AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (25.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives

Fei Lia,c,d,1Yang Lia,c,d,1Jiang Qua,c,dJinhui Wanga,c,dVineeth Kumar Bandaria,c,d( )Feng Zhub( )Oliver G. Schmidta,c,d,e
Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
Institute for Integrative Nanosciences, Leibniz IFW Dresden, 01069, Dresden, Germany
School of Science, Dresden University of Technology, 01062, Dresden, Germany

1 Fei Li, Yang.

Show Author Information

Abstract

The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components. Stamping micro-supercapacitors (MSCs) with planar interdigital configurations are considered as a promising candidate to meet the requirements. In this review, recent progress of the different stamping materials and various stamping technologies are first discussed. The merits of each material, manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized, respectively. Further insights on technical difficulties and scientific challenges are finally demonstrated, including the limited thickness of printed electrodes, poor overlay accuracy and printing resolution.

References

[1]
Dong L. Xu C. Li Y. Huang Z.-H. Kang F. Yang Q.-H. Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: a review by categoryJ. Mater. Chem. A201641346594685

L. Dong, C. Xu, Y. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, X. Zhao, Flexible electrodes and supercapacitors for wearable energy storage: a review by category, J. Mater. Chem. A 4 (13) (2016) 4659–4685.

10.1039/C5TA10582J
[2]

J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design, Adv. Sci. 5 (1) (2018) 1700322.

[3]

A.L. Mohana Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, Hybrid nanostructures for energy storage applications, Adv. Mater. 24 (37) (2012) 5045–5064.

[4]

X. Tian, J. Jin, S. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Emerging 3D-printed electrochemical energy storage devices: a critical review, Adv. Energy Mater. 7 (17) (2017) 1700127.

[5]

Y. Wang, W.-H. Zhong, Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review, ChemElectroChem 2 (1) (2015) 22–36.

[6]
Yang Y. A mini-review: emerging all-solid-state energy storage electrode materials for flexible devicesNanoscale20201263560357310.1039/c9nr08722b

Y. Yang, A mini-review: emerging all-solid-state energy storage electrode materials for flexible devices, Nanoscale 12 (6) (2020) 3560–3573.

[7]

S.Y. Lee, Scalable and safer printed Zn//MnO2 planar micro-batteries for smart electronics, Nat. Sci. Rev. 7 (1) (2020) 237–238.

[8]

D. Cao, Y. Xing, K. Tantratian, X. Wang, Y. Ma, A. Mukhopadhyay, Z. Cheng, Q. Zhang, Y. Jiao, L. Chen, H. Zhu, 3D printed high-performance lithium metal microbatteries enabled by nanocellulose, Adv. Mater. 31 (14) (2019), e1807313.

[9]

J.I. Hur, L.C. Smith, B. Dunn, High areal energy density 3D lithium-ion microbatteries, Joule 2 (6) (2018) 1187–1201.

[10]

M. Nasreldin, R. Delattre, C. Calmes, M. Ramuz, V.A. Sugiawati, S. Maria, J.-L.d.B.d.l. Tocnaye, T. Djenizian, High performance stretchable Li-ion microbattery, Energy Storage Mater. 33 (2020) 108–115.

[11]

J. Ni, L. Li, Self-supported 3D array electrodes for sodium microbatteries, Adv. Funct. Mater. 28 (3) (2018) 1704880.

[12]

S. Zheng, X. Shi, P. Das, Z.S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries, Adv. Mater. 31 (50) (2019), e1900583.

[13]

M. Zhu, Z. Wang, H. Li, Y. Xiong, Z. Liu, Z. Tang, Y. Huang, A.L. Rogach, C. Zhi, Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen, Energy Environ. Sci. 11 (9) (2018) 2414–2422.

[14]

X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion, Chem. Soc. Rev. 46 (10) (2017) 2660–2677.

[15]

J. Meng, G. Wu, X. Wu, H. Cheng, Z. Xu, S. Chen, Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro-energy-storage, Adv. Sci. 7 (1) (2020) 1901931.

[16]

C. Zhou, T. Gao, Y. Wang, Q. Liu, Z. Huang, X. Liu, M. Qing, D. Xiao, Synthesis of P-doped and NiCo-hybridized graphene-based fibers for flexible asymmetrical solid-state micro-energy storage device, Small 15 (1) (2019), e1803469.

[17]
An T. Cheng W. Recent progress in stretchable supercapacitorsJ. Mater. Chem. A20186321547815494

T. An, W. Cheng, Recent progress in stretchable supercapacitors, J. Mater. Chem. A 6 (32) (2018) 15478–15494.

10.1039/C8TA03988G
[18]

F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater. 26 (14) (2014) 2219–2251.

[19]

X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage, Nat. Sci. Rev. 4 (3) (2017) 453–489.

[20]

M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond, Nat. Rev. Mater. 1 (7) (2016).

