroprotein hydrolysate in the treatment of acute cerebral infarction. Guangzhou Med J. 2021;52(3):32-35. https://doi.org/10.3969/j.issn.1000-8535.2021.03.006.

30

Feng Q, Yu XF, Wang DP, et al. Analysis of the efficacy of troxerutin and cerebroprotein hydrolysate injection combined with edaravone in the treatment of acute cerebral infarction. Shenzhen J Integ Trad Chin West Med. 2020;30(24): 145-146. https://doi.org/10.16458/j.cnki.1007-0893.2020.24.069.

31

Li XX, Liu YF, Wen CM, et al. Clinical study on troxerutin and cerebroprotein hydrolysate combined with alteplase in treatment of acute cerebral infarction. Drugs & Clinic. 2022;37(8):1822-1826. https://doi.org/10.7501/j.issn.1674-5515.2022.08.025.

32
Liu JL. Troxerutin and cerebroprotein hydrolysate injection for the treatment of acute cerebral infarction. Qinghai Med J. 2013;43(7):16-17. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3W_3bLrzEb4A3zxhQhWZsB9YT748D836GRCqcZxAKnGHOVnz2p_WQSEOM-S5PiBuiJtjsNI3iIuF8mpQKpTqj3SsqSdJ83vBhLLyoLm-IYFwbSPmYa_ogTF&uniplatform=NZKPT&flag=copy.
33

Qiu LQ, Qiu HQ, Chen SS. Effect of edaravon-dexcamphenol combined with triqurutin brain protein hydrolysate on coagulation and neurological function in patients with acute ischemic stroke. China Mod Med. 2023;30(4):105-108. https://doi.org/10.3969/j.issn.1674-4721.2023.04.027.

34
Song JF. Efficacy of edaravone combined with troxerutin and cerebroprotein hydrolysate in patients with acute ischemic stroke. Tibetan Med. 2022;43(5): 62-64. https://kns.cnki.net/kcms2/article/abstract?v=z5VdU6XQV3UAj8aFHDTY6-M2NKK6DmLL88D64iWhuTSXUQ8_8Ho3g9WxI4m7LiC7Z63Y-LfgJLX_7HSHj_jPNmVniKuCicEsXec3gA5wJHTN9eY6oqnbvRchlOOce5FcOKyr2C63Eeg=&uniplatform=NZKPT&flag=copy.
35

Wu J. Clinical efficacy and its effect on neurological function of troxerutin brain protein hydrolyzate in the treatment of acute cerebral infarction. J Med Theory Prac. 2018;31(16):2380-2381. https://doi.org/10.3969/j.issn.1671-3141.2020.88.077, 2393.

36

Xin TX. Observation on the efficacy of vinpocetine combined with troxerutin and cerebroprotein hydrolysate injection in acute cerebral infarction. Henan Med Res. 2018;27(24):4545-4546. https://doi.org/10.3969/j.issn.1004-437X.2018.24.074.

37
Yan SP, Wang CY. Clinical observation on 157 cases of ischemic stroke treated with Puluodi. Prac J Card Cereb Pneum Vas Dis. 2006;14(10):790. https://doi.org/10.3969/j.issn.1008-5971.2006.10.016, 790.
38

Yang CL, Jing Y. Effect of urinary kallindinogenase combined with troxerutin and cerebroprotein hydrolysate injection on blood coagulation and nerve function in patients with acute cerebral infarction. Med Inform. 2020;33(18): 150-151. https://doi.org/10.3969/j.issn.1006-1959.2020.18.050.

39

Yu HM. Effect of clopidogrel combined with troxerutin and cerebroprotein hydrolysate injection on patients with cerebral infarction. J China Prescrip Drug. 2021;19(8):82-83. https://doi.org/10.3969/j.issn.1671-945X.2021.08.036.

40

Zhang HX. Efficacy and safety of edaravone combined with troxerutin and cerebroprotein hydrolysate in patients with acute ischemic stroke. Drugs Clinic. 2019;16(20):41-42. https://doi.org/10.3969/j.issn.1672-2809.2019.20.023.

