AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (20.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Graphene film for thermal management: A review

Pei HuangaYao LiaGang YangaZheng-Xin LiaYuan-Qing LiaNing HubShao-Yun Fua( )Kostya S. Novoselovc,d
College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
Centre for Advanced 2D Materials, National University of Singapore, 117546, Singapore
Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing, 400714, China
Show Author Information

Abstract

Thermal conductivity and thermal dissipation are of great importance for modern electronics due to the increased transistor density and operation frequency of contemporary integrated circuits. Due to its exceptionally high thermal conductivity, graphene has drawn considerable interests worldwide for heat spreading and dissipation. However, maintaining high thermal conductivity in graphene laminates (the basic technological unit) is a significant technological challenge. Aiming at highly thermal conductive graphene films (GFs), this prospective review outlines the most recent progress in the production of GFs originated from graphene oxide due to its great convenience in film processing. Additionally, we also consider such issues as film assembly, defect repair and mechanical compression during the post-treatment. We also discuss the thermal conductivity in in-plane and through-plane direction and mechanical properties of GFs. Further, the current typical applications of GFs are presented in thermal management. Finally, perspectives are given for future work on GFs for thermal management.

References

[1]

A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10 (8) (2011) 569–581.

[2]
Novoselov K.S. Fal′ko V.I. Colombo L. Gellert P.R. Schwab M.G. Kim K. A roadmap for grapheneNature2012490741919220010.1038/nature11458

K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (7419) (2012) 192–200.

[3]

S.V. Garimella, A.S. Fleischer, J.Y. Murthy, A. Keshavarzi, R. Prasher, C. Patel, S.H. Bhavnani, R. Venkatasubramanian, R. Mahajan, Y. Joshi, B. Sammakia, B.A. Myers, L. Chorosinski, M. Baelmans, P. Sathyamurthy, P.E. Raad, Thermal challenges in next-generation electronic systems, IEEE Trans. Compon. Packag. Technol. 31 (4) (2008) 801–815.

[4]

A.A. Balandin, Chill Out, IEEE Spectr. 46 (10) (2009) 34–39.

[5]

M. Seelmann-Eggebert, P. Meisen, F. Schaudel, P. Koidl, A. Vescan, H. Leier, Heatspreading diamond films for GaN-based high-power transistor devices, Diam. Relat. Mater. 10 (3) (2001) 744–749.

[6]

R. Prasher, Graphene spreads the heat, Science 328 (5975) (2010) 185–186.

[7]

N. Wang, et al., Tailoring the thermal and mechanical properties of graphene film by structural engineering, Small 14 (2018) 1801346.

[8]
Klemens P. Theory of the A-plane thermal conductivity of graphiteJ. Wide Bandgap Mater.20007332339

P. Klemens, Theory of the A-plane thermal conductivity of graphite, J. Wide Bandgap Mater. 7 (2000) 332–339.

10.1106/7FP2-QBLN-TJPA-NC66
[9]

U. Stöberl, U. Wurstbauer, W. Wegscheider, D. Weiss, J. Eroms, Morphology and flexibility of graphene and few-layer graphene on various substrates, Appl. Phys. Lett. 93 (5) (2008), 051906.

[10]

J. Ding, H. Zhao, Q. Wang, H. Dou, H. Chen, H. Yu, An ultrahigh thermal conductive graphene flexible paper, Nanoscale 9 (43) (2017) 16871–16878.

[11]

C.-T. Hsieh, C.-E. Lee, Y.-F. Chen, J.-K. Chang, H.-s. Teng, Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets, Nanoscale 7 (44) (2015) 18663–18670.

[12]

F. Gong, H. Li, W. Wang, D. Xia, Q. Liu, D.V. Papavassiliou, Z. Xu, Recent advances in graphene-based free-standing films for thermal management: synthesis, properties, and applications, Coatings 8 (2) (2018) 63.

[13]

S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9 (7) (2010) 555–558.

[14]

J.-X. Yan, Y.-C. Leng, Y.-N. Guo, G.-Q. Wang, H. Gong, P.-Z. Guo, P.-H. Tan, Y.-Z. Long, X.-L. Liu, W.-P. Han, Highly conductive graphene paper with vertically aligned reduced graphene oxide sheets fabricated by improved electrospray deposition technique, ACS Appl. Mater. Interfaces 11 (11) (2019) 10810–10817.

