AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1,000.9 KB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

A new horizon for the steroidal alkaloid cyclovirobuxine D (huangyangning) and analogues: Anticancer activities and mechanism of action

Christian Baillya( )Jihong Zhangb
Oncowitan, Lille (Wasquehal), 59290, France
Medical School, Kunming University of Science and Technology, Kunming, 650500, China

Chemical compound studied in this article: Cyclovirobuxine D (PubChem CID: 260439).

Peer review under responsibility of Beijing University of Chinese Medicine.

Show Author Information

Abstract

The steroidal alkaloid cyclovirobuxine D (Cvb-D) is the active principle of the oral drug huangyangning used for many years in China for the treatment of cardiovascular and cerebrovascular diseases. The drug is listed in the Chinese pharmacopeia. Recent studies have revealed that this unsung alkaloid also displays anticancer properties in vitro and in vivo. The drug activates several signaling pathways, and notably represses phosphorylation of proteins EGFR, ERK, Akt, mTOR. Thereby, Cvb-D exerts antiproliferative and antimetastatic activities. In the present review, the anticancer effects of Cvb-D and related natural products isolated from Buxus species have been analyzed. The molecular targets of Cvb-D are unknown at present, but hypotheses are formulated based on the signaling pathways modulated by the drug and the analogy with other compounds. Proteins EGFR and CTHRC1, implicated in the antiproliferative action of Cvb-D, could be considered as upstream targets. A bolder assumption is also formulated with the metastasis-associated protein S100A4 as a potential co-target for Cvb-D. This review aims to shed light on the anticancer properties of Cvb-D and to encourage further mechanistic studies with this drug with a good safety profile and a recognized anti-cardiovascular efficacy.

References

1

Liang D, Wang B, Wang YQ, Zhang HL, Yang SN, Li A. Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5. Huanjing Kexue. 2014;35(9):3605-3611 [Chinese].

2
ShanPMaoRBXuJMLiJXThe beneficial effects of cyclovirobuxine D (CVBD) in coronary heart disease. A double-blind analysis of 110 casesJ Tradit Chin Med1984411519

Shan P, Mao RB, Xu JM, Li JX. The beneficial effects of cyclovirobuxine D (CVBD) in coronary heart disease. A double-blind analysis of 110 cases. J Tradit Chin Med. 1984;4(1):15-19.

3
DuJChiuMNieRThree steroidal alkaloids from Buxus microphyllaJ Asian Nat Prod Res19991423924410.1080/10286029908039871

Du J, Chiu M, Nie R. Three steroidal alkaloids from Buxus microphylla. J Asian Nat Prod Res. 1999;1(4):239-244.

4
YanYXHuXDChenJCCytotoxic triterpenoid alkaloids from Buxus microphyllaJ Nat Prod200972230831110.1021/np800719h

Yan YX, Hu XD, Chen JC, et al. Cytotoxic triterpenoid alkaloids from Buxus microphylla. J Nat Prod. 2009;72(2):308-311.

5

Yan YX, Chen JC, Sun Y, et al. Triterpenoid alkaloids from Buxus microphylla. Chem Biodivers. 2010;7(7):1822-1827.

6

Bai ST, Zhu GL, Peng XR, et al. Cytotoxicity of triterpenoid alkaloids from Buxus microphylla against human tumor cell lines. Molecules. 2016;21(9):1125.

7

Brown Jr KS, Kupchan SM. Buxus alkaloids. Ⅵ. The constitution of Cyclovirobuxine-D. Tetrahedron Lett. 1964;5(39):2895-2900.

8

Wang LZ, Shan WD. The isolation and identification of Cyclovirobuxine D from Buxus microphylla Sieb. Zucc. var. sinica Rehd. et Wils (Xiaoyehuangyang). Jiangsu Med J. 1979;10:14-16 [Chinese].

9

Liang BW, Deng CA, Wang XB, et al. Isolation and structural elucidation of Buxus alkaloids Ⅰ, Ⅱ, Ⅲ, Ⅳ. Chin Pharmacol Bull. 1981;16:195-199 [Chinese].

