AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fabrication of superhydrophobic reduced-graphene oxide/nickel coating with mechanical durability, self-cleaning and anticorrosion performance

Zengguo BaiBin Zhang( )
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang, 110819, PR China
Show Author Information

Abstract

There is a great challenge to fabricate superhydrophobic coating with excellent mechanical durability and corrosion resistance. Inspired by the pinecone-shaped structure, a novel reduced-graphene oxide (rGO)/Ni composite coating with pinecone-like micro/nanostructures was fabricated successfully on a stainless steel substrate using a simple electrodeposition method combining Ni pre-deposition and an elevated current assistant approach. The results show that the coating is of self-cleaning and superhydrophicity with a water contact angle (CA) of 162.7°±0.8° and a sliding angle (SA) of 2.5°±1.0°. Importantly, the coating still maintains the excellent self-cleaning and superhydrophicity, water CA of 155.8°±1.2° and SA of 5.9°±1.2°, even after 100-cycle mechanical abrasion. Meanwhile, the coating also exhibits good anticorrosion performance in 3.5 wt% NaCl solution, with 99.98% inhibition efficiency. The simple fabrication method may provide a cost-effective way to prepare mechanically durable, anticorrosive, self-cleaning and superhydrophobic coatings on metal substrates.

References

[1]
C.W. Lo, V. Sahoo, M.C. Lu, Control of Ice Formation 11 (3) (2017) 2665–2674, https://doi.org/10.1021/acsnano.6b07348.
[2]

M.Q. Zhang, S.H. Zhan, Z.Z. He, J.S. Wang, L. Wang, Y.M. Zheng, J. Liu, Robust electrical uni-directional de-icing surface with liquid metal (Ga90In10) and ZnO nano-petal composite coatings, Mater. Des. 126 (2017) 291–296, https://doi.org/10.1016/j.matdes.2017.04.006.

[3]

T.X. Zhu, S.H. Li, J.Y. Huang, M. Mihailiasa, Y.K. Lai, Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation, Mater. Des. 134 (2017) 342–351, https://doi.org/10.1016/j.matdes.2017.08.071.

[4]

S.H. Liu, X.J. Liu, S.S. Latthe, L. Gao, S. An, S.S. Yoon, B.S. Liu, R. M Xing, Self-cleaning transparent superhydrophobic coatings through simple sol-gel processing of fluoroalkylsilane, Appl. Surf. Sci. 351 (2015) 897–903, https://doi.org/10.1016/j.apsusc.2015.06.016.

[5]

S.S. Latthe, R.S. Sutar, V.S. Kodag, A.K. Bhosale, A.M. Kumar, K.K. Sadasivuni, R.M. Xing, S.H. Liu, Self-cleaning superhydrophobic coatings: potential industrial applications, Prog. Org. Coating 128 (2019) 52–58, https://doi.org/10.1016/j.porgcoat.2018.12.008.

[6]

F.R. Li, Z.R. Wang, S.C. Huang, Y.L. Pan, X.Z. Zhao, Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil-water separation, Adv. Funct. Mater. 28 (20) (2018) 1706867, https://doi.org/10.1002/adfm.201706867.

[7]

Y.H. Cao, D.J. Zheng, X.L. Li, J.Y. Lin, C. Wang, S.G. Dong, C.J. Lin, Enhanced corrosion resistance of superhydrophobic layered double hydroxide films with long-term stability on Al substrate, ACS Appl. Mater. Interfaces 10 (17) (2018) 15150–15162, https://doi.org/10.1021/acsami.8b02280.

[8]

G.B. Hwang, A. Patir, K. Page, Y. Lu, E. Allan, I.P. Parkin, Buoyancy increase and drag-reduction through a simple superhydrophobic coating, Nanoscale 9 (22) (2017) 7588–7594, https://doi.org/10.1039/c7nr00950j.

[9]

X. Deng, L. Mammen, Y. Zhao, P. Lellig, K. Müllen, C. Li, H.J. Butt, D. Vollmer, Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules, Adv. Mater. 23 (26) (2011) 2962, https://doi.org/10.1002/adma.201100410.