[15]

G. Xin, W. Zhu, T. Yao, S.M. Scott, J. Lian, Microstructure control of macroscopic graphene paper by electrospray deposition and its effect on thermal and electrical conductivities, Appl. Phys. Lett. 110 (9) (2017), 091909.

[16]
Beidaghi M. Wang Z. Gu L. Wang C. Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodesJ. Solid State Electrochem.201216103341334810.1007/s10008-012-1777-5

M. Beidaghi, Z. Wang, L. Gu, C. Wang, Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes, J. Solid State Electrochem. 16 (10) (2012) 3341–3348.

[17]

M. Mustafa, M.N. Awais, G. Pooniah, K.H. Choi, J. Ko, Y.H. Doh, Electrospray deposition of a graphene-oxide thin film, its characterization and investigation of its resistive switching performance, J.Korean Phys. Soc. 61 (3) (2012) 470–475.

[18]
Lee C.K. Park K.W. Hwang S.W. Lee S.B. Shim J.K. Direct electrospray deposition of graphene onto paper and effect of binder on its surface resistanceJ. Nanosci. Nanotechnol.201313107108711110.1166/jnn.2013.7873

C.K. Lee, K.W. Park, S.W. Hwang, S.B. Lee, J.K. Shim, Direct electrospray deposition of graphene onto paper and effect of binder on its surface resistance, J. Nanosci. Nanotechnol. 13 (10) (2013) 7108–7111.

[19]

G. Xin, H. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar, T. Borca-Tasciuc, J. Lian, Large-area freestanding graphene paper for superior thermal management, Adv. Mater. 26 (26) (2014) 4521–4526.

[20]

K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen, L.C. Brinson, Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites, ACS Nano 5 (8) (2011) 6601–6609.

[21]

P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.-H. Kim, C.M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon 94 (2015) 494–500.

[22]

L. Shi, J. Yang, Z. Huang, J. Li, Z. Tang, Y. Li, Q. Zheng, Fabrication of transparent, flexible conducing graphene thin films via soft transfer printing method, Appl. Surf. Sci. 276 (2013) 437–446.

[23]

N.M. Rosas-Laverde, A. Pruna, D. Busquets-Mataix, Improving electrochemical properties of polypyrrole coatings by graphene oxide and carbon nanotubes, Nanomaterials 10 (3) (2020) 14.

[24]

X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dyesensitized solar cells, Nano Lett. 8 (1) (2008) 323–327.

[25]

Y. Li, Y. Zhu, G. Jiang, Z.P. Cano, J. Yang, J. Wang, J. Liu, X. Chen, Z. Chen, Boosting the heat dissipation performance of graphene/polyimide flexible carbon film via enhanced through-plane conductivity of 3D hybridized structure, Small 16 (8) (2020) 1903315.

[26]

M. Savchak, N. Borodinov, R. Burtovyy, M. Anayee, K. Hu, R. Ma, A. Grant, H. Li, D.B. Cutshall, Y. Wen, G. Koley, W.R. Harrell, G. Chumanov, V. Tsukruk, I. Luzinov, Highly conductive and transparent reduced graphene oxide nanoscale films via thermal conversion of polymer-encapsulated graphene oxide sheets, ACS Appl. Mater. Interfaces 10 (4) (2018) 3975–3985.

[27]

B. Shen, W. Zhai, W. Zheng, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater. 24 (28) (2014) 4542–4548.

[28]
An S.J. Zhu Y. Lee S.H. Stoller M.D. Emilsson T. Park S. Velamakanni A. An J. Ruoff R.S. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic depositionJ. Phys. Chem. Lett.2010181259126310.1021/jz100080c

S.J. An, Y. Zhu, S.H. Lee, M.D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, R.S. Ruoff, Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition, J. Phys. Chem. Lett. 1 (8) (2010) 1259–1263.

[29]
Chen Y. Zhang X. Yu P. Ma Y. Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitorsJ. Power Sources2010195930313035

Y. Chen, X. Zhang, P. Yu, Y. Ma, Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors, J. Power Sources 195 (9) (2010) 3031–3035.

10.1016/j.jpowsour.2009.11.057
[30]

D. Hu, W. Gong, J. Di, D. Li, R. Li, W. Lu, B. Gu, B. Sun, Q. Li, Strong grapheneinterlayered carbon nanotube films with high thermal conductivity, Carbon 118 (2017) 659–665.