10
He XL, Wang SB, Du GH. Cyclovirobuxine. Natural Small Molecule Drugs from Plants. Singapore: Springer Nature Singapore Pte Ltd; 2018:25-29.
11

Ke ZC, Hou XF, Jia XB. Design and optimization of self-nanoemulsifying drug delivery systems for improved bioavailability of cyclovirobuxine D. Drug Des Dev Ther. 2016;10:2049-2060.

12

Cheng WH, Fan BL, Song Y, Tian H. Toxicity of Huangyangning dropping pills on rats after repeated gastric administration for 8 weeks. Pharm Inf. 2019;8(2):29-42.

13

Yu B, Fang TH, Lv GH, Xu HQ, Lu JF. Beneficial effect of Cyclovirobuxine D on heart failure rats following myocardial infarction. Fitoterapia. 2011;82(6):868-877.

14

Yu B, Ruan M, Zhou LL, Xu L, Fang TH. Influence of cyclovirobuxine D on intracellular [Ca(2+)] regulation and the expression of the calcium cycling proteins in rat myocytes. Fitoterapia. 2012;83(8):1653-1665.

15
XuYNWangYBoSJiangYLiuXDShenXCAmeliorated effects of cyclovirobuxine D on oxidative stress and energy metabolism in experimental cardiac injured rats induced by sympathetic overactivity in vivoZhong Yao Cai201437712131217

Xu YN, Wang Y, Bo S, Jiang Y, Liu XD, Shen XC. Ameliorated effects of cyclovirobuxine D on oxidative stress and energy metabolism in experimental cardiac injured rats induced by sympathetic overactivity in vivo. Zhong Yao Cai. 2014;37(7):1213-1217 [Chinese].

16

Zhou L, Ao LY, Yan YY, et al. JLX001 ameliorates ischemia/reperfusion injury by reducing neuronal apoptosis via down-regulating JNK signaling pathway. Neuroscience. 2019;418:189-204.

17

Yan YY, Ao LY, Zhou L, et al. Therapeutic effects of JLX001 on cerebral ischemia through inhibiting platelet activation and thrombus formation in rats. Biomed Pharmacother. 2018;106:805-812.

18

Qiu YY, Yin QY, Fei YX, et al. JLX001 modulated the inflammatory reaction and oxidative stress in pMCAO rats via inhibiting the TLR2/4-NF-κB signaling pathway. Neurochem Res. 2019;44(8):1924-1938.

19

Ao LY, Li WT, Zhou L, et al. Therapeutic effects of JLX-001 on ischemic stroke by inducing autophagy via AMPK-ULK1 signaling pathway in rats. Brain Res Bull. 2019;153:162-170.

20
LuJSunDPGaoSGaoYYeJTLiuPQCyclovirobuxine D induces autophagy-associated cell death via the Akt/mTOR pathway in MCF-7 human breast cancer cellsJ Pharmacol Sci20141251748210.1254/jphs.14013FP

Lu J, Sun DP, Gao S, Gao Y, Ye JT, Liu PQ. Cyclovirobuxine D induces autophagy-associated cell death via the Akt/mTOR pathway in MCF-7 human breast cancer cells. J Pharmacol Sci. 2014;125(1):74-82.

21

Wu J, Tan ZJ, Chen J, Dong C. Cyclovirobuxine D inhibits cell proliferation and induces mitochondria-mediated apoptosis in human gastric cancer cells. Molecules. 2015;20(11):20659-20668.

22
GuoDLiJRWangYLeiLSYuCLChenNNCyclovirobuxinum D suppresses lipopolysaccharide-induced inflammatory responses in murine macrophages in vitro by blocking JAK-STAT signaling pathwayActa Pharmacol Sin201435677077810.1038/aps.2014.16

Guo D, Li JR, Wang Y, Lei LS, Yu CL, Chen NN. Cyclovirobuxinum D suppresses lipopolysaccharide-induced inflammatory responses in murine macrophages in vitro by blocking JAK-STAT signaling pathway. Acta Pharmacol Sin. 2014;35(6):770-778.

23

Zhou LQ, Tang H, Wang F, et al. Cyclovirobuxine D inhibits cell proliferation and migration and induces apoptosis in human glioblastoma multiforme and low-grade glioma. Oncol Rep. 2020;43(6):807-816.

24

Zhang JW, Chen YD, Lin J, et al. Cyclovirobuxine D exerts anticancer effects by suppressing the EGFR-FAK-AKT/ERK1/2-Slug signaling pathway in human hepatocellular carcinoma. DNA Cell Biol. 2020;39(3):355-367.