[10]

W.B. Zhang, T.H. Xiang, F. Liu, M. Zhang, W.T. Gan, X.L. Zhai, X. Di, Y.Z. Wang, G.X. Liu, C.Y. Wang, Facile design and fabrication of superwetting surfaces with excellent wear-resistance, ACS Appl. Mater. Interfaces 9 (18) (2017) 15776–15784, https://doi.org/10.1021/acsami.7b02158.

[11]

J. Gao, A. Martin, J. Yatvin, E. White, J. Locklin, Permanently grafted icephobic nanocomposites with high abrasion resistance, J. Mater. Chem. 4 (30) (2016) 11719–11728, https://doi.org/10.1039/c6ta03222b.

[12]

F.Z. Chen, J.L. Song, Y. Lu, S. Huang, X. Liu, J. Sun, C.J. Carmalt, I.P. Parkin, W.J. Xu, Creating robust superamphiphobic coatings for both hard and soft materials, J. Mater. Chem. 3 (42) (2015) 20999–21008, https://doi.org/10.1039/C5TA05333A.

[13]

P. Esmaeilzadeh, M.T. Sadeghi, A. Bahramian, Z. Fakhroueian, A. Zarbakhsh, Superamphiphobic surfaces prepared by coating multifunctional nanofluids, ACS Appl. Mater. Interfaces 8 (46) (2016) 32011–32020, https://doi.org/10.1021/acsami.6b10913.

[14]

J. Lv, Z.J. Gong, Z.K. He, J. Yang, Y.Q. Chen, C.Y. Tang, Y. Liu, M.K. Fan, W.M. Lau, 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation, J. Mater. Chem. 5 (24) (2017) 12435–12444, https://doi.org/10.1039/C7TA02202F.

[15]

M. Barahman, A.M. Lyons, Ratchetlike slip angle anisotropy on printed superhydrophobic surfaces, Langmuir 27 (16) (2011) 9902–9909, https://doi.org/10.1021/la201222a.

[16]

Y. Yang, X.J. Li, X. Zheng, Z.Y. Chen, Q.F. Zhou, Y. Chen, 3D-Printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation, Adv. Mater. 30 (9) (2018) 1704912, https://doi.org/10.1002/adma.201870062.

[17]

J.Y. Kim, K. Noh, C. Choi, K.S. Brammer, M. Loya, L.H. Chen, S.H. Jin, Optically transparent glass with vertically aligned surface Al2O3 nanowires having superhydrophobic characteristics, Nano 5 (2) (2010) 89–95, https://doi.org/10.1142/S1793292010001962.

[18]

I. Vilaro, J.L. Yague, S. Borros, Superhydrophobic copper surfaces with anticorrosion properties fabricated by solventless CVD methods, ACS Appl. Mater. Interfaces 9 (1) (2017) 1057–1065, https://doi.org/10.1021/acsami.6b12119.

[19]

J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Enhanced performance of PVDF nanocomposite membrane by nanofiber coating: a membrane for sustainable desalination through MD, Water Res. 89 (2016) 39–49, https://doi.org/10.1016/j.watres.2015.11.040.

[20]

J.V. Timonen, M. Latikka, L. Leibler, R.H. Ras, O. Ikkala, Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces, Science 341 (6143) (2013) 253, https://doi.org/10.1126/science.1233775.

[21]

W.S.Y. Wong, G.Y. Liu, N. Nasiri, C.L. Hao, Z.K. Wang, A. Tricoli, Omnidirectional self-assembly of transparent superoleophobic nanotextures, ACS Nano 11 (2017) 587–596, https://doi.org/10.1021/acsnano.6b06715.

[22]

Q. Liu, D.X. Chen, Z.X. Kang, One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy, ACS Appl. Mater. Interfaces 7 (3) (2015) 1859–1867, https://doi.org/10.1021/am507586u.

[23]

R. Jain, R. Pitchumani, Facile fabrication of durable copper-based superhydrophobic surfaces via electrodeposition, Langmuir 34 (10) (2018) 3159–3169, https://doi.org/10.1021/acs.langmuir.7b02227.

[24]

Y. Liu, S.Y. Li, J.J. Zhang, Y.M. Wang, Z.W. Han, L.Q. Ren, Fabrication of biomimetic superhydrophobic surface with controlled adhesion by electrodeposition, Chem. Eng. J. 248 (2014) 440–447, https://doi.org/10.1016/j.cej.2014.03.046.

