AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles

Neha AgrawalaPearlie Sijia LowaJasmine Si Jia TanaEileen Wen Mei FongaYuekun Laib,cZhong Chena( )
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China
College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, PR China
Show Author Information

Abstract

Multifunctional fabrics of high durability through a scalable and eco-friendly technique remains a great challenge hindering their commercialization. In this work, we report a facile synthesis technique for the fabrication of superhydrophobic antibacterial fabrics by employing fluorine-free silane coupling agents as cross-linkers for enhanced durability. Three silane cross-linkers, Aminoethylaminopropyltrimethoxysilane (AEAPTMS), Aminopropyltriethoxysilane (APTES), and Methacryloyloxypropyltrimethoxysilane (MPTMS), have been investigated. During the fabrication, a low surface energy polymer, polydimethylsiloxane (PDMS) was first deposited on cotton fabrics. Subsequently, antibacterial copper oxide (CuO) nanoparticles were anchored on the PDMS coated fabrics using the silane cross-linkers. The as-prepared fabrics displayed high superhydrophobicity and antibacterial performance with water contact angle (WCA) > 153°, water shedding angle (WSA) < 5°, and up to 99% antibacterial efficiency. Additionally, the as-prepared fabrics displayed high durability against abrasion, ultrasonic washing, and soaking in harsh chemical environments. The air permeability and flexibility of the fabric was not compromised after the coating. The above-reported technique is simple, cost-effective and holds tremendous potential for large-scale production of energy-saving clothing and healthcare products.

References

[1]

S. Gao, X. Dong, J. Huang, S. Li, Y. Li, Z. Chen, Y. Lai, Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation, Chem. Eng. J. 333 (2018)621–629.

[2]

Q. Gao, J. Hu, R. Li, L. Pang, Z. Xing, L. Xu, M. Wang, X. Guo, G. Wu, Preparation and characterization of superhydrophobic organic-inorganic hybrid cotton fabrics via γ-radiation-induced graft polymerization, Carbohydr. Polym. 149 (Supplement C) (2016) 308–316.

[3]

Q. Xu, X. Ke, D. Cai, Y. Zhang, F. Fu, T. Endo, X. Liu, Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect, Cellulose 25 (3) (2018) 2129–2141.

[4]

Y. Xu, W. Wen, J.-M. Wu, Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances, J. Hazard Mater. 343 (2018) 285–297.

[5]

M. Shaban, F. Mohamed, S. Abdallah, Production and characterization of superhydrophobic and antibacterial coated fabrics utilizing ZnO nanocatalyst, Sci. Rep. 8 (1) (2018) 3925.

[6]

H. Wang, H. Zhou, S. Liu, H. Shao, S. Fu, G.C. Rutledge, T. Lin, Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings, RSC Adv. 7 (54) (2017) 33986–33993.

[7]

H. Wang, H. Zhou, A. Gestos, J. Fang, T. Lin, Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages, ACS Appl. Mater. Interfaces 5 (20) (2013) 10221–10226.

[8]

J. Wu, J. Li, B. Deng, H. Jiang, Z. Wang, M. Yu, L. Li, C. Xing, Y. Li, Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics, Sci. Rep. 3 (2013) 2951.

[9]

Y. Li, B. Wang, X. Sui, R. Xie, H. Xu, L. Zhang, Y. Zhong, Z. Mao, Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings, Appl. Surf. Sci. 435 (2018) 1337–1343.

[10]

F. Fang, X. Zhang, Y. Meng, Z. Gu, C. Bao, X. Ding, S. Li, X. Chen, X. Tian, Intumescent flame retardant coatings on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly, Surf. Coat. Technol. 262 (2015) 9–14.

[11]

A. El-Shafei, M. ElShemy, A. Abou-Okeil, Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties, Carbohydr. Polym. 118 (2015) 83–90.

[12]

M. Shateri-Khalilabad, M.E. Yazdanshenas, Fabrication of superhydrophobic, antibacterial, and ultraviolet-blocking cotton fabric, J. Text. Inst. 104 (8) (2013) 861–869.

[13]

C. Pan, L. Shen, S. Shang, Y. Xing, Preparation of superhydrophobic and UV blocking cotton fabric via sol–gel method and self-assembly, Appl. Surf. Sci. 259 (Supplement C) (2012) 110–117.

[14]

L. Wang, X. Zhang, B. Li, P. Sun, J. Yang, H. Xu, Y. Liu, Superhydrophobic and ultraviolet-blocking cotton textiles, ACS Appl. Mater. Interfaces 3 (4) (2011) 1277–1281.

[15]

T. Suryaprabha, M.G. Sethuraman, Design of electrically conductive superhydrophobic antibacterial cotton fabric through hierarchical architecture using bimetallic deposition, J. Alloy. Comp. 724 (Supplement C) (2017) 240–248.