41

Zhang JB, Zhang SS, Huang GW. Analysis of the effect of edaravone and troxerutin and cerebroprotein hydrolysate injection in the treatment of patients with acute cerebral infarction. Practical Clin J Integrated Tradit Chin West Med. 2021;21(12):98-99. https://doi.org/10.13638/j.issn.1671-4040.2021.12.048.

42

Zhu JL. Effect of urinary kallidinogenase combined with troxerutin and cerebroprotein hydrolysate injection on coagulation and neurological function of patients with acute cerebral infarction. J Clin Med Prac. 2016;20(9):17-20. https://doi.org/10.7619/jcmp.201609005.

43

Zou DY, Jiang B. Effect of troxerutinand cerebroprotein hydrolysate injection in adjuvant treatment of acute cerebral infarction and its influence on the neurological function and cerebral hemodynamics. J Clin Rat Drug Use. 2020;13(35):6-8+11. https://doi.org/10.15887/j.cnki.13-1389/r.2020.35.003.

44

Huang HT, Oo TT, Apaijai N, et al. An updated review of mitochondrial transplantation as a potential therapeutic strategy against cerebral ischemia and cerebral ischemia/reperfusion injury. Mol Neurobiol. 2023;60(4):1865-1883. https://doi.org/10.1007/s12035-022-03200-y.

45

Wen HJ, Lv MK. Correlation analysis between serum procalcitonin and infarct volume in young patients with acute cerebral infarction. Neurol Sci. 2021;42(8):3189-3196. https://doi.org/10.1007/s10072-020-04856-x.

46

Li XD, Bu SF, Pan RR, et al. The values of AHCY and CBS promoter methylation on the diagnosis of cerebral infarction in Chinese Han population. BMC Med Genom. 2020;13(1):163. https://doi.org/10.1186/s12920-020-00798-7.

47

Ebrahimi V, Rastegar-Moghaddam SH, Mohammadipour A. Therapeutic potentials of microRNA-126 in cerebral ischemia. Mol Neurobiol. 2023;60(4): 2062-2069. https://doi.org/10.1007/s12035-022-03197-4.

48

Huang HY, Chen L, Sanberg PR, et al. Beijing declaration of international association of neurorestoratology (2023 Xi’an version). J Neurorestoratol. 2023;11(2):100055. https://doi.org/10.1016/j.jnrt.2023.100055.

49

Xue MZ, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol. 2020;19(12): 1023-1032. https://doi.org/10.1016/S1474-4422(20)30364-1.

50

Zhang RY, Xue MZ, Yong VW. Central nervous system tissue regeneration after intracerebral hemorrhage: the next frontier. Cells. 2021;10(10):2513. https://doi.org/10.3390/cells10102513.

51

Chen L, Chen T, Mao GS, et al. Clinical neurorestorative therapeutic guideline for brainstem hemorrhage (2020 China version). J Neurorestoratol. 2020;8(4): 232-240. https://doi.org/10.26599/jnr.2020.9040024.

52

Zhang Z, Zhang SQ, Lui CNP, et al. Traditional Chinese medicine-based neurorestorative therapy for Alzheimer's and Parkinson's disease. J Neurorestoratol. 2019;7(4):207-222. https://doi.org/10.26599/jnr.2019.9040026.

53

Huang HY, Chen L, Moviglia G, et al. Advances and prospects of cell therapy for spinal cord injury patients. J Neurorestoratol. 2022;10(1):13-30. https://doi.org/10.26599/jnr.2022.9040007.

54

Zamanian M, Bazmandegan G, Sureda A, et al. The protective roles and molecular mechanisms of troxerutin (vitamin P4) for the treatment of chronic diseases: a mechanistic review. Curr Neuropharmacol. 2021;19(1):97-110. https://doi.org/10.2174/1570159X18666200510020744.

55

Ahmadi Z, Mohammadinejad R, Roomiani S, et al. Biological and therapeutic effects of troxerutin: molecular signaling pathways come into view. J Pharmacopuncture. 2021;24(1):1-13. https://doi.org/10.3831/KPI.2021.24.1.1.

56

Ma WB, Wang SX, Liu XL, et al. Protective effect of troxerutin and cerebroprotein hydrolysate injection on cerebral ischemia through inhibition of oxidative stress and promotion of angiogenesis in rats. Mol Med Rep. 2019;19(4):3148-3158. https://doi.org/10.3892/mmr.2019.9960.