[25]

H. Li, S.R. Yu, X.X. Han, Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties, Chem. Eng. J. 283 (2016) 1443–1454, https://doi.org/10.1016/j.cej.2015.08.112.

[26]

Y. He, W.T. Sun, S.C. Wang, P.A.S. Reed, F.C. Walsh, An electrodeposited Ni-P-WS2 coating with combined super-hydrophobicity and self-lubricating properties, Electrochim. Acta 245 (2017) 872–882, https://doi.org/10.1016/j.electacta.2017.05.166.

[27]

D.Y. Zheng, Y.H. Jiang, W.T. Yu, X.F. Jiang, X. Zhao, C.H. Choi, G.Y. Sun, Salvinia-effect-inspired "Sticky" superhydrophobic surfaces by meniscus-confined electrodeposition, Langmuir 33 (47) (2017) 13640–13648, https://doi.org/10.1021/acs.langmuir.7b03014.

[28]

P. Che, W. Liu, X.X. Chang, A.H. Wang, Y.S. Han, Multifunctional silver film with superhydrophobic and antibacterial properties, Nano. Res. 9 (2016) 442–450, https://doi.org/10.1007/s12274-015-0925-5.

[29]

S. Esmailzadeh, S. Khorsand, K. Raeissi, F. Ashrafizadeh, Microstructural evolution and corrosion resistance of super-hydrophobic electrodeposited nickel films, Surf. Coating. Technol. 283 (2015) 337–346, https://doi.org/10.1016/j.surfcoat.2015.11.005.

[30]

E. Hosono, S. Fujihara, I. Honma, H.S. Zhou, Superhydrophobic perpendicular nanopin film by the bottom-up process, J. Am. Chem. Soc. 127 (2005) 13458–13459, https://doi.org/10.1021/ja053745j.

[31]

J. Tam, G. Palumbo, U. Erb, G. Azimi, Robust hydrophobic rare earth oxide composite electrodeposits, Adv. Mater. Interfaces 4 (2017) 1700850, https://doi.org/10.1002/admi.201700850.

[32]

H.Y. Wang, Y.X. Zhu, Z.Y. Hu, X.G. Zhang, S.Q. Wu, R. Wang, Y.J. Zhu, A novel electrodeposition route for fabrication of the superhydrophobic surface with unique self-cleaning, mechanical abrasion and corrosion resistance properties, Chem. Eng. J. 303 (2016) 37–47, https://doi.org/10.1016/j.cej.2016.05.133.

[33]

N. Wang, Y.H. Yuan, Y.W. Wu, T. Hang, M. Li, Wetting transition of the caterpillar-like superhydrophobic Cu/Ni–Co hierarchical structure by heat treatment, Langmuir 31 (39) (2015) 10807–10812, https://doi.org/10.1021/acs.langmuir.5b02535.

[34]

L.J. Liu, W.K. Liu, R.F. Chen, X. Li, X.J. Xie, Hierarchical growth of Cu zigzag microstrips on Cu foil for superhydrophobicity and corrosion resistance, Chem. Eng. J. 281 (2015) 804–812, https://doi.org/10.1016/j.cej.2015.07.028.

[35]

Z.X. She, Q. Li, Z.W. Wang, L.Q. Li, F.N. Chen, J.C. Zhou, Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy, ACS Appl. Mater. Interfaces 4 (8) (2012) 4348, https://doi.org/10.1021/am3009949.

[36]

B.G. Choi, H.S. Park, Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness, J. Phys. Chem. C 116 (2012) 3207–3211, https://doi.org/10.1021/jp207818b.

[37]

S.B. Ding, T.F. Xiang, C. Li, S.L. Zheng, J. Wang, M.X. Zhang, C.D. Dong, W.M. Chan, Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel, Mater. Des. 117 (2017) 280–288, https://doi.org/10.1016/j.matdes.2016.12.084.

[38]

M.J. Nine, M.A. Cole, L. Johnson, D.N.H. Tran, D. Losic, Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties, ACS Appl. Mater. Interfaces 7 (51) (2015) 28482, https://doi.org/10.1021/acsami.5b09611.

[39]

Z.X. Chen, L. Dong, D. Yang, H.B. Lu, M.J. Nine, M.A. Cole, L. Johnson, D.N.H. Tran, D. Losic, Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties, ACS Appl. Mater. Interfaces 7 (2015) 28482, https://doi.org/10.1002/adma.201302804.