[31]

Y. Liu, P. Li, F. Wang, W. Fang, Z. Xu, W. Gao, C. Gao, Rapid roll-to-roll production of graphene films using intensive Joule heating, Carbon 155 (2019) 462–468.

[32]
Bi H. Wan S. Cao X. Wu X. Zhou Y. Yin K. Su S. Ma Q. Sindoro M. Zhu J. Zhang Z. Zhang H. Sun L. A general and facile method for preparation of large-scale reduced graphene oxide films with controlled structuresCarbon2019143162171

H. Bi, S.Wan, X. Cao, X.Wu,Y. Zhou, K. Yin, S. Su, Q. Ma, M. Sindoro, J. Zhu, Z. Zhang, H. Zhang, L. Sun, A general and facile method for preparation of large-scale reduced graphene oxide films with controlled structures, Carbon 143 (2019) 162–171.

10.1016/j.carbon.2018.11.007
[33]

Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung, Z. Li, J.-K. Kim, Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir–blodgett assembly, ACS Nano 5 (7) (2011) 6039–6051.

[34]
Xu F. Chen R. Lin Z. Sun X. Wang S. Yin W. Peng Q. Li Y. He X. Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paperJ. Mater. Chem. C2018645123211232810.1039/c8tc04008g

F. Xu, R. Chen, Z. Lin, X. Sun, S. Wang, W. Yin, Q. Peng, Y. Li, X. He, Variable densification of reduced graphene oxide foam into multifunctional highperformance graphene paper, J. Mater. Chem. C 6 (45) (2018) 12321–12328.

[35]
Tian J. Yang J. Yang C. Hao S. Compression and reduction of graphene oxide aerogels into flexible, porous and functional graphene filmsJ. Mater. Sci.20195420131471315610.1007/s10853-019-03828-7

J. Tian, J. Yang, C. Yang, S. Hao, Compression and reduction of graphene oxide aerogels into flexible, porous and functional graphene films, J. Mater. Sci. 54 (20) (2019) 13147–13156.

[36]

X. Cao, D. Qi, S. Yin, J. Bu, F. Li, C.F. Goh, S. Zhang, X. Chen, Ambient fabrication of large-area graphene films via a synchronous reduction and assembly strategy, Adv. Mater. 25 (21) (2013) 2957–2962.

[37]

H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater. 19 (12) (2009) 1987–1992.

[38]

S.G. Kim, S.S. Lee, E. Lee, J. Yoon, H.S. Lee, Kinetics of hydrazine reduction of thin films of graphene oxide and the determination of activation energy by the measurement of electrical conductivity, RSC Adv. 5 (124) (2015) 102567–102573.

[39]

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47 (1) (2009) 145–152.

[40]
Ning J. Wang J. Li X. Qiu T. Luo B. Hao L. Liang M. Wang B. Zhi L. A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive filmsJ. Mater. Chem.20142281096910973

J. Ning, J. Wang, X. Li, T. Qiu, B. Luo, L. Hao, M. Liang, B. Wang, L. Zhi, A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films, J. Mater. Chem. 2 (28) (2014) 10969–10973.

10.1039/C4TA00527A
[41]

Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder, Carbon 48 (5) (2010) 1686–1689.

[42]

I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization, Nat. Commun. 1 (1) (2010) 73.

[43]

S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon 48 (15) (2010) 4466–4474.

[44]

R.K. Upadhyay, S. Naicker, A. Barman, S.S. Roy, T. Thundat, P.R. Waghmare, Fabrication of free-standing graphene oxide films using a facile approach toluene swollen paraffin peeling and green reduction of these films into highly conductive reduced graphene oxide films, Chem. Eng. J. 354 (2018) 149–161.

[45]

C. Vallés, J. David Núñez, A.M. Benito, W.K. Maser, Flexible conductive graphenepaper obtained by direct and gentle annealing of graphene oxide paper, Carbon 50 (3) (2012) 835–844.

[46]

L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li, C. Gao, Ultrahigh thermal conductive yet superflexible graphene films, Adv. Mater. 29 (27) (2017) 1700589.

[47]

R. Mukherjee, A.V. Thomas, A. Krishnamurthy, N. Koratkar, Photothermally reduced graphene as high-power anodes for lithium-ion batteries, ACS Nano 6 (9) (2012) 7867–7878.