25

Jiang FQ, Chen YD, Ren S, et al. Cyclovirobuxine D inhibits colorectal cancer tumorigenesis via the CTHRC1-AKT/ERK-Snail signaling pathway. Int J Oncol. 2020;57(1):183-196.

26
WuQYangQRSunHSRole of collagen triple helix repeat containing-1 in tumor and inflammatory diseasesJ Canc Res Therapeut201713462162410.4103/jcrt.JCRT_410_17

Wu Q, Yang QR, Sun HS. Role of collagen triple helix repeat containing-1 in tumor and inflammatory diseases. J Canc Res Therapeut. 2017;13(4):621-624.

27

Hu D, Liu XY, Wang YY, Chen SZ. Cyclovirobuxine D ameliorates acute myocardial ischemia by K(ATP) channel opening, nitric oxide release and anti-thrombosis. Eur J Pharmacol. 2007;569(1‒2):103-109.

28

Jiang ZH, Fu LY, Xu YN, et al. Cyclovirobuxine D protects against diabetic cardiomyopathy by activating Nrf 2-mediated antioxidant responses. Sci Rep. 2020;10(1):6427.

29

Guo Q, Guo JB, Yang R, et al. Cyclovirobuxine D attenuates doxorubicin-induced cardiomyopathy by suppression of oxidative damage and mitochondrial biogenesis impairment. Oxid Med Cell Longev. 2015;2015:151972.

30
XiangZNYiWQWangYLBuxaustroines A-N, a series of 17(13→18) abeo-cycloartenol triterpenoidal alkaloids from Buxus austro-yunnanensis and their cardioprotective activitiesJ Nat Prod201982113111312010.1021/acs.jnatprod.9b00652

Xiang ZN, Yi WQ, Wang YL, et al. Buxaustroines A-N, a series of 17(13→18) abeo-cycloartenol triterpenoidal alkaloids from Buxus austro-yunnanensis and their cardioprotective activities. J Nat Prod. 2019;82(11):3111-3120.

31
SaleemHHtarTTNaiduRInvestigations into the therapeutic effects of aerial and stem parts of Buxus papillosa C.K. Schneid.: In vitro chemical, biological and toxicological perspectivesJ Pharmaceut Biomed Anal201916612813810.1016/j.jpba.2019.01.007

Saleem H, Htar TT, Naidu R, et al. Investigations into the therapeutic effects of aerial and stem parts of Buxus papillosa C.K. Schneid.: In vitro chemical, biological and toxicological perspectives. J Pharmaceut Biomed Anal. 2019;166:128-138.

32

Mothana RA, Grünert R, Lindequist U, Bednarski PJ. Study of the anticancer potential of Yemeni plants used in folk medicine. Pharmazie. 2007;62(4):305-307.

33

Ait-Mohamed O, Battisti V, Joliot V, et al. Acetonic extract of Buxus sempervirens induces cell cycle arrest, apoptosis and autophagy in breast cancer cells. PloS One. 2011;6(9):e24537.

34

Devkota KP, Lenta BN, Fokou PA, Sewald N. Terpenoid alkaloids of the Buxaceae family with potential biological importance. Nat Prod Rep. 2008;25(3):612-630.

35

Ata A, Andersh BJ. Buxus steroidal alkaloids: chemistry and biology. Alkaloids - Chem Biol. 2008;66:191-213.

36

Althaus JB, Jerz G, Winterhalter P, Kaiser M, Brun R, Schmidt TJ. Antiprotozoal activity of Buxus sempervirens and activity-guided isolation of O-tigloylcyclovirobuxeine-B as the main constituent active against Plasmodium falciparum. Molecules. 2014;19(5):6184-6201.

37
NnadiCOAlthausJBNwodoNJSchmidtTJA 3D-QSAR study on the antitrypanosomal and cytotoxic activities of steroid alkaloids by comparative molecular field analysisMolecules2018235111310.3390/molecules23051113

Nnadi CO, Althaus JB, Nwodo NJ, Schmidt TJ. A 3D-QSAR study on the antitrypanosomal and cytotoxic activities of steroid alkaloids by comparative molecular field analysis. Molecules. 2018;23(5):1113.