[21]

C.-F. Liu, Y.-C. Liu, T.-Y. Yi, C.-C. Hu, Carbon materials for high-voltage supercapacitors, Carbon 145 (2019) 529–548.

[22]
Liu P. Yan J. Guang Z. Huang Y. Li X. Huang W. Recent advancements of polyaniline-based nanocomposites for supercapacitorsJ. Power Sources2019424108130

P. Liu, J. Yan, Z. Guang, Y. Huang, X. Li, W. Huang, Recent advancements of polyaniline-based nanocomposites for supercapacitors, J. Power Sources 424 (2019) 108–130.

10.1016/j.jpowsour.2019.03.094
[23]

X. Peng, L. Peng, C. Wu, Y. Xie, Two dimensional nanomaterials for flexible supercapacitors, Chem. Soc. Rev. 43 (10) (2014) 3303–3323.

[24]

Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors, Chem. Rev. 118 (18) (2018) 9233–9280.

[25]

F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs, Chem. Soc. Rev. 46 (22) (2017) 6816–6854.

[26]

H. Jiang, P.S. Lee, C. Li, 3D carbon based nanostructures for advanced supercapacitors, Energy Environ. Sci. 6 (1) (2013) 41–53.

[27]

Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2Asymmetric supercapacitors, Adv. Energy Mater. 8 (13) (2018) 1703043.

[28]

X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol. 6 (4) (2011) 232–236.

[29]

X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications, Energy Environ. Sci. 7 (7) (2014) 2160–2181.

[30]

Y. Ma, H. Chang, M. Zhang, Y. Chen, Graphene-based materials for lithium-ion hybrid supercapacitors, Adv. Mater. 27 (36) (2015) 5296–5308.

[31]

H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials, Nano Res. 4 (8) (2011) 729–736.

[32]

C. Choi, J.M. Lee, S.H. Kim, S.J. Kim, J. Di, R.H. Baughman, Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors, Nano Lett. 16 (12) (2016) 7677–7684.

[33]
Shrestha K.R. Kandula S. Rajeshkhanna G. Srivastava M. Kim N.H. Lee J.H. An advanced sandwich-type architecture of MnCo2O4@N–C@MnO2 as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitorJ. Mater. Chem. A2018647245092452210.1039/c8ta08976k

K.R. Shrestha, S. Kandula, G. Rajeshkhanna, M. Srivastava, N.H. Kim, J.H. Lee, An advanced sandwich-type architecture of MnCo2O4@N–C@MnO2 as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor, J. Mater. Chem. A 6 (47) (2018) 24509–24522.

[34]
Wang S. Shao Y. Liu W. Wu Y. Hao X. Elastic sandwich-type GaN/MnO2/MnON composites for flexible supercapacitors with high energy densityJ. Mater. Chem. A20186271321513224

S. Wang, Y. Shao, W. Liu, Y. Wu, X. Hao, Elastic sandwich-type GaN/MnO2/MnON composites for flexible supercapacitors with high energy density, J. Mater. Chem. A 6 (27) (2018) 13215–13224.

10.1039/C8TA04182B
[35]

X. Wang, F. Wan, L. Zhang, Z. Zhao, Z. Niu, J. Chen, Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors, Adv. Funct. Mater. 28 (18) (2018) 1707247

[36]
Yang S. Song X. Zhang P. Gao L. A MnOOH/nitrogen-doped graphene hybrid nanowires sandwich film for flexible all-solid-state supercapacitorsJ. Mater. Chem. A20153116136614510.1039/C4TA07186G

S. Yang, X. Song, P. Zhang, L. Gao, A MnOOH/nitrogen-doped graphene hybrid nanowires sandwich film for flexible all-solid-state supercapacitors, J. Mater. Chem. A 3 (11) (2015) 6136–6145.

[37]

Y. Zhang, M. Ma, J. Yang, W. Huang, X. Dong, Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors, RSC Adv. 4 (17) (2014) 8466–8471.

[38]

Y. Zhang, X. Yuan, W. Lu, Y. Yan, J. Zhu, T.-W. Chou, MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading, Chem. Eng. J. 368 (2019) 525–532.

[39]

S. Zheng, X. Tang, Z.S. Wu, Y.Z. Tan, S. Wang, C. Sun, H.M. Cheng, X. Bao, Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration, ACS Nano 11 (2) (2017) 2171–2179.

[40]

J. Zhong, L.-Q. Fan, X. Wu, J.-H. Wu, G.-J. Liu, J.-M. Lin, M.-L. Huang, Y.-L. Wei, Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes, Electrochim. Acta 166 (2015) 150–156.