[48]

X.-Y. Fu, Y.-L. Zhang, H.-B. Jiang, D.-D. Han, Y.-Q. Liu, H. Xia, H.-B. Sun, Hierarchically structuring and synchronous photoreduction of graphene oxide films by laser holography for supercapacitors, Opt. Lett. 44 (7) (2019) 1714–1717.

[49]

F. Xiang, J. Zhong, N. Gu, R. Mukherjee, I.-K. Oh, N. Koratkar, Z. Yang, Farinfrared reduced graphene oxide as high performance electrodes for supercapacitors, Carbon 75 (2014) 201–208.

[50]

C.-R. Yang, S.-F. Tseng, Y.-T. Chen, Characteristics of graphene oxide films reduced by using an atmospheric plasma system, Nanomaterials 8 (10) (2018) 802.

[51]
Chen W. Yan L. Bangal P.R. Chemical reduction of graphene oxide to graphene by sulfur-containing compoundsJ. Phys. Chem. C201011447198851989010.1021/jp107131v

W. Chen, L. Yan, P.R. Bangal, Chemical reduction of graphene oxide to graphene by sulfur-containing compounds, J. Phys. Chem. C 114 (47) (2010) 19885–19890.

[52]

M.M. MacInnes, S. Hlynchuk, S. Acharya, N. Lehnert, S. Maldonado, Reduction of graphene oxide thin films by cobaltocene and decamethylcobaltocene, ACS Appl. Mater. Interfaces 10 (2) (2018) 2004–2015.

[53]

K. Sa, P. Mahanandia, Conducting reduced graphene oxide film as transparent electrode, Thin Solid Films 692 (2019) 8.

[54]

S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazinereduction of graphite- and graphene oxide, Carbon 49 (9) (2011) 3019–3023.

[55]

H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2 (3) (2008) 463–470.

[56]
Sygellou L. Paterakis G. Galiotis C. Tasis D. Work function tuning of reduced graphene oxide thin filmsJ. Phys. Chem. C2016120128129010.1021/acs.jpcc.5b09234

L. Sygellou, G. Paterakis, C. Galiotis, D. Tasis, Work function tuning of reduced graphene oxide thin films, J. Phys. Chem. C 120 (1) (2016) 281–290.

[57]

S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (7) (2007) 1558–1565.

[58]
Shao Y. Wang J. Engelhard M. Wang C. Lin Y. Facile and controllable electrochemical reduction of graphene oxide and its applicationsJ. Mater. Chem.2010204743748

Y. Shao, J. Wang, M. Engelhard, C. Wang, Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications, J. Mater. Chem. 20 (4) (2010) 743–748.

10.1039/B917975E
[59]
Ramesha G.K. Sampath S. Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical studyJ. Phys. Chem. C2009113197985798910.1021/jp811377n

G.K. Ramesha, S. Sampath, Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study, J. Phys. Chem. C 113 (19) (2009) 7985–7989.

[60]

M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films, Chem. Eur J. 15 (25) (2009) 6116–6120.

[61]

J.A. Quezada-Renteria, C.O. Ania, L.F. Chazaro-Ruiz, J.R. Rangel-Mendez, Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide, Carbon 149 (2019) 722–732.

[62]

X. Wang, I. Kholmanov, H. Chou, R.S. Ruoff, Simultaneous electrochemical reduction and delamination of graphene oxide films, ACS Nano 9 (9) (2015) 8737–8743.

[63]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater. 19 (16) (2009) 2577–2583.

[64]

G.T.T. Le, J. Manyam, P. Opaprakasit, N. Chanlek, N. Grisdanurak, P. Sreearunothai, Divergent mechanisms for thermal reduction of graphene oxide and their highly different ion affinities, Diam. Relat. Mater. 89 (2018) 246–256.

[65]

J. Chen, T. Shi, T. Cai, T. Xu, L. Sun, X. Wu, D. Yu, Self healing of defected graphene, Appl. Phys. Lett. 102 (10) (2013) 103107.

[66]

R. Zan, Q.M. Ramasse, U. Bangert, K.S. Novoselov, Graphene Reknits its holes, Nano Lett. 12 (8) (2012) 3936–3940.

[67]

Y. Chen, K. Fu, S. Zhu, W. Luo, Y. Wang, Y. Li, E. Hitz, Y. Yao, J. Dai, J. Wan, V.A. Danner, T. Li, L. Hu, Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors, Nano Lett. 16 (6) (2016) 3616–3623.

