AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Highly antibacterial rGO/Cu2O nanocomposite from a biomass precursor: Synthesis, performance, and mechanism

Mingguang Chena,bZhi LicLong Chenb,d( )
Department of Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, United States
California State University, San Bernardino, CA, 92407, United States
Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, United States
Show Author Information

Abstract

Reduced graphene oxide (rGO) has been widely used to fabricate electronics, sensors, photodetectors, and in other applications. However, the antibacterial performance of pristine rGO is relatively weak. The application of rGO in biomedical devices, smart food packaging, and water desalination membranes requires further improvement of rGO's antibacterial abilities. Copper(Ⅰ) oxide (Cu2O) is an effective antibacterial agent, which denatures protein and enhances the permeability of cell membranes. In this work, we report a simple method of synthesizing a highly antibacterial rGO/Cu2O nanocomposite from cellulose acetate, a derivative of abundant natural cellulose. The synthesized rGO/Cu2O nanocomposite was thoroughly characterized by Raman spectroscopy, X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning transmission electron microscopy (STEM). Then, the antibacterial abilities of rGO/Cu2O nanocomposite were evaluated and a bactericidal mechanism was revealed from the molecular biology perspective. Results indicate that our synthesized rGO/Cu2O nanocomposite owns strong antibacterial activity, mainly stemming from the uniformly incorporated Cu2O nanocrystals with a lateral size of 5–40 nm.

References

[1]

S. Bae, S.J. Kim, D. Shin, J. Ahn, B.H. Hong, Towards industrial applications of graphene electrodes, Phys. Scr. 2012 (T146) (2012), 014024.

[2]

H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z.N. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2 (2008) 463–470.

[3]

L. Ji, W. Zhou, V. Chabot, A. Yu, X. Xiao, Reduced graphene oxide/tin–antimony nanocomposites as anode materials for advanced sodium-ion batteries, ACS Appl. Mater. Interfaces 7 (44) (2015) 24895–24901.

[4]

P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, et al., Roomtemperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide, Angew. Chem. Int. Ed. 51 (44) (2012) 11053–11057.

[5]

B. Chitara, S. Krupanidhi, C. Rao, Solution processed reduced graphene oxide ultraviolet detector, Appl. Phys. Lett. 99 (11) (2011) 113114.

[6]

J. Liu, K. Liu, L. Feng, Z. Liu, L. Xu, Comparison of nanomedicine-based chemotherapy, photodynamic therapy and photothermal therapy using reduced graphene oxide for the model system, Biomater. Sci. 5 (2) (2017) 331–340.

[7]

S. Singh, K.K. Gaikwad, M. Lee, Y.S. Lee, Temperature-regulating materials for advanced food packaging applications: a review, J Food Meas. Charact. 12 (1) (2018) 588–601.

[8]

S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano 5 (9) (2011) 6971–6980.

[9]

Z. Xu, S. Ye, G. Zhang, W. Li, C. Gao, C. Shen, Q. Meng, Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu2O hybrid nanowires, J. Membr. Sci. 509 (2016) 83–93.

[10]

L. Yu, Y. Zhang, B. Zhang, J. Liu, Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure, Sci. Rep. 4 (2014) 4551.

[11]

L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, L. Ren, The antibacterial applications of graphene and its derivatives, Small 12 (31) (2016) 4165–4184.

[12]

S.M. Ghoreishian, L. Maleknia, H. Mirzapour, M. Norouzi, Antibacterial properties and color fastness of silk fabric dyed with turmeric extract, Fibers Polym. 14 (2) (2013) 201–207.

[13]

L. Chen, M. Tang, C. Chen, M. Chen, K. Luo, J. Xu, D. Zhou, F. Wu, Efficient bacterial inactivation by transition metal catalyzed auto-oxidation of sulfite, Environ. Sci. Technol. 51 (21) (2017) 12663–12671.

[14]

K. Sunada, M. Minoshima, K. Hashimoto, Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds, J. Hazard Mater. 235 (2012) 265–270.

[15]

I. Omae, Organotin antifouling paints and their alternatives, Appl. Organomet. Chem. 17 (2) (2003) 81–105.

[16]

E. Large, Field trials of copper fungicides for the control of potato blight I. Foliage protection and yield, Ann. Appl. Biol. 32 (4) (1945) 319–329.

[17]

M. Chen, E. Yengel, J. Zhang, C. Zhu, X. He, C. Zhang, J. Huang, M.N. Hedhili, T. Anthopoulos, X. Zhang, One-step growth of reduced graphene oxide on arbitrary substrates, Carbon 144 (2019) 457–463.

[18]

L. Chen, Z. Li, M. Chen, Facile production of silver-reduced graphene oxide nanocomposite with highly effective antibacterial performance, J. Environ. Chem. Eng. 7 (3) (2019) 103160.

[19]

M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji, P. Srinivasu, et al., Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon, J. Am. Chem. Soc. 134 (6) (2012) 2864–2867.

