AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes

He Zhanga,1Shang Wanga,1Yanhong Tiana ( )Jiayue WenaChunjin Hanga( )Zhen ZhengaYilong HuangaSu DingbChenxi Wanga
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310036, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Copper nanowires (Cu NWs) are considered an excellent alternative to indium tin oxide (ITO) in flexible transparency electrodes (FTEs). However, the mixed particles and surface oxidation of Cu NWs degrade the transmittance and conductivity of the electrodes. Therefore, highly purified Cu NWs without oxidation are vital for high-performance FTEs. Herein, a facile and effective purification process is introduced to purify Cu NWs in a water and n-hexane system, which takes advantage of the differences in hydrophilicity between Cu NWs and Cu NPs caused by their different adsorption affinities to octadecylamine (ODA). At the same sheet resistance, the transmittance of the purified Cu NW-based FTEs improved approximately 2% compared to that of non-purified Cu NW-based FTEs. Immersion of the electrode in glacial acetic acid removed the surface organics and oxides. After only 40 s of treatment, the sheet resistance dramatically decreased from 105 Ohm/sq to 31 Ohm/sq with a transmittance of 85%. In addition, the Cu NW-based FTE conductors showed excellent flexibility (remaining stable after 1000 bending cycles). The Cu NW-based FTEs were further applied to fabricate a flexible transparent heater. At a voltage of 10 V, the temperature of the heater reached 73 ℃, demonstrating the potential applications of this material in various fields.

References

[1]

Y. Zhong, R. An, H. Ma, C. Wang, Low-temperature-solderable intermetallic nanoparticles for 3D printable flexible electronics, Acta Mater. 162 (2019) 163–175.

[2]

K.L. Zhou, C.B. Han, C.F. Li, J. Jiu, Y. Yang, L. Li, H. Wang, J.B. Liu, Z.Q. Liu, H. Yan, K. Suganuma, Highly stable transparent conductive electrodes based on silver–platinum alloy-walled hollow nanowires for optoelectronic devices, ACS Appl. Mater. Interfaces 10 (2018) 36128–36135.

[3]

J. Wen, Y. Tian, C. Hao, S. Wang, Z. Mei, W. Wu, J. Lu, Z. Zheng, Y. Tian, Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste, J. Mater. Chem. C 7 (2019) 1188–1197.

[4]

S. Park, S.W. Heo, W. Lee, D. Inoue, Z. Jiang, K. Yu, H. Jinno, D. Hashizume, M. Sekino, T. Yokota, K. Fukuda, K. Tajima, T. Someya, Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics, Nature 561 (2018) 516–521.

[5]

B. Deng, P. Hsu, G. Chen, B.N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu, H. Peng, Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for highperformance flexible transparent electrodes, Nano Lett. 15 (2015) 4206–4213.

[6]

B. Hwang, C.H. An, S. Becker, Highly robust Ag nanowire flexible transparent electrode with UV-curable polyurethane-based overcoating layer, Mater. Des. 129 (2017) 180–185.

[7]

A.G. Ricciardulli, S. Yang, G.J.A.H. Wetzelaer, X. Feng, P.W.M. Blom, Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics, Adv. Funct. Mater. 28 (2018) 1706010.

[8]

D.J. Lee, Y. Oh, J.M. Hong, Y.W. Park, Light sintering of ultra-smooth and robust silver nanowire networks embedded in poly(vinyl-butyral) for flexible OLED, Sci. Rep. 8 (2018) 14170.

[9]

L. Zhang, Y. Ji, Y. Qiu, C. Xu, Z. Liu, Q. Guo, Highly thermal-stable and transparent silver nanowire conductive films via magnetic assisted electrodeposition of Ni, J. Mater. Chem. C 6 (2018) 4887–4894.

[10]

X. Liu, D. Li, X. Chen, W.Y. Lai, W. Huang, Highly transparent and flexible all-solidstate supercapacitors based on ultra-Long silver nanowire conductive networks, ACS Appl. Mater. Interfaces 10 (2018) 32536–32542.

[11]

X. Yang, P. Gao, Z. Yang, J. Zhu, F. Huang, J. Ye, Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures, Sci. Rep. 7 (2017) 44576.

[12]

H. Lee, I. Kim, M. Kim, H. Lee, Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes, Nanoscale 8 (2016) 1789.

[13]

K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2004) 706–710.