[68]

A. Barreiro, F. Börrnert, M.H. Rümmeli, B. Büchner, L.M.K. Vandersypen, Graphene at high bias: cracking, layer by layer sublimation, and fusing, Nano Lett. 12 (4) (2012) 1873–1878.

[69]

Q.-Q. Kong, Z. Liu, J.-G. Gao, C.-M. Chen, Q. Zhang, G. Zhou, Z.-C. Tao, X.-H. Zhang, M.-Z. Wang, F. Li, R. Cai, Hierarchical graphene–carbon fiber composite paper as a flexible lateral heat spreader, Adv. Funct. Mater. 24 (27) (2014) 4222–4228.

[70]
Li J. Chen X.-Y. Lei R.-B. Lai J.-F. Ma T.-M. Li Y. Highly thermally conductive graphene film produced using glucose under low-temperature thermal annealingJ. Mater. Sci.201954107553756210.1007/s10853-019-03406-x

J. Li, X.-Y. Chen, R.-B. Lei, J.-F. Lai, T.-M. Ma, Y. Li, Highly thermally conductivegraphene film produced using glucose under low-temperature thermal annealing,J. Mater. Sci. 54 (10) (2019) 7553–7562.

[71]

J. Li, J. Lai, J. Liu, R. Lei, Y. Chen, Carbonized dehydroascorbic acid: aim for targeted repair of graphene defects and bridge connection of graphene sheets with small size, Nanomaterials 10 (3) (2020) 531.

[72]

X. Wu, H. Li, K. Cheng, H. Qiu, J. Yang, Modified graphene/polyimide composite films with strongly enhanced thermal conductivity, Nanoscale 11 (17) (2019) 8219–8225.

[73]

R. Zou, F. Liu, N. Hu, H. Ning, X. Jiang, C. Xu, S. Fu, Y. Li, X. Zhou, C. Yan, Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity, Carbon 149 (2019) 173–180.

[74]

X. Yan, J. Chen, J. Yang, Q. Xue, P. Miele, Fabrication of free-standing, electrochemically active, and biocompatible graphene Oxide—Polyaniline and Graphene—Polyaniline hybrid papers, ACS Appl. Mater. Interfaces 2 (9) (2010) 2521–2529.

[75]

R. Zou, F. Liu, N. Hu, H.M. Ning, X.P. Jiang, C.H. Xu, S.Y. Fu, Y.Q. Li, C. Yan, 1-Pyrenemethanol derived nanocrystal reinforced graphene films with high thermal conductivity and flexibility, Nanotechnology 31 (6) (2020) 9.

[76]

M. Wang, L.D. Duong, J.-S. Oh, N.T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, J.-D. Nam, Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD), ACS Appl. Mater. Interfaces 6 (3) (2014) 1747–1753.

[77]

S. Jin, Q. Gao, X. Zeng, R. Zhang, K. Liu, X. Shao, M. Jin, Effects of reduction methods on the structure and thermal conductivity of free-standing reduced graphene oxide films, Diam. Relat. Mater. 58 (2015) 54–61.

[78]

E.J. Legge, M. Ahmad, C.T.G. Smith, B. Brennan, C.A. Mills, V. Stolojan, A.J. Pollard, S.R.P. Silva, Physicochemical characterisation of reduced graphene oxide for conductive thin films, RSC Adv. 8 (65) (2018) 37540–37549.

[79]
Han F. Yang S. Jing W. Jiang K. Jiang Z. Liu H. Li L. A highly efficient synthetic process of graphene films with tunable optical propertiesAppl. Surf. Sci.20143147177

F. Han, S. Yang, W. Jing, K. Jiang, Z. Jiang, H. Liu, L. Li, A highly efficient synthetic process of graphene films with tunable optical properties, Appl. Surf. Sci. 314 (2014) 71–77.

10.1016/j.apsusc.2014.05.222
[80]

Y.U. Shang, D. Zhang, Y. Liu, C. Guo, Preliminary comparison of different reduction methods of graphene oxide, Bull. Mater. Sci. 38 (1) (2015) 7–12.

[81]
Song N.-J. Chen C.-M. Lu C. Liu Z. Kong Q.-Q. Cai R. Thermally reduced graphene oxide films as flexible lateral heat spreadersJ. Mater. Chem.2014239165631656810.1039/C4TA02693D

N.-J. Song, C.-M. Chen, C. Lu, Z. Liu, Q.-Q. Kong, R. Cai, Thermally reduced graphene oxide films as flexible lateral heat spreaders, J. Mater. Chem. 2 (39) (2014) 16563–16568.

