AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Editorial | Open Access

The potential of diverse brain–computer interface signal acquisition techniques in neurorestoratology

Yike SunaXiaogang ChenbXiaorong Gaoa( )
Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
Show Author Information

References

1

Sun YK, Chen XG, Liu BC, et al. Signal acquisition of brain–computer interfaces: a medical-engineering crossover perspective review. Fundam Res. 2024. https://doi.org/10.1016/j.fmre.2024.04.011.

2

Ang KK, Chua KSG, Phua KS, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin EEG Neurosci. 2015;46(4):310–320. https://doi.org/10.1177/1550059414522229.

3

Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci. 2020;1464(1):5–29. https://doi.org/10.1111/nyas.13948.

4

Sun YK, Liang LY, Sun JN, et al. A binocular vision SSVEP brainecomputer interface paradigm for dual-frequency modulation. IEEE Trans Biomed Eng. 2023;70(4):1172–1181. https://doi.org/10.1109/TBME.2022.3212192.

5

Sun YK, Shen AR, Du CL, et al. A real-time non-implantation bi-directional brain-computer interface solution without stimulation artifacts. IEEE Trans Neural Syst Rehabil Eng. 2023;31:3566–3575. https://doi.org/10.1109/TNSRE.2023.3311750.

6

Athavipach Pan-ngum, Israsena. A wearable In-ear EEG device for emotion monitoring. Sensors. 2019;19(18):4014. https://doi.org/10.3390/s19184014.

7

Oxley TJ, Opie NL, John SE, et al. Minimally invasive endovascular stentelectrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol. 2016;34(3):320–327. https://doi.org/10.1038/nbt.3428.

8

Schalk G, Leuthardt EC. Brain-computer interfaces using electrocorticographic signals. IEEE Rev Biomed Eng. 2011;4:140–154. https://doi.org/10.1109/RBME.2011.2172408.

9

Viana PF, Remvig LS, Duun-Henriksen J, et al. Signal quality and power spectrum analysis of remote ultra long-term subcutaneous EEG. Epilepsia. 2021;62(8):1820–1828. https://doi.org/10.1111/epi.16969.

10

Vaskov AK, Irwin ZT, Nason SR, et al. Cortical decoding of individual finger group motions using ReFIT Kalman filter. Front Neurosci. 2018;12:751. https://doi.org/10.3389/fnins.2018.00751.

11

Willett FR, Avansino DT, Hochberg LR, et al. High-performance brain-to-text communication via handwriting. Nature. 2021;593(7858):249–254. https://doi.org/10.1038/s41586-021-03506-2.

12

Steinmetz NA, Aydin C, Lebedeva A, et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science. 2021;372(6539):eabf4588. https://doi.org/10.1126/science.abf4588.

Journal of Neurorestoratology
Article number: 100138
Cite this article:
Sun Y, Chen X, Gao X. The potential of diverse brain–computer interface signal acquisition techniques in neurorestoratology. Journal of Neurorestoratology, 2024, 12(3): 100138. https://doi.org/10.1016/j.jnrt.2024.100138

105

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 20 May 2024
Published: 23 July 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return