38

Ata A, Iverson CD, Kalhari KS, et al. Triterpenoidal alkaloids from Buxus hyrcana and their enzyme inhibitory, anti-fungal and anti-leishmanial activities. Phytochemistry. 2010;71(14‒15):1780-1786.

39

Khalid A, Azim MK, Parveen S, Atta-ur-Rahman, Choudhary MI. Structural basis of acetylcholinesterase inhibition by triterpenoidal alkaloids. Biochem Biophys Res Commun. 2005;331(4):1528-1532.

40

Choudhary MI, Shahnaz S, Parveen S, et al. New cholinesterase-inhibiting triterpenoid alkaloids from Buxus hyrcana. Chem Biodivers. 2006;3(9):1039-1052.

41

Lam CW, Wakeman A, James A, Ata A, Gengan RM, Ross SA. Bioactive steroidal alkaloids from Buxus macowanii Oliv. Steroids. 2015;95:73-79.

42

Wang YL, Wu W, Su YN, et al. Buxus alkaloid compound destabilizes mutant p53 through inhibition of the HSF1 chaperone axis. Phytomedicine. 2020;68:153187.

43

Neitzel C, Seiwert N, Göder A, et al. Lipoic acid synergizes with antineoplastic drugs in colorectal cancer by targeting p53 for proteasomal degradation. Cells. 2019;8(8):794.

44

Zhang SL, Zhou LL, Hong B, et al. Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53. Canc Res. 2015;75(18):3842-3852.

45
TangFMinLSeebacherNATargeting mutant TP53 as a potential therapeutic strategy for the treatment of osteosarcomaJ Orthop Res201937378979810.1002/jor.24227

Tang F, Min L, Seebacher NA, et al. Targeting mutant TP53 as a potential therapeutic strategy for the treatment of osteosarcoma. J Orthop Res. 2019;37(3):789-798.

46

Mesaik MA, Halim SA, Ul-Haq Z, et al. Immunosuppressive activity of buxidin and E-buxenone from Buxus hyrcana. Chem Biol Drug Des. 2010;75(3):310-317.

47

Raghunath A, Nagarajan R, Sundarraj K, Palanisamy K, Perumal E. Identification of compounds that inhibit the binding of Keap1a/Keap1b Kelch DGR domain with Nrf 2 ETGE/DLG motifs in zebrafish. Basic Clin Pharmacol Toxicol. 2019;125(3):259-270.

48

Park EH, Kim S, Jo JY, et al. Collagen triple helix repeat containing-1 promotes pancreatic cancer progression by regulating migration and adhesion of tumor cells. Carcinogenesis. 2013;34(3):694-702.

49

Ding XS, Huang RH, Zhong YM, et al. CTHRC1 promotes gastric cancer metastasis via HIF-1α/CXCR4 signaling pathway. Biomed Pharmacother. 2020;123:109742.

50

Ding D, Han SY, Zhang H, He Y, Li Y. Predictive biomarkers of colorectal cancer. Comput Biol Chem. 2019;83:107106.

51

Liu Y, Abulimiti N, Wang C. Collagen triple helix repeat containing 1 expression in osteosarcoma: a new predictor of prognosis. Ann Clin Lab Sci. 2018;48(3):338-344.

52

Zhou HF, Su LB, Liu C, et al. CTHRC1 may serve as a prognostic biomarker for hepatocellular carcinoma. OncoTargets Ther. 2019;12:7823-7831.

53

Lv YF, Zhang LQ, Ma JY, Fei XW, Xu KH, Lin J. CTHRC1 overexpression promotes ectopic endometrial stromal cell proliferation, migration and invasion via activation of the Wnt/β-catenin pathway. Reprod Biomed Online. 2020;40(1):26-32.

54

Cui XX, Ding HM, Gu F, Lv YY, Xing X, Zhang R. Inhibition of CTHRC-1 by its specific monoclonal antibody attenuates cervical cancer cell metastasis. Biomed Pharmacother. 2019;110:758-763.

55
GuoBYYanHLiLYYinKMJiFZhangSCollagen triple helix repeat containing 1 (CTHRC1) activates Integrin β3/FAK signaling and promotes metastasis in ovarian cancerJ Ovarian Res201710169

Guo BY, Yan H, Li LY, Yin KM, Ji F, Zhang S. Collagen triple helix repeat containing 1 (CTHRC1) activates Integrin β3/FAK signaling and promotes metastasis in ovarian cancer. J Ovarian Res. 2017;10(1):69.

