AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Facile magnetoresistance adjustment of graphene foam for magnetic sensor applications through microstructure tailoring

Rizwan Ur Rehman Sagara,bMin Zhangb( )Xiaohao WangbBabar ShabbircFlorian J. Stadlera( )
Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria, 3800, Australia
Show Author Information

Abstract

Graphene foam is becoming a material of choice for magnetoelectronic devices due to its large, linear and unsaturated room temperature magnetoresistance. However, the magnetoresistance of graphene foam is not as large as that of monolayer graphene. Herein, we describe how magnetoresistance ~ 100% was detected at room temperature under a magnetic field of 5 T that is comparable to the magnetoresistance in monolayer graphene; the highest magnetoresistance of ~158% was detected at 5 K under a magnetic field of 5 T. Unlike monolayer graphene, graphene foam is far more comfortable with producing in gram scale and utilizing in magnetoelectronic devices.

References

[1]

J. -J. Chen, J. Meng, Y. -B. Zhou, H. -C. Wu, Y. -Q. Bie, Z. -M. Liao, D. -P. Yu, Layer-by-layer assembly of vertically conducting graphene devices, Nat. Commun. 4 (2013) 1921.

[2]

F. Kisslinger, C. Ott, C. Heide, E. Kampert, B. Butz, E. Spiecker, S. Shallcross, H.B. Weber, Linear magnetoresistance in mosaic-like bilayer graphene, Nat. Phys. 11 (8) (2015) 650–653.

[3]

K. Gopinadhan, Y.J. Shin, R. Jalil, T. Venkatesan, A.K. Geim, A.H. Castro Neto, H. Yang, Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures, Nat. Commun. 6 (2015) 8337.

[4]

R. Sevak Singh, X. Wang, W. Chen, Ariando, A.T.S. Wee, Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: evidence for two-dimensional magnetotransport, Appl. Phys. Lett. 101 (18) (2012) 183105.

[5]

B. Chen, L. Huang, X. Ma, L. Dong, Z. Zhang, L. -M. Peng, Exploration of sensitivity limit for graphene magnetic sensors, Carbon 94 (2015) 585–589.

[6]

M. Pumera, Graphene in biosensing, Mater. Today 14 (7) (2011) 308–315.

[7]

H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J. -E. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. Kim, R.S. Ruoff, S. -Y. Choi, Graphene oxide thin films for flexible nonvolatile memory applications, Nano Lett. 10 (11) (2010) 4381–4386.

[8]

K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (7419) (2012) 192–200.

[9]

Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y. -W. Zhang, P. Kim, J. Hone, L. Colombo, R.S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper, Science 342 (6159) (2013) 720.

[10]

A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Mater. Sci. 1 (1) (2019) 31–47.

[11]

A. Endo, J. Bao, W. Norimatsu, M. Kusunoki, S. Katsumoto, Y. Iye, Two-carrier model on the magnetotransport of epitaxial graphene containing coexisting single-layer and bilayer areas, Philos. Mag. 97 (21) (2017) 1755–1767.

[12]

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666–669.

[13]

D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, M. Chhowalla, High-quality graphene via microwave reduction of solution-exfoliated graphene oxide, Science 353 (6306) (2016) 1413–1416.

[14]

W.S. Leong, H. Wang, J. Yeo, F.J. Martin-Martinez, A. Zubair, P. -C. Shen, Y. Mao, T. Palacios, M.J. Buehler, J. -Y. Hong, J. Kong, Paraffin-enabled graphene transfer, Nat. Commun. 10 (1) (2019) 867.

[15]

N. Raghavan, S. Thangavel, G. Venugopal, A short review on preparation of graphene from waste and bioprecursors, Appl. Mater. Today 7 (2017) 246–254.

[16]

Y. Lin, Y. Liao, Z. Chen, J.W. Connell, Holey graphene: a unique structural derivative of graphene, Mater. Res. Lett. 5 (4) (2017) 209–234.

[17]

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. -M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater. 10 (6) (2011) 424–428.

[18]

S. Aslam, R.U.R. Sagar, Y. Liu, T. Anwar, L. Zhang, M. Zhang, N. Mahmood, Y. Qiu, Graphene decorated polymeric flexible materials for lightweight high areal energy lithium-ion batteries, Appl. Mater. Today 17 (2019) 123–129.