[16]

N. Nasirizadeh, M. Dehghani, M.E. Yazdanshenas, Preparation of hydrophobic and conductive cotton fabrics using multi-wall carbon nanotubes by the sol–gel method, J. Sol. Gel Sci. Technol. 73 (1) (2014) 14–21.

[17]

M. Shateri-Khalilabad, M.E. Yazdanshenas, Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose, Cellulose 20 (2) (2013) 963–972.

[18]

A.K. Singh, J.K. Singh, Fabrication of durable superhydrophobic coatings on cotton fabrics with photocatalytic activity by fluorine-free chemical modification for dualfunctional water purification, New J. Chem. 41 (11) (2017) 4618–4628.

[19]

S. Afzal, W.A. Daoud, S.J. Langford, Superhydrophobic and photocatalytic self-cleaning cotton, J. Mater. Chem. 2 (42) (2014) 18005–18011.

[20]

M. Yu, Z. Wang, H. Liu, S. Xie, J. Wu, H. Jiang, J. Zhang, L. Li, J. Li, Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized, ACS Appl. Mater. Interfaces 5 (9) (2013) 3697–3703.

[21]

S. Qiang, K. Chen, Y. Yin, C. Wang, Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability, Mater. Des. 116 (2017) 395–402.

[22]

A.J. Patil, Y. Zhao, X. Liu, X. Wang, Durable superhydrophobic and antimicrobial cotton fabrics prepared by electrostatic assembly of polyhexamethylene biguanide and subsequent hydrophobization, Text. Res. J. (2017), 004051751770854.

[23]

G. Sun, S.D. Worley, Chemistry of durable and regenerable biocidal textiles, J. Chem. Educ. 82 (1) (2005) 60.

[24]

S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications, J. Mater. Chem. 5 (1) (2017) 31–55.

[25]

Q. Xu, L. Xie, H. Diao, F. Li, Y. Zhang, F. Fu, X. Liu, Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan, Carbohydr. Polym. 177 (2017) 187–193.

[26]

B. Simončič, D. Klemenčič, Preparation and performance of silver as an antimicrobial agent for textiles: a review, Text. Res. J. 86 (2) (2015) 210–223.

[27]

M.R. Nateghi, M. Shateri-Khalilabad, Silver nanowire-functionalized cotton fabric, Carbohydr. Polym. 117 (2015) 160–168.

[28]

S. Heinonen, E. Huttunen-Saarivirta, J.-P. Nikkanen, M. Raulio, O. Priha, J. Laakso, E. Storgårds, E. Lev€anen, Antibacterial properties and chemical stability of superhydrophobic silver-containing surface produced by sol–gel route, Colloids Surf. Physicochem. Eng. Aspects 453 (2014) 149–161.

[29]

T. Suryaprabha, M.G. Sethuraman, Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric, Cellulose 24 (1) (2017) 395–407.

[30]

A. Berendjchi, R. Khajavi, M.E. Yazdanshenas, Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper, Nanoscale Research Letters 6 (1) (2011) 594.

[31]

S. Anita, T. Ramachandran, R. Rajendran, C.V. Koushik, M. Mahalakshmi, A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric, Text. Res. J. 81 (10) (2011) 1081–1088.

[32]

M.E. El-Naggar, T.I. Shaheen, S. Zaghloul, M.H. El-Rafie, A. Hebeish, Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics, Ind. Eng. Chem. Res. 55 (10) (2016) 2661–2668.

[33]

K. Sundaresan, A. Sivakumar, C. Vigneswaran, T. Ramachandran, Influence of nano titanium dioxide finish, prepared by sol-gel technique, on the ultraviolet protection, antimicrobial, and self-cleaning characteristics of cotton fabrics, J. Ind. Text. 41 (3) (2011) 259–277.

[34]

V. Prasad, A. Arputharaj, A.K. Bharimalla, P.G. Patil, N. Vigneshwaran, Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO, Appl. Surf. Sci. 390 (2016) 936–940.

[35]

M.M. AbdElhady, Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric, International Journal of Carbohydrate Chemistry 2012 (2012) 1–6.

[36]

M. Wu, B. Ma, T. Pan, S. Chen, J. Sun, Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties, Adv. Funct. Mater. 26 (4) (2016) 569–576.

[37]

H. Zhou, H. Wang, H. Niu, A. Gestos, X. Wang, T. Lin, Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating, Adv. Mater. 24 (18) (2012) 2409–2412.

[38]

A. Vilcnik, I. Jerman, A. Surca Vuk, M. Kozelj, B. Orel, B. Tomsic, B. Simoncic, J. Kovac, Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics, Langmuir : the ACS journal of surfaces and colloids 25 (10) (2009) 5869–5880.

[39]

L. Wang, G.H. Xi, S.J. Wan, C.H. Zhao, X.D. Liu, Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate, Cellulose 21 (4) (2014) 2983–2994.

[40]

L. Windler, M. Height, B. Nowack, Comparative evaluation of antimicrobials for textile applications, Environ. Int. 53 (2013) 62–73.