10.1186/s13048-017-0358-8
56

Vincken JP, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry. 2007;68(3):275-297.

57
Tavarez-SantamaríaZJacobo-HerreraNJRocha-ZavaletaLZentella-DehesaACouder-GarcíaBDCMartínez-VázquezMA higher frequency administration of the nontoxic cycloartane-type triterpene argentatin a improved its anti-tumor activityMolecules2020258178010.3390/molecules25081780

Tavarez-Santamaría Z, Jacobo-Herrera NJ, Rocha-Zavaleta L, Zentella-Dehesa A, Couder-García BDC, Martínez-Vázquez M. A higher frequency administration of the nontoxic cycloartane-type triterpene argentatin a improved its anti-tumor activity. Molecules. 2020;25(8):1780.

58

Wu XX, Yue GG, Dong JR, et al. Actein inhibits tumor growth and metastasis in HER2-positive breast tumor bearing mice via suppressing AKT/mTOR and Ras/Raf/MAPK signaling pathways. Front Oncol. 2020;10:854.

59
KanedaTMatsumotoMSotozonoYCycloartane triterpenoid (23R, 24E)-23-acetoxymangiferonic acid inhibited proliferation and migration in B16-F10 melanoma via MITF downregulation caused by inhibition of both β-catenin and c-Raf-MEK1-ERK signaling axisJ Nat Med2019731475810.1007/s11418-018-1233-7

Kaneda T, Matsumoto M, Sotozono Y, et al. Cycloartane triterpenoid (23R, 24E)-23-acetoxymangiferonic acid inhibited proliferation and migration in B16-F10 melanoma via MITF downregulation caused by inhibition of both β-catenin and c-Raf-MEK1-ERK signaling axis. J Nat Med. 2019;73(1):47-58.

60
LoweHIWatsonCTBadalSToyangNJBryantJCycloartane-3,24,25-triol inhibits MRCKα kinase and demonstrates promising anti prostate cancer activity in vitroCanc Cell Int20121214610.1186/1475-2867-12-46

Lowe HI, Watson CT, Badal S, Toyang NJ, Bryant J. Cycloartane-3,24,25-triol inhibits MRCKα kinase and demonstrates promising anti prostate cancer activity in vitro. Canc Cell Int. 2012;12(1):46.

61
UnbekandtMOlsonMFThe actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancerJ Mol Med (Berl)201492321722510.1007/s00109-014-1133-6

Unbekandt M, Olson MF. The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. J Mol Med (Berl). 2014;92(3):217-225.

62

Celano SL, Yco LP, Kortus MG, et al. Identification of kinases responsible for p53-dependent autophagy. iScience. 2019;15:109-118.

63

Unbekandt M, Belshaw S, Bower J, et al. Discovery of potent and selective MRCK inhibitors with therapeutic effect on skin cancer. Canc Res. 2018;78(8):2096-2114.

64

Liao X, Zhang QY, Xu L, Zhang HY. Potential targets of actein identified by systems chemical biology methods. ChemMedChem. 2020;15(6):473-480.

65

Li YN, Wang J, Song K, et al. S100A4 promotes hepatocellular carcinogenesis by intensifying fibrosis-associated cancer cell stemness. OncoImmunology. 2020;9(1):1725355.

66

Zhu K, Huang WW, Wang WJ, et al. Up-regulation of S100A4 expression by HBx protein promotes proliferation of hepatocellular carcinoma cells and its correlation with clinical survival. Gene. 2020;749:144679.

67

Zhang JH, Hou SS, Gu JC, et al. S100A4 promotes colon inflammation and colitis-associated colon tumorigenesis. OncoImmunology. 2018;7(8):e1461301.

68
DestekSGulVOS100A4 may be a good prognostic marker and a therapeutic target for colon cancerJ Oncol201820181828791

Destek S, Gul VO. S100A4 may be a good prognostic marker and a therapeutic target for colon cancer. J Oncol. 2018;2018:1828791.

10.1155/2018/1828791
69

Fei F, Liu K, Li CY, et al. Molecular mechanisms by which S100A4 regulates the migration and invasion of PGCCs with their daughter cells in human colorectal cancer. Front Oncol. 2020;10:182.