[82]

N. Wang, M.K. Samani, H. Li, L. Dong, Z. Zhang, P. Su, S. Chen, J. Chen, S. Huang, G. Yuan, X. Xu, B. Li, K. Leifer, L. Ye, J. Liu, Tailoring the thermal and mechanical properties of graphene film by structural engineering, Small 14 (29) (2018) 1801346.

[83]

Y. Wang, Y. Chen, S.D. Lacey, L. Xu, H. Xie, T. Li, V.A. Danner, L. Hu, Reduced graphene oxide film with record-high conductivity and mobility, Mater. Today 21 (2) (2018) 186–192.

[84]

M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science 335 (6074) (2012) 1326–1330.

[85]

A.H. Aimon, R. Hidayat, D. Rahmawati, R. Sutarto, F.A. Permatasari, F. Iskandar, Facile deposition of reduced graphene oxide-based transparent conductive film with microwave assisted method, Thin Solid Films 692 (2019) 137618.

[86]

E. Kymakis, K. Savva, M.M. Stylianakis, C. Fotakis, E. Stratakis, Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes, Adv. Funct. Mater. 23 (21) (2013) 2742–2749.

[87]

D.A. Sokolov, C.M. Rouleau, D.B. Geohegan, T.M. Orlando, Excimer laser reduction and patterning of graphite oxide, Carbon 53 (2013) 81–89.

[88]

T.-W. Pan, W.-S. Kuo, N.-H. Tai, Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films, Compos. Sci. Technol. 151 (2017) 44–51.

[89]

M. Liang, J. Wang, B. Luo, T. Qiu, L. Zhi, High-efficiency and room-temperature reduction of graphene oxide: a facile green approach towards flexible graphene films, Small 8 (8) (2012) 1180–1184.

[90]

T. Ghosh, C. Biswas, J. Oh, G. Arabale, T. Hwang, N.D. Luong, M. Jin, Y.H. Lee, J.-D. Nam, Solution-processed graphite membrane from reassembled graphene oxide, Chem. Mater. 24 (3) (2012) 594–599.

[91]

C. Teng, D. Xie, J. Wang, Z. Yang, G. Ren, Y. Zhu, Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene, Adv. Funct. Mater. 27 (20) (2017) 1700240.

[92]

Y. Zeng, T. Li, Y. Yao, T. Li, L. Hu, A. Marconnet, Thermally conductive reduced graphene oxide thin films for extreme temperature sensors, Adv. Funct. Mater. 29 (27) (2019) 1901388.

[93]

J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A.I. Cocemasov, D.L. Nika, A.A. Balandin, Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature, Adv. Funct. Mater. 25 (29) (2015) 4664–4672.

[94]

W. Wang, S.D. Yang, A. Wang, Strain induced highly oriented graphene wrinkles, Mater. Res. Express 4 (7) (2017) 4.

[95]

X. Chen, X. Deng, N.Y. Kim, Y. Wang, Y. Huang, L. Peng, M. Huang, X. Zhang, X. Chen, D. Luo, B. Wang, X. Wu, Y. Ma, Z. Lee, R.S. Ruoff, Graphitization of graphene oxide films under pressure, Carbon 132 (2018) 294–303.

[96]

X. Meng, H. Pan, C. Zhu, Z. Chen, T. Lu, D. Xu, Y. Li, S. Zhu, Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both inplane and through-plane directions, ACS Appl. Mater. Interfaces 10 (26) (2018) 22611–22622.

[97]

J. Li, R. Lei, J. Lai, X. Chen, Y. Li, Improved performance of graphene in heat dissipation when combined with an orientated magnetic carbon fiber skeleton under low-temperature thermal annealing, Materials 12 (6) (2019) 954.

[98]

J. Zhang, G. Shi, C. Jiang, S. Ju, D. Jiang, 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader, Small 11 (46) (2015) 6197–6204.

[99]

S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett. 92 (15) (2008) 151911.

[100]

E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications, MRS Bull. 37 (12) (2012) 1273–1281.

[101]
Cao A. Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometriesJ. Appl. Phys.2012111808352810.1063/1.4705510

A. Cao, Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries, J. Appl. Phys. 111 (8) (2012), 083528.

[102]

F. Ma, H.B. Zheng, Y.J. Sun, D. Yang, K.W. Xu, P.K. Chu, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett. 101 (11) (2012) 111904.