[41]

M. Beidaghi, C. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance, Adv. Funct. Mater. 22 (21) (2012) 4501–4510.

[42]
Hu H. Zhang K. Li S. Ji S. Ye C. Flexible, in-plane, and all-solid-state microsupercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chipJ. Mater. Chem. A20142482091620922

H. Hu, K. Zhang, S. Li, S. Ji, C. Ye, Flexible, in-plane, and all-solid-state microsupercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip, J. Mater. Chem. A 2 (48) (2014) 20916–20922.

10.1039/C4TA05345A
[43]
Li B. Cheng J. Wang Z. Li Y. Ni W. Wang B. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitorsJ. Power Sources2018376117124

B. Li, J. Cheng, Z. Wang, Y. Li, W. Ni, B. Wang, Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigitaldesigned supercapacitors, J. Power Sources 376 (2018) 117–124.

10.1016/j.jpowsour.2017.11.076
[44]
Wu Z.-S. Parvez K. Feng X. Müllen K. Photolithographic fabrication of highperformance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingersJ. Mater. Chem. A20142228288829310.1039/c4ta00958d

Z.-S. Wu, K. Parvez, X. Feng, K. Müllen, Photolithographic fabrication of highperformance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers, J. Mater. Chem. A 2 (22) (2014) 8288–8293.

[45]

H. Xiao, Z.S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H.M. Cheng, X. Bao, One-step device fabrication of phosphorene and graphene interdigital microsupercapacitors with high energy density, ACS Nano 11 (7) (2017) 7284–7292.

[46]

J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage, Angew. Chem. Int. Ed. 50 (7) (2011) 1683–1687.

[47]
Cai X. Peng M. Yu X. Fu Y. Zou D. Flexible planar/fiber-architectured supercapacitors for wearable energy storageJ. Mater. Chem. C20142711841200

X. Cai, M. Peng, X. Yu, Y. Fu, D. Zou, Flexible planar/fiber-architectured supercapacitors for wearable energy storage, J. Mater. Chem. C 2 (7) (2014) 1184–1200.

10.1039/C3TC31706D
[48]

Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage, Adv. Mater. 24 (42) (2012) 5713–5718.

[49]

K. Jost, D. Stenger, C.R. Perez, J.K. McDonough, K. Lian, Y. Gogotsi, G. Dion, Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics, Energy Environ. Sci. 6 (9) (2013) 2698.

[50]

Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles, Adv. Mater. 25 (16) (2013) 2326–2331.

[51]
Wang J. Li X. Zi Y. Wang S. Li Z. Zheng L. Yi F. Li S. Wang Z.L. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronicsAdv. Mater.201527334830483610.1002/adma.201501934

J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z.L. Wang, A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics, Adv. Mater. 27 (33) (2015) 4830–4836.

[52]

Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, C. Zhi, Recent progress on flexible and wearable supercapacitors, Small 13 (45) (2017) 1701827.

[53]

R. Jia, G. Shen, F. Qu, D. Chen, Flexible on-chip micro-supercapacitors: efficient power units for wearable electronics, Energy Storage Mater. 27 (2020) 169–186.

[54]

F. Li, M. Huang, J. Wang, J. Qu, Y. Li, L. Liu, V.K. Bandari, Y. Hong, B. Sun, M. Zhu, F. Zhu, Y.X. Zhang, O.G. Schmidt, On-chip 3D interdigital microsupercapacitors with ultrahigh areal energy density, Energy Storage Mater. 27 (2020) 17–24.

[55]

Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Graphene-based in-plane microsupercapacitors with high power and energy densities, Nat. Commun. 4 (2013) 2487.

[56]

E. Eustache, C. Douard, A. Demortière, V. De Andrade, M. Brachet, J. Le Bideau, T. Brousse, C. Lethien, High areal energy 3D-interdigitated micro-supercapacitors in aqueous and ionic liquid electrolytes, Adv. Mater. Technol. 2 (10) (2017) 1700126.

[57]

C. Meng, J. Maeng, S.W.M. John, P.P. Irazoqui, Ultrasmall integrated 3D microsupercapacitors solve energy storage for miniature devices, Adv. Energy Mater. 4 (7) (2014) 1301269.

[58]

K. Shen, J. Ding, S. Yang, 3D printing quasi-solid-state asymmetric microsupercapacitors with ultrahigh areal energy density, Adv. Energy Mater. 8 (20) (2018) 1800408.

[59]

J. Du, X. Mu, Y. Zhao, Y. Zhang, S. Zhang, B. Huang, Y. Sheng, Y. Xie, Z. Zhang, E. Xie, Layered coating of ultraflexible graphene-based electrodes for highperformance in-plane quasi-solid-state micro-supercapacitors, Nanoscale 11 (30) (2019) 14392–14399.

[60]

Y. He, P. Zhang, M. Wang, F. Wang, D. Tan, Y. Li, X. Zhuang, F. Zhang, X. Feng, Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density, Mater. Horiz. 6 (5) (2019) 1041–1049.