[41]

R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids Surfaces B Biointerfaces 79 (1) (2010) 5–18.

[42]

L. Karimi, M.E. Yazdanshenas, R. Khajavi, A. Rashidi, M. Mirjalili, Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity, Cellulose 21 (5) (2014) 3813–3827.

[43]

N.F. Attia, M. Moussa, A.M.F. Sheta, R. Taha, H. Gamal, Effect of different nanoparticles based coating on the performance of textile properties, Prog. Org. Coat. 104 (Supplement C) (2017) 72–80.

[44]

C.-H. Xue, J. Chen, W. Yin, S.-T. Jia, J.-Z. Ma, Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles, Appl. Surf. Sci. 258 (7) (2012) 2468–2472.

[45]

C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation, J. Mater. Chem. 4 (31) (2016) 12179–12187.

[46]

S. Parham, D. Wicaksono, S. Bagherbaigi, S. Lee, H. Nur, Antimicrobial treatment of different metal oxide nanoparticles, Crit. Rev. 63 (2016).

[47]

M. Jose Ruben, E. Jose Luis, C. Alejandra, H. Katherine, B.K. Juan, R. Jose Tapia, Y. Miguel Jose, The bactericidal effect of silver nanoparticles, Nanotechnology 16 (10) (2005) 2346.

[48]

I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275 (1) (2004) 177–182.

[49]

M. Ahamed, H.A. Alhadlaq, M.A.M. Khan, P. Karuppiah, N.A. Al-Dhabi, Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles, J. Nanomater. 2014 (2014) 1–4.

[50]

I.M. El-Nahhal, S.M. Zourab, F.S. Kodeh, M. Selmane, I. Genois, F. Babonneau, Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications, Int. Nano Lett. 2 (1) (2012) 14.

[51]

T. Zhu, S. Li, J. Huang, M. Mihailiasa, Y. Lai, Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation, Mater. Des. 134 (2017) 342–351.

[52]

J. Zimmermann, S. Seeger, F.A. Reifler, Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces, Text. Res. J. 79 (17) (2009) 1565–1570.

[53]
AATCC test method 100-2004 antibacterial finishes on textile materials: assessment of, in: AATCC Technical Manual, vol. 85, Published for the Association by Howes Pub. Co., New York, N.Y, 2010.
[54]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir : the ACS journal of surfaces and colloids 16 (13) (2000) 5754–5760.

[55]

P. Garside, P. Wyeth, Identification of cellulosic fibres by FTIR spectroscopy-thread and single fibre analysis by attenuated total reflectance, Stud. Conserv. 48 (4) (2003) 269–275.

[56]

M. Zahid, J.A. Heredia-Guerrero, A. Athanassiou, I.S. Bayer, Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers, Chem. Eng. J. 319 (2017) 321–332.

[57]

C. Bressy, V.G. Ngo, F. Ziarelli, A. Margaillan, New insights into the adsorption of 3-(trimethoxysilyl)propylmethacrylate on hydroxylated ZnO nanopowders, Langmuir : the ACS journal of surfaces and colloids 28 (6) (2012) 3290–3297.

[58]
J. Kim, Formation, structure, and reactivity of amino-terminated organic films on silicon substrates, in: Interfaces and Interphases in Analytical Chemistry, vol. 1062, American Chemical Society, 2011, pp. 141–165.
[59]

J.H.L. Beal, A. Bubendorfer, T. Kemmitt, I. Hoek, W. Mike Arnold, A rapid, inexpensive surface treatment for enhanced functionality of polydimethylsiloxane microfluidic channels, Biomicrofluidics 6 (3) (2012), 036503.

[60]

N. Majoul, S. Aouida, B. Bessaïs, Progress of porous silicon APTES-functionalization by FTIR investigations, Appl. Surf. Sci. 331 (2015) 388–391.

[61]
SG. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, third ed., Wiley Publications, 2004.
[62]

M.A. Wahab, I. Kim, C.-S. Ha, Bridged amine-functionalized mesoporous organosilica materials from 1,2-bis(triethoxysilyl)ethane and bis[(3-trimethoxysilyl)propyl]amine, J. Solid State Chem. 177 (10) (2004) 3439–3447.

[63]

L.G.P. Moraes, R.S.F. Rocha, L.M. Menegazzo, E.B.d. Araújo, K. Yukimito, J.C.S. Moraes, Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites, J. Appl. Oral Sci. 16 (2008) 145–149.

Nano Materials Science
Pages 281-291
Cite this article:
Agrawal N, Low PS, Tan JSJ, et al. Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles. Nano Materials Science, 2020, 2(3): 281-291. https://doi.org/10.1016/j.nanoms.2019.09.004

419

Views

17

Downloads

45

Crossref

39

Web of Science

42

Scopus

0

CSCD

Altmetrics

Published: 13 September 2019
© 2019 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return