[103]

G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, Nano Lett. 14 (11) (2014) 6109–6114.

[104]

T. Ma, Z. Liu, J. Wen, Y. Gao, X. Ren, H. Chen, C. Jin, X.-L. Ma, N. Xu, H.-M. Cheng, W. Ren, Tailoring the thermal and electrical transport properties of graphene films by grain size engineering, Nat. Commun. 8 (1) (2017) 14486.

[105]

W. Lee, K.D. Kihm, H.G. Kim, S. Shin, C. Lee, J.S. Park, S. Cheon, O.M. Kwon, G. Lim, W. Lee, In-plane thermal conductivity of polycrystalline chemical vapor deposition graphene with controlled grain sizes, Nano Lett. 17 (4) (2017) 2361–2366.

[106]

X. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J.T.L. Thong, B.H. Hong, K.P. Loh, D. Donadio, B. Li, B. Özyilmaz, Length-dependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5 (1) (2014) 3689.

[107]

B.Mortazavi,A.Rajabpour, S. Ahzi, Y.Remond, S.MehdiVaez Allaei, Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study, Solid State Commun. 152 (4) (2012) 261–264.

[108]

B. Mortazavi, S. Ahzi, Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene, Solid State Commun. 152 (15) (2012) 1503–1507.

[109]

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin, R.S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater. 11 (3) (2012) 203–207.

[110]

S. Hu, J. Chen, N. Yang, B. Li, Thermal transport in graphene with defect and doping: phonon modes analysis, Carbon 116 (2017) 139–144.

[111]

H. Zhang, G. Lee, K. Cho, Thermal transport in graphene and effects of vacancy defects, Phys. Rev. B 84 (11) (2011) 115460.

[112]

Y.Y. Zhang, Y. Cheng, Q.X. Pei, C.M. Wang, Y. Xiang, Thermal conductivity of defective graphene, Phys. Lett. 376 (47) (2012) 3668–3672.

[113]

W. Zhao, Y. Wang, Z. Wu, W. Wang, K. Bi, Z. Liang, J. Yang, Y. Chen, Z. Xu, Z. Ni, Defect-engineered heat transport in graphene: a route to high efficient thermal rectification, Sci. Rep. 5 (1) (2015) 11962.

[114]
Zhang H. Fonseca A.F. Cho K. Tailoring thermal transport property of graphene through oxygen functionalizationJ. Phys. Chem. C201411831436144210.1021/jp4096369

H. Zhang, A.F. Fonseca, K. Cho, Tailoring thermal transport property of graphene through oxygen functionalization, J. Phys. Chem. C 118 (3) (2014) 1436–1442.

[115]

N. Yang, X. Ni, J.-W. Jiang, B. Li, How does folding modulate thermal conductivity of graphene? Appl. Phys. Lett. 100 (9) (2012), 093107.

[116]

W.J. Evans, L. Hu, P. Keblinski, Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination, Appl. Phys. Lett. 96 (20) (2010) 203112.

[117]

Q.-L. Meng, H. Liu, Z. Huang, S. Kong, P. Jiang, X. Bao, Tailoring thermal conductivity of bulk graphene oxide by tuning the oxidation degree, Chin. Chem. Lett. 29 (5) (2018) 711–715.

[118]

W.-R. Zhong, M.-P. Zhang, B.-Q. Ai, D.-Q. Zheng, Chirality and thicknessdependent thermal conductivity of few-layer graphene: a molecular dynamics study, Appl. Phys. Lett. 98 (11) (2011) 113107.

[119]

T. Guo, Z.-D. Sha, X. Liu, G. Zhang, T. Guo, Q.-X. Pei, Y.-W. Zhang, Tuning the thermal conductivity of multi-layer graphene with interlayer bonding and tensile strain, Appl. Phys. A 120 (4) (2015) 1275–1281.

[120]
Singh D. Murthy J.Y. Fisher T.S. Mechanism of thermal conductivity reduction in few-layer grapheneJ. Appl. Phys.2011110404431710.1063/1.3622300

D. Singh, J.Y. Murthy, T.S. Fisher, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys. 110 (4) (2011), 044317.

[121]

G. Yang, H. Yi, Y. Yao, C. Li, Z. Li, Thermally conductive graphene films for heat dissipation, ACS Appl. Nano Mater. 3 (3) (2020) 2149–2155.