[19]

Y.J. Wu, Z.J. Wang, X.K. Ning, Q. Wang, W. Liu, Z.D. Zhang, Room temperature magnetoresistance properties in self-assembled epitaxial La0.7Sr0.3MnO3: NiO nanocomposite thin films, Mater. Res. Lett. 6 (9) (2018) 489–494.

[20]

P. Li, Q. Zhang, X. He, W. Ren, H. -M. Cheng, X. -x. Zhang, Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam, Phys. Rev. B 94 (4) (2016), 045402.

[21]

H. Guo, R. Lv, S. Bai, Recent advances on 3D printing graphene-based composites, Nano Mater. Sci. 1 (2) (2019) 101–115.

[22]

Y. -B. Zhou, B. -H. Han, Z. -M. Liao, H. -C. Wu, D. -P. Yu, From positive to negative magnetoresistance in graphene with increasing disorder, Appl. Phys. Lett. 98 (22) (2011) 222502.

[23]

A.T. Murdock, A. Koos, T.B. Britton, L. Houben, T. Batten, T. Zhang, A.J. Wilkinson, R.E. Dunin-Borkowski, C.E. Lekka, N. Grobert, Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene, ACS Nano 7 (2) (2013) 1351–1359.

[24]

K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, R. Pratap, S. Raghavan, Reversible defect engineering in graphene grain boundaries, Nat. Commun. 10 (1) (2019) 1090.

[25]

B. Shabbir, M. Nadeem, Z. Dai, M.S. Fuhrer, Q. -K. Xue, X. Wang, Q. Bao, Long range intrinsic ferromagnetism in two dimensional materials and dissipationless future technologies, Appl. Phys. Rev. 5 (4) (2018), 041105.

[26]

B. Shabbir, X. Wang, S.R. Ghorbani, C. Shekhar, S. Dou, O.N. Srivastava, Hydrostatic pressure: a very effective approach to significantly enhance critical current density in granular iron pnictide superconductors, Sci. Rep. 5 (2015) 8213.

[27]

B. Shabbir, A. Ullah, N. Hassan, M. Irfan, N.A. Khan, Suppression of superconductivity due to enhanced Co doping in Cu0.5Tl0.5Ba2Ca2Cu3-yCoyO10-δSuperconductors, J. Supercond. Nov. Magnetism 24 (5) (2011) 1521–1526.

[28]

B. Shabbir, H. Huang, C. Yao, Y. Ma, S. Dou, T.H. Johansen, H. Hosono, X. Wang, Evidence for superior current carrying capability of iron pnictide tapes under hydrostatic pressure, Phys. Rev. Mater. 1 (4) (2017), 044805.

[29]

R.U.R. Sagar, K. Shehzad, A. Ali, F.J. Stadler, Q. Khan, J. Zhao, X. Wang, M. Zhang, Defect-induced, temperature-independent, tunable magnetoresistance of partially fluorinated graphene foam, Carbon 143 (2019) 179–188.

[30]

R.U.R. Sagar, M. Galluzzi, A. García-Peñas, M.A. Bhat, M. Zhang, F.J. Stadler, Large unsaturated room temperature negative magnetoresistance in graphene foam composite for wearable and flexible magnetoelectronics, Nano Res. 12 (1) (2019) 101–107.

[31]

M.H. Zeb, B. Shabbir, R.U.R. Sagar, N. Mahmood, K. Chen, I. Qasim, M.I. Malik, W. Yu, M.M. Hossain, Z. Dai, Q. Ou, M.A. Bhat, B.N. Shivananju, Y. Li, X. Tang, K. Qi, A. Younis, Q. Khan, Y. Zhang, Q. Bao, Superior magnetoresistance performance of hybrid graphene foam/metal sulfide nanocrystal devices, ACS Appl. Mater. Interfaces 11 (21) (2019) 19397–19403.

[32]

R.U.R. Sagar, H.I.A. Qazi, M.H. Zeb, F.J. Stadler, B. Shabbir, X. Wang, M. Zhang, Tunable sign of magnetoresistance in graphene foam – ecoflex® composite for wearable magnetoelectronic devices, Mater. Lett. 253 (2019) 166–170.