[61]

J.-C. Li, J. Gong, X. Zhang, L. Lu, F. Liu, Z. Dai, Q. Wang, X. Hong, H. Pang, M. Han, Alternate integration of vertically oriented CuSe@FeOOH and CuSe@ MnOOH hybrid nanosheets frameworks for flexible in-plane asymmetric microsupercapacitors, ACS Appl. Energy Mater. 3 (4) (2020) 3692–3703.

[62]

Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, All-solid-state flexible ultrathin micro-supercapacitors based on graphene, Adv. Mater. 25 (29) (2013) 4035–4042.

[63]

X. Wang, B.D. Myers, J. Yan, G. Shekhawat, V. Dravid, P.S. Lee, Manganese oxide micro-supercapacitors with ultra-high areal capacitance, Nanoscale 5 (10) (2013) 4119–4122.

[64]

Z.S. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng, K. Mullen, Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors, Adv. Mater. 26 (26) (2014) 4552–4558.

[65]

S. Bellani, E. Petroni, A.E. Del Rio Castillo, N. Curreli, B. Martín-García, R. Oropesa-Nuñez, M. Prato, F. Bonaccorso, Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors, Adv. Funct. Mater. 29 (14) (2019) 1807659.

[66]

H. Li, X. Li, J. Liang, Y. Chen, Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance, Adv. Energy Mater. 9 (15) (2019) 1803987.

[67]

H. Li, J. Liang, Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives, Adv. Mater. 32 (3) (2020), e1805864.

[68]

Y.Z. Zhang, Y. Wang, T. Cheng, L.Q. Yao, X. Li, W.Y. Lai, W. Huang, Printed supercapacitors: materials, printing and applications, Chem. Soc. Rev. 48 (12) (2019) 3229–3264.

[69]

G. Sun, J. An, C.K. Chua, H. Pang, J. Zhang, P. Chen, Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors, Electrochem. Commun. 51 (2015) 33–36.

[70]
Xiong Z. Yun X. Qiu L. Sun Y. Tang B. He Z. Xiao J. Chung D. Ng T.W. Yan H. Zhang R. Wang X. Li D. A dynamic graphene oxide network enables spray printing of colloidal gels for high-performance micro-supercapacitorsAdv. Mater.20193116e1804434

Z. Xiong, X. Yun, L. Qiu, Y. Sun, B. Tang, Z. He, J. Xiao, D. Chung, T.W. Ng, H. Yan, R. Zhang, X. Wang, D. Li, A dynamic graphene oxide network enables spray printing of colloidal gels for high-performance micro-supercapacitors, Adv. Mater. 31 (16) (2019), e1804434.

10.1002/adma.201804434
[71]

Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Mullen, Ultraflexible in-plane microsupercapacitors by direct printing of solution-processable electrochemically exfoliated graphene, Adv. Mater. 28 (11) (2016) 2217–2222.

[72]

S. Sollami Delekta, A.D. Smith, J. Li, M. Ostling, Inkjet printed highly transparent and flexible graphene micro-supercapacitors, Nanoscale 9 (21) (2017) 6998–7005.

[73]

T. Cheng, Y.W. Wu, Y.L. Chen, Y.Z. Zhang, W.Y. Lai, W. Huang, Inkjet-printed high-performance flexible micro-supercapacitors with porous nanofiber-like electrode structures, Small 15 (34) (2019), e1901830.

[74]

W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu, S.J. Haigh, M. Domingos, M.A. Bissett, R.A.W. Dryfe, S. Barg, 3D printing of freestanding MXene architectures for current-collector-free supercapacitors, Adv. Mater. 31 (37) (2019), e1902725.

[75]

S. Abdolhosseinzadeh, R. Schneider, A. Verma, J. Heier, F. Nuesch, C.J. Zhang, Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors, Adv. Mater. 32 (17) (2020), e2000716.

[76]

F. Li, J. Qu, Y. Li, J. Wang, M. Zhu, L. Liu, J. Ge, S. Duan, T. Li, V.K. Bandari, M. Huang, F. Zhu, O.G. Schmidt, Stamping fabrication of flexible planar microsupercapacitors using porous graphene inks, Adv.Sci. (2020) 2001561.

[77]

J. Li, V. Mishukova, Mikael Ostling, All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes, Appl. Phy. Lett. 109 (2016) 123901.

[78]

G.W. Huang, N. Li, Y. Du, Q.P. Feng, H.M. Xiao, X.H. Wu, S.Y. Fu, Laser-printed inplane micro-supercapacitors: from symmetric to asymmetric structure, ACS Appl. Mater. Interfaces 10 (1) (2018) 723–732.

[79]

B. Li, N. Hu, Y. Su, Z. Yang, F. Shao, G. Li, C. Zhang, Y. Zhang, Direct inkjet printing of aqueous inks to flexible all-solid-state graphene hybrid microsupercapacitors, ACS Appl. Mater. Interfaces 11 (49) (2019) 46044–46053.