[122]

X. Zhang, Y. Guo, Y. Liu, Z. Li, W. Fang, L. Peng, J. Zhou, Z. Xu, C. Gao, Ultrathick and highly thermally conductive graphene films by self-fusion, Carbon 167 (2020) 249–255.

[123]

Y. Zhang, H. Han, N. Wang, P. Zhang, Y. Fu, M. Murugesan, M. Edwards, K. Jeppson, S. Volz, J. Liu, Improved heat spreading performance of functionalized graphene in microelectronic device application, Adv. Funct. Mater. 25 (28) (2015) 4430–4435.

[124]

J. Xiang, L.T. Drzal, Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material, Sol. Energy Mater. Sol. Cell. 95 (7) (2011) 1811–1818.

[125]

X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye, Y.-W. Mai, J.-K. Kim, Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets, ACS Nano 6 (12) (2012) 10708–10719.

[126]
Ma T. Gao H.-L. Cong H.-P. Yao H.-B. Wu L. Yu Z.-Y. Chen S.-M. Yu S.-H. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibersAdv. Mater.201830170643510.1002/adma.201706435

T. Ma, H.-L. Gao, H.-P. Cong, H.-B. Yao, L. Wu, Z.-Y. Yu, S.-M. Chen, S.-H. Yu, A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers, Adv. Mater. 30 (2018) 1706435.

[127]
Song N.-j. Lu C.-x. Chen C.-m. Ma C.-l. Kong Q.-q. Effect of annealing temperature on the mechanical properties of flexible graphene filmsN. Carbon Mater.2017323221226

N.-j. Song, C.-x. Lu, C.-m. Chen, C.-l. Ma, Q.-q. Kong, Effect of annealing temperature on the mechanical properties of flexible graphene films, N. Carbon Mater. 32 (3) (2017) 221–226.

10.1016/S1872-5805(17)60119-7
[128]

R. Zou, F. Liu, N. Hu, H. Ning, X. Jiang, C. Xu, S. Fu, Y. Li, X. Zhou, C. Yan, Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity, Carbon 149 (2019) 173.

[129]

A. Barua, M.S. Hossain, K.I. Masood, S. Subrina, Thermal management in 3-D integrated circuits with graphene heat spreaders, Phys. Procedia 25 (2012) 311–316.

[130]

S. Subrina, D. Kotchetkov, A.A. Balandin, Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders, IEEE Electron. Device Lett. 30 (12) (2009) 1281–1283.

[131]

Z. Yan, G.X. Liu, J.M. Khan, A.A. Balandin, Graphene quilts for thermal management of high-power GaN transistors, Nat. Commun. 3 (2012) 8.

[132]

L. Yu, D. Dai, S. He, Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices, Appl. Phys. Lett. 105 (25) (2014) 251104.

[133]

M.-H. Shih, L.-J. Li, Y.-C. Yang, H.-Y. Chou, C.-T. Lin, C.-Y. Su, Efficient heat dissipation of photonic crystal microcavity by monolayer graphene, ACS Nano 7 (12) (2013) 10818–10824.

[134]
Yeo L.P. Nguyen T.D. Ling H. Lee Y. Mandler D. Magdassi S. Tok A.I.Y. Electrophoretic deposition of reduced graphene oxide thin films for reduction of cross-sectional heat diffusion in glass windowsJ. Sci. Adv. Mater. Dev.201942252259

L.P. Yeo, T.D. Nguyen, H. Ling, Y. Lee, D. Mandler, S. Magdassi, A.I.Y. Tok, Electrophoretic deposition of reduced graphene oxide thin films for reduction of cross-sectional heat diffusion in glass windows, J. Sci. Adv. Mater. Dev. 4 (2) (2019) 252–259.

10.1016/j.jsamd.2019.04.002
Nano Materials Science
Pages 1-16
Cite this article:
Huang P, Li Y, Yang G, et al. Graphene film for thermal management: A review. Nano Materials Science, 2021, 3(1): 1-16. https://doi.org/10.1016/j.nanoms.2020.09.001

561

Views

73

Downloads

73

Crossref

65

Web of Science

70

Scopus

1

CSCD

Altmetrics

Received: 19 August 2020
Accepted: 15 September 2020
Published: 23 September 2020
© 2020 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return