70

Klingelhöfer J, Møller HD, Sumer EU, et al. Epidermal growth factor receptor ligands as new extracellular targets for the metastasis-promoting S100A4 protein. FEBS J. 2009;276(20):5936-5948.

71

Pankratova S, Klingelhofer J, Dmytriyeva O, et al. The S100A4 protein signals through the ErbB4 receptor to promote neuronal survival. Theranostics. 2018;8(14):3977-3990.

72

Buetti-Dinh A, Pivkin IV, Friedman R. S100A4 and its role in metastasis – simulations of knockout and amplification of epithelial growth factor receptor and matrix metalloproteinases. Mol Biosyst. 2015;11(8):2247-2254.

73

Cho CC, Chou RH, Yu C. Amlexanox blocks the interaction between S100A4 and epidermal growth factor and inhibits cell proliferation. PloS One. 2016;11(8):e0161663.

74

Ecsédi P, Gógl G, Hóf H, Kiss B, Harmat V, Nyitray L. Structure determination of the transactivation domain of p53 in complex with S100A4 using annexin A2 as a crystallization chaperone. Structure. 2020;28(8):943-953.

75

Abou-Salim MA, Shaaban MA, Abd El Hameid MK, Elshaier YAMM, Halaweish F. Design, synthesis and biological study of hybrid drug candidates of nitric oxide releasing cucurbitacin-inspired estrone analogs for treatment of hepatocellular carcinoma. Bioorg Chem. 2019;85:515-533.

76
PengBHeRXuQHGinsenoside 20(S)-protopanaxadiol inhibits triple-negative breast cancer metastasis in vivo by targeting EGFR-mediated MAPK pathwayPharmacol Res2019142113

Peng B, He R, Xu QH, et al. Ginsenoside 20(S)-protopanaxadiol inhibits triple-negative breast cancer metastasis in vivo by targeting EGFR-mediated MAPK pathway. Pharmacol Res. 2019;142:1-13.

10.1016/j.phrs.2019.02.003
77

Hong SH, Ku JM, Lim YS, et al. Cucurbitacin D overcomes gefitinib resistance by blocking EGF binding to EGFR and inducing cell death in NSCLCs. Front Oncol. 2020;10:62.

78

Zhang TH, Liang Y, Zuo P, et al. 20(S)-Protopanaxadiol blocks cell cycle progression by targeting epidermal growth factor receptor. Food Chem Toxicol. 2020;135:111017.

79

Huang HB, Zhang GG, Zhou YQ, et al. Reverse screening methods to search for the protein targets of chemopreventive compounds. Front Chem. 2018;6:138.

80

Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331.

81

Wang W, Xiong XH, Li X, Zhang QY, Yang WT, Du LF. In Silico investigation of the anti-tumor mechanisms of epigallocatechin-3-gallate. Molecules. 2019;24(7):1445.

82
HanTYYongJJLiuOGuXSZhangWNYangJHPreparation and characterization of wet-milled cyclovirobuxine D nanosuspensionsJ Therm Anal Calorim20201391959197010.1007/s10973-019-08574-1

Han TY, Yong JJ, Liu O, Gu XS, Zhang WN, Yang JH. Preparation and characterization of wet-milled cyclovirobuxine D nanosuspensions. J Therm Anal Calorim. 2020;139:1959-1970.

83

Dey P, Kundu A, Chakraborty HJ, et al. Therapeutic value of steroidal alkaloids in cancer: current trends and future perspectives. Int J Canc. 2019;145(7):1731-1744.

Journal of Traditional Chinese Medical Sciences
Pages 337-344
Cite this article:
Bailly C, Zhang J. A new horizon for the steroidal alkaloid cyclovirobuxine D (huangyangning) and analogues: Anticancer activities and mechanism of action. Journal of Traditional Chinese Medical Sciences, 2020, 7(4): 337-344. https://doi.org/10.1016/j.jtcms.2020.10.002

348

Views

7

Downloads

1

Crossref

5

Scopus

Altmetrics

Received: 06 July 2020
Revised: 12 October 2020
Accepted: 13 October 2020
Published: 17 October 2020
© 2020 Beijing University of Chinese Medicine.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return