[80]
Li W. Li Y. Su M. An B. Liu J. Su D. Li L. Li F. Song Y. Printing assembly and structural regulation of graphene towards three-dimensional flexible microsupercapacitorsJ. Mater. Chem. A20175311628116288

W. Li, Y. Li, M. Su, B. An, J. Liu, D. Su, L. Li, F. Li, Y. Song, Printing assembly and structural regulation of graphene towards three-dimensional flexible microsupercapacitors, J. Mater. Chem. A 5 (31) (2017) 16281–16288.

10.1039/C7TA02041D
[81]

J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities, ACS Nano 14 (1) (2020) 640–650.

[82]
Pech D. Brunet M. Taberna P.-L. Simon P. Fabre N. Mesnilgrente F. Conédéra V. Durou H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitorJ. Power Sources2010195412661269

D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, J. Power Sources 195 (4) (2010) 1266–1269.

10.1016/j.jpowsour.2009.08.085
[83]

Z. Pei, H. Hu, G. Liang, C. Ye, Carbon-based flexible and all-solid-state microsupercapacitors fabricated by inkjet printing with enhanced performance, NanoMicro Lett. 9 (2) (2017) 19.

[84]
Shulga Y.M. Baskakov S.A. Baskakova Y.V. Lobach A.S. Kabachkov E.N. Volfkovich Y.M. Sosenkin V.E. Shulga N.Y. Nefedkin S.I. Kumar Y. Michtchenko A. Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitorsJ. Alloys Compounds20187308895

Y.M. Shulga, S.A. Baskakov, Y.V. Baskakova, A.S. Lobach, E.N. Kabachkov, Y.M. Volfkovich, V.E. Sosenkin, N.Y. Shulga, S.I. Nefedkin, Y. Kumar, A. Michtchenko, Preparation of graphene oxide-humic acid composite-based ink for printing thin film electrodes for micro-supercapacitors, J. Alloys Compounds 730 (2018) 88–95.

10.1016/j.jallcom.2017.09.249
[85]

P. Sundriyal, S. Bhattacharya, Scalable micro-fabrication of flexible, solid-state, inexpensive, and high-performance planar micro-supercapacitors through inkjet printing, ACS Appl. Energy Mater. 2 (3) (2019) 1876–1890.

[86]
Chee W.K. Lim H.N. Zainal Z. Huang N.M. Harrison I. Andou Y. Flexible graphene-based supercapacitors: a reviewJ. Phys. Chem. C201612084153417210.1021/acs.jpcc.5b10187

W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review, J. Phys. Chem. C 120 (8) (2016) 4153–4172.

[87]

M.P. Down, S.J. Rowley-Neale, G.C. Smith, C.E. Banks, Fabrication of graphene oxide supercapacitor devices, ACS Appl. Energy Mater. 1 (2) (2018) 707–714.

[88]

Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, F. Wei, Carbon nanotube- and graphenebased nanomaterials and applications in high-voltage supercapacitor: a review, Carbon 141 (2019) 467–480.

[89]

J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Reddy, J. Yu, R. Vajtai, P.M. Ajayan, Ultrathin planar graphene supercapacitors, Nano Lett. 11 (4) (2011) 1423–1427.

[90]

S.-Y. Lu, M. Jin, Y. Zhang, Y.-B. Niu, J.-C. Gao, C.M. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors, Adv. Energy Mater. 8 (11) (2018) 1702545.

[91]
Ding B. Guo D. Wang Y. Wu X. Fan Z. Functionalized graphene nanosheets decorated on carbon nanotubes networks for high performance supercapacitorsJ. Power Sources2018398113119

B. Ding, D. Guo, Y. Wang, X. Wu, Z. Fan, Functionalized graphene nanosheets decorated on carbon nanotubes networks for high performance supercapacitors, J. Power Sources 398 (2018) 113–119.

10.1016/j.jpowsour.2018.07.063
[92]
Shaibani M. Smith S.J.D. Banerjee P.C. Konstas K. Zafari A. Lobo D.E. Nazari M. Hollenkamp A.F. Hill M.R. Majumder M. Framework-mediated synthesis of highly microporous onion-like carbon: energy enhancement in supercapacitors without compromising powerJ. Mater. Chem. A2017562519252910.1039/C6TA07098A

M. Shaibani, S.J.D. Smith, P.C. Banerjee, K. Konstas, A. Zafari, D.E. Lobo, M. Nazari, A.F. Hollenkamp, M.R. Hill, M. Majumder, Framework-mediated synthesis of highly microporous onion-like carbon: energy enhancement in supercapacitors without compromising power, J. Mater. Chem. A 5 (6) (2017) 2519–2529.

[93]

M. Oschatz, S. Boukhalfa, W. Nickel, J.P. Hofmann, C. Fischer, G. Yushin, S. Kaskel, Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors, Carbon 113 (2017) 283–291.