[20]

J.M. Lee, M.E. Briggs, T. Hasell, A.I. Cooper, Hyperporous carbons from hypercrosslinked polymers, Adv. Mater. 28 (44) (2016) 9804–9810.

[21]

Y. Rhim, D. Zhang, D.H. Fairbrother, K.A. Wepasnick, K.J. Livi, R.J. Bodnar, et al., Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature, Carbon 48 (4) (2010) 1012–1024.

[22]

X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324 (5932) (2009) 1312–1314.

[23]

Z. Luo, S. Kim, N. Kawamoto, A.M. Rappe, A.C. Johnson, Growth mechanism of hexagonal-shape graphene flakes with zigzag edges, ACS Nano 5 (11) (2011) 9154–9160.

[24]

M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2) (2005) 47–99.

[25]

M.S. Dresselhaus, R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, Raman spectroscopy of graphene and carbon nanotubes, Adv. Phys. 60 (3) (2011) 413–550.

[26]

A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electronphonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (2007) 47–57.

[27]

G. Li, C. Fu, M. Oviedo, M. Chen, X. Tian, E. Bekyarova, et al., Giant Raman response to the encapsulation of sulfur in narrow diameter single-walled carbon nanotubes, J. Am. Chem. Soc. 138 (2015) 40–43.

[28]

M. Chen, X. Tian, W. Li, E. Bekyarova, G. Li, M. Moser, et al., Application of organometallic chemistry to the electrical interconnection of graphene nanoplatelets, Chem. Mater. 28 (7) (2016) 2260–2266.

[29]

M. Chen, G. Li, W. Li, D. Stekovic, B. Arkook, M.E. Itkis, et al., Large-scale celluloseassisted transfer of graphene toward industrial applications, Carbon 110 (2016) 286–291.

[30]

M. Chen, D. Stekovic, W. Li, B. Arkook, R. Haddon, E. Bekyarova, SublimationAssisted graphene transfer technique based on small polyaromatic hydrocarbons, Nanotechnology 28 (25) (2017), 255701.

[31]

M. Chen, A. Pekker, W. Li, M.E. Itkis, R.C. Haddon, E. Bekyarova, Organometallic chemistry of graphene: photochemical complexation of graphene with group 6 transition metals, Carbon 129 (2018) 450–455.

[32]

M. Chen, W. Li, T.E. da Silveira Venzel, G. Li, M.E. Itkis, R.C. Haddon, et al., Effect of constructive rehybridization on transverse conductivity of aligned single-walled carbon nanotube films, Mater. Today 21 (9) (2018) 937–943.

[33]

M. Chen, X. Tian, A. Pekker, W. Li, M. Moser, S. Sarkar, et al., Effect of covalent chemistry on the electronic structure and properties of the carbon allotropes, ECS Trans 77 (11) (2017) 569–579.

[34]

M. Chen, R.C. Haddon, R. Yan, E. Bekyarova, Advances in transferring chemical vapour deposition graphene: a review, Mater. Horizons 4 (6) (2017) 1054–1063.

[35]

M. Chen, W. Li, A. Kumar, G. Li, M.E. Itkis, B.M. Wong, E. Bekyarova, Covalent atomic bridges enable unidirectional enhancement of electronic transport in aligned carbon nanotubes, ACS Appl. Mater. Interfaces 11 (21) (2019) 19315–19323.

[36]

X. Tian, S. Sarkar, A. Pekker, M.L. Moser, I. Kalinina, E. Bekyarova, et al., Optical and electronic properties of thin films and solutions of functionalized forms of graphene and related carbon materials, Carbon 72 (2014) 82–88.

[37]

W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, et al., Electrodeposition of Cu2O films and their photoelectrochemical properties, CrystEngComm 13 (8) (2011) 2871–2877.

[38]

Y. Liu, Y. Liu, R. Mu, H. Yang, C. Shao, J. Zhang, et al., The structural and optical properties of Cu2O films electrodeposited on different substrates, Semicond. Sci. Technol. 20 (1) (2004) 44.

[39]

J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett. 71 (2012) 114–116.

[40]

P. De Jongh, D. Vanmaekelbergh, J. Kelly, Cu2O: electrodeposition and characterization, Chem. Mater. 11 (12) (1999) 3512–3517.

[41]

P. Poulopoulos, S. Baskoutas, S.D. Pappas, C.S. Garoufalis, S.A. Droulias, A. Zamani, et al., Intense quantum confinement effects in Cu2O thin films, J. Phys. Chem. C 115 (30) (2011) 14839–14843.

[42]

S. Poulston, P. Parlett, P. Stone, M. Bowker, Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES, Surf. Interface Anal. 24 (12) (1996) 811–820.

[43]

H.-C. Hsu, I. Shown, H.-Y. Wei, Y.-C. Chang, H.-Y. Du, Y.-G. Lin, et al., Graphene oxide as a promsing photocatalyst for CO2 to methanol conversion, Nanoscale 5 (2013) 262–268.