[33]

R.U.R. Sagar, N. Mahmood, F.J. Stadler, T. Anwar, S.T. Navale, K. Shehzad, B. Du, High capacity retention anode material for lithium ion battery, Electrochim. Acta 211 (2016) 156–163.

[34]

H. Naveed, R. Mohsin, A. Tauseef, M. Murtaza, J. Liu, N. Farhat, H. Kai, H. Ya, L. Jialiang, W. Hui, High-pressure mechanism for realizing sub-10 nm tellurium nanoflakes on arbitrary substrates, 2D Mater. 6 (2019), 045006.

[35]

R.U.R. Sagar, X.Z. Zhang, C.Y. Xiong, Y. Yu, Semiconducting amorphous carbon thin films for transparent conducting electrodes, Carbon 76 (2014) 64–70.

[36]

N. Hussain, M. -H. Zhang, Q. Zhang, Z. Zhou, X. Xu, M. Murtaza, R. Zhang, H. Wei, G. Ou, D. Wang, K. Wang, J. -F. Li, H. Wu, Large piezoelectric strain in sub-10 nanometer two-dimensional polyvinylidene fluoride nanoflakes, ACS Nano 13 (4) (2019) 4496–4506.

[37]

P.M. Levy, S. Zhang, A. Fert, Electrical conductivity of magnetic multilayered structures, Phys. Rev. Lett. 65 (13) (1990) 1643–1646.

[38]

L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Appl. Phys. Lett. 88 (16) (2006) 163106.

[39]

R.U.R. Sagar, J.S. Florian, T.N. Sachin, S.M. Rajaram, N. Adnan, N. Ghulam, Irreconcilable room temperature magnetotransport properties of polypyrrole nanoparticles and nanorods, J. Phys. D Appl. Phys. 50 (36) (2017) 365002.

[40]

S.K. Pradhan, R. Barik, Observation of the magneto-transport property in a millimeter-long topological insulator Bi2Te3 thin-film Hall bar device, Appl. Mater. Today 7 (2017) 55–59.

[41]

X. Zhang, Q.Z. Xue, D.D. Zhu, Positive and negative linear magnetoresistance of graphite, Phys. Lett. A 320 (5–6) (2004) 471–477.

[42]

Z. Yue, I. Levchenko, S. Kumar, D. Seo, X. Wang, S. Dou, K. Ostrikov, Large networks of vertical multi-layer graphenes with morphology-tunable magnetoresistance, Nanoscale 5 (19) (2013) 9283–9288.

[43]

Y.N. Singhbabu, S.K. Choudhary, N. Shukla, S. Das, R.K. Sahu, Observation of large positive magneto-resistance in bubble decorated graphene oxide films derived from shellac biopolymer: a new carbon source and facile method for morphology-controlled properties, Nanoscale 7 (15) (2015) 6510–6519.

[44]

A.L. Friedman, J.L. Tedesco, P.M. Campbell, J.C. Culbertson, E. Aifer, F.K. Perkins, R.L. Myers-Ward, J.K. Hite, C.R. Eddy Jr., G.G. Jernigan, D.K. Gaskill, Quantum linear magnetoresistance in multilayer epitaxial graphene, Nano Lett. 10 (10) (2010) 3962–3965.

[45]

Y. Liu, W.S. Lew, L. Sun, Enhanced weak localization effect in few-layer graphene, Phys. Chem. Chem. Phys. 13 (45) (2011) 20208–20214.

[46]

C. Chuang, Y. Yang, R.E. Elmquist, C. -T. Liang, Linear magnetoresistance in monolayer epitaxial graphene grown on SiC, Mater. Lett. 174 (2016) 118–121.

[47]
A.B. Pippard, C.U. Press, Magnetoresistance in Metals, Cambridge University Press, 1989.
Nano Materials Science
Pages 346-352
Cite this article:
Sagar RUR, Zhang M, Wang X, et al. Facile magnetoresistance adjustment of graphene foam for magnetic sensor applications through microstructure tailoring. Nano Materials Science, 2020, 2(4): 346-352. https://doi.org/10.1016/j.nanoms.2020.01.002

399

Views

4

Downloads

13

Crossref

12

Web of Science

14

Scopus

0

CSCD

Altmetrics

Published: 08 January 2020
© 2020 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return