[94]

L. Huang, D. Santiago, P. Loyselle, L. Dai, Graphene-based nanomaterials for flexible and wearable supercapacitors, Small 14 (43) (2018), e1800879.

[95]
Wong S.I. Sunarso J. Wong B.T. Lin H. Yu A. Jia B. Towards enhanced energy density of graphene-based supercapacitors: current status, approaches, and future directionsJ. Power Sources2018396182206

S.I. Wong, J. Sunarso, B.T. Wong, H. Lin, A. Yu, B. Jia, Towards enhanced energy density of graphene-based supercapacitors: current status, approaches, and future directions, J. Power Sources 396 (2018) 182–206.

10.1016/j.jpowsour.2018.06.004
[96]

J. Xiao, H. Zhan, X. Wang, Z.Q. Xu, Z. Xiong, K. Zhang, G.P. Simon, J.Z. Liu, D. Li, Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics, Nat. Nanotechnol. 15 (8) (2020) 683–689.

[97]

Y. Da, J. Liu, L. Zhou, X. Zhu, X. Chen, L. Fu, Engineering 2D architectures toward high-performance micro-supercapacitors, Adv. Mater. 31 (1) (2019), e1802793.

[98]
Han Y. Ge Y. Chao Y. Wang C. Wallace G.G. Recent progress in 2D materials for flexible supercapacitorsJ. Energy Chem.20182715772

Y. Han, Y. Ge, Y. Chao, C. Wang, G.G. Wallace, Recent progress in 2D materials for flexible supercapacitors, J. Energy Chem. 27 (1) (2018) 57–72.

10.1016/j.jechem.2017.10.033
[99]

Y. Liu, X. Peng, Recent advances of supercapacitors based on two-dimensional materials, Appl. Mater. Today 8 (2017) 104–115.

[100]

X. Zhang, L. Hou, A. Ciesielski, P. Samorì, 2D materials beyond graphene for highperformance energy storage applications, Adv. Energy Mater. 6 (23) (2016) 1600671.

[101]

W.J. Hyun, E.B. Secor, C.-H. Kim, M.C. Hersam, L.F. Francis, C.D. Frisbie, Scalable, self-aligned printing of flexible graphene micro-supercapacitors, Adv. Energy Mater. 7 (17) (2017) 1700285.

[102]

K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes), Adv. Mater. 30 (52) (2018), e1804779.

[103]
Sundaram A. Ponraj J.S. Wang C. Peng W.K. Manavalan R.K. Dhanabalan S.C. Zhang H. Gaspar J. Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnosticsJ. Mater. Chem. B20208234990501310.1039/d0tb00251h

A. Sundaram, J.S. Ponraj, C. Wang, W.K. Peng, R.K. Manavalan, S.C. Dhanabalan, H. Zhang, J. Gaspar, Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics, J. Mater. Chem. B 8 (23) (2020) 4990–5013.

[104]

L. Verger, C. Xu, V. Natu, H.-M. Cheng, W. Ren, M.W. Barsoum, Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides, Curr. Opin. Solid State Mater. Sci. 23 (3) (2019) 149–163.

[105]

F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science 353 (6304) (2016) 1137–1140.

[106]

B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2) (2017).

[107]

P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang, B. Haines, S.J. May, S.J.L. Billinge, Y. Gogotsi, 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes), Nanoscale 9 (45) (2017) 17722–17730.

[108]

C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W. Lan, A. Pakdel, J. Heier, F. Nüesch, Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications, Energy Environ. Mater. 3 (1) (2020) 29–55.

[109]

C.J. Zhang, M.P. Kremer, A. Seral-Ascaso, S.-H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, V. Nicolosi, Stamping of flexible, coplanar micro-supercapacitors using MXene inks, Adv. Funct. Mater. 28 (9) (2018) 1705506.

[110]

E. Quain, T.S. Mathis, N. Kurra, K. Maleski, K.L. Van Aken, M. Alhabeb, H.N. Alshareef, Y. Gogotsi, Direct writing of additive-free MXene-in-water ink for electronics and energy storage, Adv. Mater. Technol. 4 (1) (2019) 1800256.

[111]

H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao, Z. Xiao, W. Lv, H.D. Jang, J. Huang, Q.H. Yang, Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor, Small 13 (30) (2017) 1701026.

[112]

S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard 3rd, X.L. Zhang, B. Cao, Oxygenvacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes, Adv. Sci. 5 (4) (2018) 1700659.

[113]

G. Meng, Q. Yang, X. Wu, P. Wan, Y. Li, X. Lei, X. Sun, J. Liu, Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor, Nano Energy 30 (2016) 831–839.

[114]

Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, S.L. Chou, Research progress inMnO2-carbon based supercapacitor electrode materials, Small 14 (24) (2018),e1702883.