[40]

X. Tian, T. Verho, R.H. Ras, Surface wear moving superhydrophobic surfaces toward real-world applications, Science 352 (2016) 142, https://doi.org/10.1126/science.aaf2073.

[41]

J.S. Liang, D. Li, D.Z. Wang, K.Y. Liu, L. Chen, Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification, Appl. Surf. Sci. 293 (2014) 265–270, https://doi.org/10.1016/j.apsusc.2013.12.147.

[42]

H.W. Nesbitt, D. Legrand, G.M. Bancroft, Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators, Phys. Chem. Miner. 27 (2000) 357–366, https://doi.org/10.1007/s002690050265.

[43]

A.P. Grosvenor, M.C. Biesinger, R.S. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides, Surf. Sci. 600 (2006) 1771–1779, https://doi.org/10.1016/j.susc.2006.01.041.

[44]

S. Uhlenbrock, C. Scharfschwerdt, M. Neumann, G. Illing, H.J. Freund, The influence of defects on the Ni 2p and O 1s XPS of NiO, J. Phys. Condens. Matter 4 (1992) 7973, https://doi.org/10.1088/0953-8984/4/40/009.

[45]

S. Khorsand, K. Raeissi, F. Ashrafizadeh, Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process, Appl. Surf. Sci. 305 (2014) 498–505, https://doi.org/10.1016/j.apsusc.2014.03.123.

[46]

R.D. Noce, S. Eugenio, M. Boudard, L. Rapenne, T.cM. Silva, M.cJ. Carmezim, S.cW. Donne, M.cF. Montemor, One-step process to form a nickel-based/carbon nanofoam composite supercapacitor electrode using Na2SO4 as an eco-friendly electrolyte, RSC Adv. 6 (2016) 15920–15928, https://doi.org/10.1039/c5ra22046g.

[47]

L.M. Moroney, R.S.C. Smart, M.W. Roberts, Studies of the thermal decomposition of βNiO(OH) and nickel peroxide by X-ray photoelectron spectroscopy, J. Chem. Soc. Faraday. Trans. 1 (79) (1983) 1769–1778, https://doi.org/10.1039/f19837901769.

[48]

B. Sasi, K.G. Gopchandran, Nanostructured mesoporous nickel oxide thin films, Nanotechnology 18 (11) (2007) 115613, https://doi.org/10.1088/0957-4484/18/11/115613.

[49]

E.L. Ratcliff, J. Meyer, K.X. Steirer, A. Garcia, J.J. Berry, D.S. Ginley, D.C. Olson, A. Kahn, N.R. Armstrong, Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: impact on energetics and the performance of polymer bulk heterojunction photovoltaics, Chem. Mater. 23 (22) (2011) 4988–5000, https://doi.org/10.1021/cm202296p.

[50]

N.Q. Wu, F. Lei, M. Su, M. Aslam, K.C. Wang, V.P. Dravid, Interaction of fatty acid monolayers with cobalt nanoparticles, Nano Lett. 4 (2015) 383–386, https://doi.org/10.1021/nl035139x.

[51]

K.X. Zhang, H.Y. Li, X.J. Xu, H.W. Yu, Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr(Ⅵ) from aqueous water by adsorption, Microporous Mesoporous Mater. 255 (2018) 7–14, https://doi.org/10.1016/j.micromeso.2017.07.037.

[52]

Z.W. Wang, L.Q. Zhu, W.P. Li, H.C. Liu, Rapid reversible superhydrophobicity-to-superhydrophilicity transition on alternating current etched brass, ACS Appl. Mater. Interfaces 5 (2013) 4808–4814, https://doi.org/10.1021/am400299f.

[53]

A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546–551, https://doi.org/10.1039/tf9444000546.

[54]

S.L. Zheng, C. Li, Q.T. Fu, M. Li, W. Hu, Q. Wang, M.P. Du, X.C. Liu, Z. Chen, Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance, Surf. Coating. Technol. 276 (2015) 341–348, https://doi.org/10.1016/j.surfcoat.2015.07.002.

[55]

J. Xie, J. Hua, X.D. Lin, L. Fang, F. Wu, X.L. Liao, H.J. Luo, L.T. Shi, Robust and anti-corrosive PDMS/SiO2 superhydrophobic coatings fabricated on magnesium alloys with different-sized SiO2 nanoparticles, Appl. Surf. Sci. 457 (2018) 870–880, https://doi.org/10.1016/j.apsusc.2018.06.250.