57

Chen MX, Song W, Chen ZJ, et al. Cerebroprotein hydrolysate attenuates neurodegenerative changes in Alzheimer's mice model via ferroptosis pathway. Front Pharmacol. 2023;14:1177503. https://doi.org/10.3389/fphar.2023.1177503.

58

Wu XL, Liu YJ, Zhu L, et al. Cerebroprotein hydrolysate-I inhibits hippocampal neuronal apoptosis by activating PI3K/akt signaling pathway in vascular dementia mice. Neuropsychiatric Dis Treat. 2021;17:2359-2368. https://doi.org/10.2147/NDT.S311760.

59

Ren YQ, Ma XQ, Wang TT, et al. The cerebroprotein hydrolysate-I plays a neuroprotective effect on cerebral ischemic stroke by inhibiting MEK/ERK1/2 signaling pathway in rats. Neuropsychiatric Dis Treat. 2021;17:2199-2208. https://doi.org/10.2147/NDT.S313807.

60

Cao W, Zhang C, Chen R, et al. A novel cerebroprotein hydrolysate, CH1, ameliorates chronic focal cerebral ischemia injury by promoting white matter integrity via the shh/ptch-1/gli-1 signaling pathway. Neuropsychiatric Dis Treat. 2020;16:3209-3224. https://doi.org/10.2147/NDT.S289990.

61

An L, Han X, Li H, et al. Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice. Genet Mol Res. 2016;15(3):15038804. https://doi.org/10.4238/gmr.15038804.

62

Baluchnejadmojarad T, Jamali-Raeufy N, Zabihnejad S, et al. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson's disease: possible involvement of PI3K/ERβ signaling. Eur J Pharmacol. 2017;801: 72-78. https://doi.org/10.1016/j.ejphar.2017.03.002.

63

Wang LB, Wang HC, Tang K, et al. Transcriptome analysis reveals the effects of troxerutin and cerebroprotein hydrolysate injection on injured spinal cords in rats. Evid Based Comp Alter Med. 2020;2020:3561235. https://doi.org/10.1155/ 2020/3561235.

64

Babri S, Mohaddes G, Feizi I, et al. Effect of troxerutin on synaptic plasticity of hippocampal dentate gyrus neurons in a β-amyloid model of Alzheimer׳s disease: an electrophysiological study. Eur J Pharmacol. 2014;732:19-25. https://doi.org/10.1016/j.ejphar.2014.03.018.

65

Farajdokht F, Amani M, Mirzaei Bavil F, et al. Troxerutin protects hippocampal neurons against amyloid beta-induced oxidative stress and apoptosis. EXCLI J. 2017;16:1081-1089. https://doi.org/10.17179/excli2017-526.

66

Ibrahim RR, El-Esawy RO, El-Sakaa MH. Troxerutin downregulates C/EBP-β gene expression via modulating the IFNγ-ERK1/2 signaling pathway to ameliorate rotenone-induced retinal neurodegeneration. J Biochem Mol Toxicol. 2020;34(6):e22482. https://doi.org/10.1002/jbt.22482.

67

Tang R, Sang N, Xiang F, et al. Efficacy of troxerutin and cerebroprotein hydrolysate injection on acute cerebral infarction (in Chinese) World Clin Drugs. 2017;38(1):28-35. https://doi.org/10.13683/j.wph.2017.01.006.

68

Zhang H, Zhang H, Liu P, et al. Efficacy and safety of troxerutin and cerebroprotein hydrolysate injection on acute cerebral ischemic stroke: a systematic review and Meta-analysis (in Chinese) Chin J N Drugs. 2019;28(17): 2170-2176. https://doi.org/10.3969/j.issn.1003-3734.2019.17.021.

Journal of Neurorestoratology
Article number: 100137
Cite this article:
Wang Q, Liu Y, Zhang X, et al. Efficacy of a combination of troxerutin and cerebroprotein hydrolysate in acute cerebral infarction: Meta-analysis and systematic review. Journal of Neurorestoratology, 2024, 12(3): 100137. https://doi.org/10.1016/j.jnrt.2024.100137

64

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 12 January 2024
Revised: 31 March 2024
Accepted: 11 April 2024
Published: 13 June 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return