[115]

W. Bi, Y. Wu, C. Liu, J. Wang, Y. Du, G. Gao, G. Wu, G. Cao, Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors, ACS Appl. Energy Mater. 2 (1) (2018) 668–677.

[116]
Lin Y. Zhang H. Liao H. Zhao Y. Li K. A physically crosslinked, self-healing hydrogel electrolyte for nano-wire PANI flexible supercapacitorsChem. Eng. J.2019367139148

Y. Lin, H. Zhang, H. Liao, Y. Zhao, K. Li, A physically crosslinked, self-healing hydrogel electrolyte for nano-wire PANI flexible supercapacitors, Chem. Eng. J. 367 (2019) 139–148.

10.1016/j.cej.2019.02.064
[117]

J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, Highperformance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn, Nano Energy 27 (2016) 230–237.

[118]
Ambade R.B. Ambade S.B. Shrestha N.K. Salunkhe R.R. Lee W. Bagde S.S. Kim J.H. Stadler F.J. Yamauchi Y. Lee S.-H. Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applicationsJ. Mater. Chem. A20175117218010.1039/C6TA08038C

R.B. Ambade, S.B. Ambade, N.K. Shrestha, R.R. Salunkhe, W. Lee, S.S. Bagde, J.H. Kim, F.J. Stadler, Y. Yamauchi, S.-H. Lee, Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications, J. Mater. Chem. A 5 (1) (2017) 172–180.

[119]

Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review, Energy Environ. Mater. 2 (1) (2019) 30–37.

[120]
Sun J. Wu C. Sun X. Hu H. Zhi C. Hou L. Yuan C. Recent progresses in highenergy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitorsJ. Mater. Chem. A201752094439464

J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in highenergy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors, J. Mater. Chem. A 5 (20) (2017) 9443–9464.

10.1039/C7TA00932A
[121]

A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, J.M. D'Arcy, Conducting polymers for pseudocapacitive energy storage, Chem. Mater. 28 (17) (2016) 5989–5998.

[122]

X. Zhang, Y. Xia, H. Dou, X. Hao, Y. Wang, B. Ding, S. Dong, J. Wang, Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization, Natl. Sci. Rev. 4 (1) (2017) 71–90.

[123]

L. Jia, L. Zheng, W. Wang, Y. Shi, Q. Zhang, X. Xu, Controllable design of coaxialMnO2/polyaniline for asymmetric supercapacitors and stamping flexible microdevice, Mater. Lett. 252 (2019) 80–83.

[124]
H. Wang, Y. Song, L. Miao, J. Wan, X. Chen, X. Cheng, H. Guo, H. Zhang, StampAssisted Gravure Printing of Micro-supercapacitors with General Flexible Substrates, MEMS, Seoul, KOREA, 2019, pp. 27–31.
[125]
He Y. Xiao X. Wu Y. Fu J.Z. A facile and low-cost micro fabrication material: flash foamSci. Rep.2015513522

Y. He, X. Xiao, Y. Wu, J.Z. Fu, A facile and low-cost micro fabrication material: flash foam, Sci. Rep. 5 (2015) 13522.

10.1038/srep13522
[126]

L. Yu, Q. Chen, Y.L. Tian, A.X. Gao, Y. Li, M. Li, C.M. Li, One-post patterning of multiple protein gradients using a low-cost flash foam stamp, Chem. Commun. 51 (99) (2015) 17588–17591.

[127]

Q. Shi, Y. Xiang, G. Ji, D. Wang, X. Wang, R. Xu, L. Jiang, Y. Yu, J. Zhao, Flexible planar-integrated micro-supercapacitors from electrochemically exfoliated graphene as advanced electrodes prepared by flash foam–assisted stamp technique on paper, Energy Technol. 7 (11) (2019) 1900664.

[128]
Zhao J. Shi Q. Guo Y. Wang X. Wang D. Tan F. Jiang L. Yu Y. Flash foam stamp-inspired fabrication of flexible in-plane graphene integrated microsupercapacitors on paperJ. Power Sources2019433226703

J. Zhao, Q. Shi, Y. Guo, X. Wang, D. Wang, F. Tan, L. Jiang, Y. Yu, Flash foam stamp-inspired fabrication of flexible in-plane graphene integrated microsupercapacitors on paper, J. Power Sources 433 (2019) 226703.

10.1016/j.jpowsour.2019.226703
[129]
Esfahani M.Z. Khosravi M. Stamp-assisted flexible graphene-based microsupercapacitorsJ. Power Sources2020462228166

M.Z. Esfahani, M. Khosravi, Stamp-assisted flexible graphene-based microsupercapacitors, J. Power Sources 462 (2020) 228166.

10.1016/j.jpowsour.2020.228166
[130]

Y. Chen, X. Li, Z. Bi, G. Li, X. He, X. Gao, Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors, Chem. Eng. J. 353 (2018) 499–506.