[56]

J.D. Huang, S.Y. Lyu, Z.L. Chen, S.Q. Wang, F. Fu, A facile method for fabricating robust cellulose nanocrystal/SiO2 superhydrophobic coatings, J. Collid. Interf. Sci. 536 (2019) 349–362, https://doi.org/10.1016/j.jcis.2018.10.045.

[57]

J.F. Zhu, L.Y. Wu, J.J. Li, B. Liu, Z.X. Zeng, A robust duplex Cu/PDMS-coated mesh with superhydrophobic surface for applications in cleaning of spilled oil, RSC Adv. 7 (2017) 25101–25108, https://doi.org/10.1039/c7ra00150a.

[58]

Y.S. Li, H. Shao, P.F. Lv, C.Y. Tang, Z.K. He, Y.L. Zhou, M.B. Shuai, J. Mei, W.M. Lau, Fast preparation of mechanically stable superhydrophobic surface by UV cross-linking of coating onto oxygen-inhibited layer of substrate, Chem. Eng. J. 338 (2018) 440–449, https://doi.org/10.1016/j.cej.2018.01.044.

[59]

Y.Q. Qing, C.B. Hu, C.N. Yang, K. An, F.W. Tang, J.Y. Tan, C.S. Liu, Rough structure of electrodeposition as a template for an ultrarobust self-cleaning surface, ACS Appl. Mater. Interfaces 9 (19) (2017) 16571–16580, https://doi.org/10.1021/acsami.6b15745.

[60]

C.M.P. Kumar, T.V. Venkatesha, R. Shabadi, Preparation and corrosion behavior of Ni and Ni-graphene composite coatings, Mater. Res. Bull. 48 (4) (2013) 1477–1483, https://doi.org/10.1016/j.materresbull.2012.12.064.

[61]

H. Li, S.R. Yu, A stable superamphiphobic Zn coating with self-cleaning property on steel surface fabricated via a deposition method, J. Taiwan Inst. Chem. E. 63 (2016) 411–420, https://doi.org/10.1016/j.jtice.2016.02.022.

[62]

A.H. Navarchian, M. Joulazadeh, F. Karimi, Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces, Prog. Org. Coating 77 (2014) 347–353, https://doi.org/10.1016/j.porgcoat.2013.10.008.

[63]

B.P. Singh, S. Nayak, K.K. Nanda, B.K. Jena, S. Bhattacharjee, L. Besra, The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition, Carbon 61 (2013) 47–56, https://doi.org/10.1016/j.carbon.2013.04.063.

[64]

Y.C. Zhao, X.Y. Xiao, Z.H. Ye, Q. Ji, W. Xie, Fabrication of durable copper plating superhydrophobic surface with improved corrosion resistance and oil-water separation properties, Appl. Phys. A 124 (2) (2018) 193, https://doi.org/10.1007/s00339-018-1627-0.

[65]

Z.X. She, Q. Li, Z.W. Wang, L.Q. Li, F.A. Chen, J.C. Zhou, Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability, Chem. Eng. J. 228 (2013) 415–424, https://doi.org/10.1016/j.cej.2013.05.017.

[66]

R. Jain, R. Pitchumani, Facile fabrication of durable copper-based superhydrophobic surfaces via electrodeposition, Langmuir 34 (10) (2018) 3159–3169, https://doi.org/10.1021/acs.langmuir.7b02227.

[67]

F.H. Su, K. Yao, Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method, ACS Appl. Mater. Interfaces 6 (11) (2014) 8762–8770, https://doi.org/10.1021/am501539b.

Nano Materials Science
Pages 151-158
Cite this article:
Bai Z, Zhang B. Fabrication of superhydrophobic reduced-graphene oxide/nickel coating with mechanical durability, self-cleaning and anticorrosion performance. Nano Materials Science, 2020, 2(2): 151-158. https://doi.org/10.1016/j.nanoms.2019.05.001

402

Views

11

Downloads

34

Crossref

32

Web of Science

39

Scopus

0

CSCD

Altmetrics

Received: 10 March 2019
Accepted: 25 April 2019
Published: 27 June 2019
© 2019 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return