[14]

H. Lee, S. Hong, J. Lee, Y.D. Suh, J. Kwon, H. Moon, H. Kim, J. Yeo, S.H. Ko, Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability, ACS Appl. Mater. Interfaces 8 (2016) 15449–15458.

[15]

A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Mater. Sci. 1 (2019) 31–37.

[16]

Y. Huang, Y. Liu, K. Youssef, K. Tong, Y. Tian, Q. Pei, A solution processed flexible nanocomposite substrate with efficient light extraction via periodic wrinkles for white wrganic light-emitting diodes, Adv. Opt. Mater. 6 (2018) 1801015.

[17]

H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, D.L. Peng, Copper nanowires as fully transparent conductive electrodes, Sci. Rep. 3 (2013) 2323.

[18]

S.R. Ye, A.R. Rathmell, Z.F. Chen, I.E. Stewart, B.J. Wiley, Metal nanowire networks: the next generation of transparent conductors, Adv. Mater. 26 (2014) 6670–6687.

[19]

L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano 4 (2010) 2955–2963.

[20]

S. Wang, Y. Tian, C. Hang, C. Wang, Cohesively enhanced electrical conductivity and thermal stability of silver nanowire networks by nickel ion bridge joining, Sci. Rep. 8 (2018) 5260.

[21]

A.R. Rathmell, B.J. Wiley, The Synthesis and Coating of Long, Thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Adv. Mater. 23 (2011) 4798–4803.

[22]

F. Cui, Y. Yu, L. Dou, J. Sun, Q. Yang, Christian Schildknecht, K.S. Arndt, P. Yang, Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for highperformance and low-haze transparent conductors, Nano Lett. 15 (2015) 7610–7615.

[23]

J. Chen, W. Zhou, J. Chen, Y. Fan, Z. Zhang, Z. Huang, X. Feng, B. Mi, Y. Ma, W. Huang, Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells, Nano Res 8 (2015) 1017–1025.

[24]

S. Ye, A.R. Rathmell, I.E. Stewart, Y.C. Ha, A.R. Wilson, Z. Chen, B.J. Wiley, A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films, Chem. Commun. 50 (2014) 2562–2564.

[25]

H. Yoon, D.S. Shin, B. Babu, T.G. Kim, K.M. Song, J. Park, Control of copper nanowire network properties and application to transparent conducting layer in LED, Mater. Des. 132 (2017) 66–71.

[26]

R. Deshmukh, M. Calvo, M. Schreck, E. Tervoort, A.S. Sologubenko, M. Niederberger, Synthesis, spray deposition, and hot-press transfer of copper nanowires for flexible transparent electrodes, ACS Appl. Mater. Interfaces 10 (2018) 20748–20754.

[27]

Y. Zhang, J. Guo, D. Xu, Y. Sun, F. Yan, Synthesis of ultrathin semicircle-shaped copper nanowires in ethanol solution for low haze flexible transparent conductors, Nano Res 11 (2018) 3899–3910.

[28]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy, Nano Lett. 3 (2003) 1229–1233.

[29]

Y. Chang, M.L. Lye, H.C. Zeng, Large-scale synthesis of high-quality ultralong copper nanowires, Langmuir 21 (2005) 3746–3748.

[30]

M. Hanauer, S. Pierrat, I. Zins, A. Lotz, C. Sonnichsen, Separation of nanoparticles by gel electrophoresis according to size and shape, Nano Lett. 7 (2007) 2881–2885.

[31]

X. Xu, K.K. Caswell, E. Tucker, S. Kabisatpathy, K.L. Brodhacker, W.A. Scrivens, Size and shape separation of gold nanoparticles with preparative gel electrophoresis, J. Chromatogr. A 1167 (2007) 35–41.

[32]

K.C. Pradel, K. Sohn, J. Huang, Cross-flow purification of nanowires, Angew Chem. Int. Ed. Engl. 50 (2011) 3412–3416.

[33]

F. Qian, P.C. Lan, T. Olson, C. Zhu, E.B. Duoss, C.M. Spadaccini, T.Y. Han, Multiphase separation of copper nanowires, Chem. Commun. 52 (2016) 11627.

[34]

C. Kang, S. Yang, M. Tan, C. Wei, Q. Liu, J. Fang, G. Liu, Purification of copper nanowires to prepare flexible transparent conductive films with high performance, ACS Appl. Nano Mater. 1 (2018) 3155–3163.