[131]

L. Liu, D. Ye, Y. Yu, L. Liu, Y. Wu, Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching, Carbon 111 (2017) 121–127.

[132]
Qiu M. Sun P. Cui G. Tong Y. Mai W. A flexible microsupercapacitor with integral photocatalytic fuel cell for self-chargingACS Nano20191378246825510.1021/acsnano.9b03603

M. Qiu, P. Sun, G. Cui, Y. Tong, W. Mai, A flexible microsupercapacitor with integral photocatalytic fuel cell for self-charging, ACS Nano 13 (7) (2019) 8246–8255.

[133]

L. Zhang, D. DeArmond, N.T. Alvarez, R. Malik, N. Oslin, C. McConnell, P.K. Adusei, Y.Y. Hsieh, V. Shanov, Flexible micro-supercapacitor based on graphene with 3D structure, Small 13 (10) (2017) 1603114.

[134]

J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance, Nano Lett. 13 (1) (2013) 72–78.

[135]

J. Wang, F. Li, F. Zhu, O.G. Schmidt, Recent progress in micro-supercapacitor design, integration, and functionalization, Small Methods (2018) 1800367.

[136]

S. Wang, Z.S. Wu, S. Zheng, F. Zhou, C. Sun, H.M. Cheng, X. Bao, Scalable fabrication of photochemically reduced graphene-based monolithic microsupercapacitors with superior energy and power densities, ACS Nano 11 (4) (2017) 4283–4291.

[137]
Fu L. Qu Q. Holze R. Kondratiev V.V. Wu Y. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?J. Mater. Chem. A2019725149371497010.1039/c8ta10587a

L. Fu, Q. Qu, R. Holze, V.V. Kondratiev, Y. Wu, Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds? J. Mater. Chem. A 7 (25) (2019) 14937–14970.

[138]
Ho K.-C. Lin L.-Y. A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitorsJ. Mater. Chem. A2019783516353010.1039/c8ta11599k

K.-C. Ho, L.-Y. Lin, A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors, J. Mater. Chem. A 7 (8) (2019) 3516–3530.

[139]

Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy 36 (2017) 268–285.

[140]
Miller E.E. Hua Y. Tezel F.H. Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitorsJ. Energy Storage2018203040

E.E. Miller, Y. Hua, F.H. Tezel, Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors, J. Energy Storage 20 (2018) 30–40.

10.1016/j.est.2018.08.009
[141]
Yu L. Chen G.Z. Redox electrode materials for supercapatteriesJ. Power Sources2016326604612

L. Yu, G.Z. Chen, Redox electrode materials for supercapatteries, J. Power Sources 326 (2016) 604–612.

10.1016/j.jpowsour.2016.04.095
[142]
Zhang Y. Yu S. Lou G. Shen Y. Chen H. Shen Z. Zhao S. Zhang J. Chai S. Zou Q. Review of macroporous materials as electrochemical supercapacitor electrodesJ. Mater. Sci.20175219112011122810.1007/s10853-017-0955-3

Y. Zhang, S. Yu, G. Lou, Y. Shen, H. Chen, Z. Shen, S. Zhao, J. Zhang, S. Chai, Q. Zou, Review of macroporous materials as electrochemical supercapacitor electrodes, J. Mater. Sci. 52 (19) (2017) 11201–11228.

[143]

M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors, Energy Environ. Sci. 7 (3) (2014) 867–884.

[144]

H. Hu, Z. Pei, C. Ye, Recent advances in designing and fabrication of planar microsupercapacitors for on-chip energy storage, Energy Storage Mater. 1 (2015) 82–102.

[145]

N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics, Nat. Nanotechnol. 12 (1) (2017) 7–15.

[146]

Y. Lu, Z. Lou, K. Jiang, D. Chen, G. Shen, Recent progress of self-powered wearable monitoring systems integrated with microsupercapacitors, Mater. Today Nano 8 (2019) 100050.

[147]

X. Wang, Q. Zhang, On-chip microsupercapacitors: from material to fabrication, Energy Technol. 7 (11) (2019) 1900820.

[148]

Z.-S. Wu, X. Feng, H.-M. Cheng, Recent advances in graphene-based planar microsupercapacitors for on-chip energy storage, Natl. Sci. Rev. 1 (2) (2014) 277–292.

Nano Materials Science
Pages 154-169
Cite this article:
Li F, Li Y, Qu J, et al. Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives. Nano Materials Science, 2021, 3(2): 154-169. https://doi.org/10.1016/j.nanoms.2020.10.003

344

Views

6

Downloads

28

Crossref

27

Web of Science

29

Scopus

1

CSCD

Altmetrics

Received: 09 September 2020
Accepted: 03 October 2020
Published: 17 October 2020
© 2021 Chongqing University.
Return