[44]

K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi, et al., The route to functional graphene oxide, ChemPhysChem 11 (10) (2010) 2131–2139.

[45]

J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid, ChemComm 46 (7) (2010) 1112–1114.

[46]

S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (7) (2007) 1558–1565.

[47]

X. Xia, Q. Hao, W. Lei, W. Wang, H. Wang, X. Wang, Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties, J. Mater. Chem. 22 (17) (2012) 8314–8320.

[48]

O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile buildings blocks for carbon-based materials, Small 6 (6) (2010) 711–723.

[49]

E. Desimoni, G. Casella, A. Salvi, XPS/XAES study of carbon fibres during thermal annealing under UHV conditions, Carbon 30 (4) (1992) 521–526.

[50]

J. Ghijsen, L. v. Tjeng, J. Van Elp, H. Eskes, J. Westerink, G. Sawatzky, et al., Electronic structure of Cu2O and CuO, Phys. Rev. B 38 (16) (1988) 11322.

[51]

J. Ramırez-Ortiz, T. Ogura, J. Medina-Valtierra, S. a. E. Acosta-Ortiz, P. Bosch, ́ J.A. de Los Reyes, et al., A catalytic application of Cu2O and CuO films deposited over fiberglass, Appl. Surf. Sci. 174 (3–4) (2001) 177–184.

[52]

M.C. Biesinger, Advanced analysis of copper X-ray photoelectron spectra, Surf. Interface Anal. 49 (13) (2017) 1325–1334.

[53]

A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem. 2 (7) (2010) 581.

[54]

J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z. Wei, P. Sheehan, et al., Wafer-scale reduced graphene oxide films for nanomechanical devices, Nano Lett. 8 (10) (2008) 3441–3445.

[55]

A. Zandiatashbar, G. Lee, S.J. An, S. Lee, N. Mathew, M. Terrones, et al., Effect of defects on the intrinsic strength and stiffness of graphene, Nat. Commun. 5 (2014) 3186.

[56]

M. Cho, H. Chung, W. Choi, J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res. 38 (4) (2004) 1069–1077.

[57]

Q.L. Shimabuku, T. Ueda-Nakamura, R. Bergamasco, M.R. Fagundes-Klen, ChickWatson kinetics of virus inactivation with granular activated carbon modified with silver nanoparticles and/or copper oxide, Process Saf. Environ. 117 (2018) 33–42.

[58]

H. Barani, M. Montazer, N. Samadi, T. Toliyat, Nano silver entrapped in phospholipids membrane: synthesis, characteristics and antibacterial kinetics, Mol. Membr. Biol. 28 (4) (2011) 206–215.

[59]

R.G. Nair, J.K. Roy, S. Samdarshi, A. Mukherjee, Enhanced visible light photocatalytic disinfection of gram negative, pathogenic Escherichia coli bacteria with Ag/TiV oxide nanoparticles, Colloids Surfaces B Biointerfaces 86 (1) (2011) 7–13.

[60]

M.A. Kohanski, D.J. Dwyer, B. Hayete, C.A. Lawrence, J.J. Collins, A common mechanism of cellular death induced by bactericidal antibiotics, Cell 130 (5) (2007) 797–810.

[61]

A. Manke, L. Wang, Y. Rojanasakul, Mechanisms of nanoparticle-induced oxidative stress and toxicity, BioMed Res. Int. 2013 (2013).

[62]

G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution, J. Phys. Chem. Ref. Data 17 (2) (1988) 513–886.

[63]

H.J. Park, T.T. Nguyen, J. Yoon, C. Lee, Role of reactive oxygen species in Escherichia coli inactivation by cupric ion, Environ. Sci. Technol. 46 (20) (2012) 11299–11304.

[64]

L. Chen, Y. Peng, M. Tang, F. Wu, Comment on "combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes by hye-jin lee, hyung-eun kim, changha lee[water research 110, 2017, 83–90]", Water Res. 118 (2017) 289–290.

[65]

C. Siu, Y. Ke, Y. Guo, A.C. Hopkinson, K.W.M. Siu, Dissociations of copper (Ⅱ)- containing complexes of aromatic amino acids: radical cations of tryptophan, tyrosine, and phenylalanine, Phys. Chem. Chem. Phys. 10 (38) (2008) 5908–5918.

Nano Materials Science
Pages 172-179
Cite this article:
Chen M, Li Z, Chen L. Highly antibacterial rGO/Cu2O nanocomposite from a biomass precursor: Synthesis, performance, and mechanism. Nano Materials Science, 2020, 2(2): 172-179. https://doi.org/10.1016/j.nanoms.2019.09.005

332

Views

4

Downloads

24

Crossref

23

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 15 May 2019
Accepted: 19 August 2019
Published: 11 September 2019
© 2019 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return