[35]

Y. Huang, Z. Huang, Z. Zhong, X. Yang, Q. Hong, H. Wang, S. Huang, N. Gao, X. Chen, D., J. Kang, Highly transparent light emitting diodes on graphene encapsulated Cu nanowires network, Sci. Rep. 8 (2018) 13721.

[36]

Y. Tang, H. Ruan, Z. Huang, D. Shi, H. Liu, S. Chen, J. Zhang, Fabrication of highquality copper nanowires flexible transparent conductive electrodes with enhanced mechanical and chemical stability, Nanotechnology 29 (2018) 455706.

[37]

Z. Yin, C. Lee, S. Cho, J. Yoo, Y. Piao, Y.S. Kim, Facile synthesis of oxidationresistant copper nanowires toward solution-processable, flexible, foldable, and freestanding electrodes, Small 10 (2014) 5047–5052.

[38]

S. Han, S. Hong, J. Yeo, D. Kim, B. Kang, M.Y. Yang, S.H. Ko, Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction, Adv. Mater. 27 (2015) 6397–6403.

[39]

S. Ding, J. Jiu, Y. Gao, Y. Tian, T. Araki, T. Sugahara, S. Nagao, M. Nogi, H. Koga, K. Suganuma, H. Uchida, One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices, ACS Appl. Mater. Interfaces 8 (2016) 6190–6199.

[40]

C. Mayousse, C. Celle, A. Carella, J.P. Simonato, Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT: PSS, Nano Res 7 (2014) 315–324.

[41]

R. Wang, H. Ruan, Synthesis of copper nanowires and its application to flexible transparent electrode, J. Alloy. Comp. 625 (2016) 936–943.

[42]

B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-controlled synthesis of metal nanostructures: the case of silver, Chem. Eur J. 11 (2005) 454–463.

[43]

Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem. Int. Ed. Engl. 48 (2009) 60–103.

[44]

B. Wiley, Y. Xiong, Z. Li, Y. Yin, Y. Xia, Right bipyramids of Silver: a new shape derived from single twinned seeds, Nano Lett. 6 (2006) 765–768.

[45]

B. Wiley, T. Herricks, Y. Sun, Y. Xia, Polyol synthesis of silver Nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons, Nano Lett. 4 (2004) 1733–1739.

[46]

Y. Xiong, J. Chen, B. Wiley, Y. Xia, Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size, J. Am. Chem. Soc. 127 (2005) 7332–7333.

[47]

H. Zhang, M. Jin, Y. Xia, Noble-Metal nanocrystals with concave surfaces: synthesis and applications, Angew Chem. Int. Ed. Engl. 51 (2012) 7656–7673.

[48]

W. Li, X. Tang, H. Zhang, Z. Jiang, Z. Yu, X. Du, Y. Mai, Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites, Carbon 49 (2011) 4724–4730.

[49]

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S.S. Lee, M. Yang, S.H. Ko, Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics, Adv. Mater. 26 (2014) 5808–5814.

[50]

C.R. Chu, C. Lee, J. Koo, H.M. Lee, Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability, Nano Res 9 (2016) 2162–2173.

[51]

J. Chen, W. Zhou, J. Chen, Y. Fan, Z. Zhang, Z. Huang, X. Feng, B. Mi, Y. Ma, W. Huang, Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells, Nano Res 8 (2015) 1017–1025.

[52]

I.E. Stewart, A.R. Rathmell, L. Yan, S. Ye, P.F. Flowers, W. You, B.J. Wiley, Nanoscale, Solution-processed copper–nickel nanowire anodes for organic solar cells 6 (2014) 5980–5988.

[53]

Y. Cheng, S. Wang, R. Wang, J. Sun, L. Gao, Copper nanowire based transparent conductive films with high stability and superior stretchability, J. Mater. Chem. C 2 (2014) 5309–5316.

Nano Materials Science
Pages 164-171
Cite this article:
Zhang H, Wang S, Tian Y, et al. High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes. Nano Materials Science, 2020, 2(2): 164-171. https://doi.org/10.1016/j.nanoms.2019.09.007

426

Views

10

Downloads

30

Crossref

29

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 13 July 2019
Accepted: 25 August 2019
Published: 13 September 2019
© 2019 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return