AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Towards the selectivity distinction of phenol hydrogenation on noble metal catalysts

Shanjun MaoaZhe WangaZhirong ChenbKejun WucKaichao ZhangcQichuan LicHuihuan YancGuofeng LücGuodong HuangcYong Wanga( )
Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, PR China
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, PR China
Zhejiang NHU Company Ltd, Xinchang County, Zhejiang Province, PR China
Show Author Information

Abstract

Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry. Though a few catalysts with promising performances have been developed in recent years, the basic principle for catalyst design is still missing owing to the unclear catalytic mechanism. This work tries to unravel the mechanism of phenol hydrogenation and the reasons causing the selectivity discrepancy on noble metal catalysts under mild conditions. Results show that different reaction pathways always firstly converge to the formation of cyclohexanone under mild conditions. The selectivity discrepancy mainly depends on the activity for cyclohexanone sequential hydrogenation, in which two factors are found to be responsible, i.e. the hydrogenation energy barrier and the competitive chemisorption between phenol and cyclohexanone, if the specific co-catalyzing effect of H2O on Ru is not considered. Based on the above results, a quantitative descriptor, Eb(one/pl)/Ea, in which Ea can be further correlated to the d band center of the noble metal catalyst, is proposed by the first time to roughly evaluate and predict the selectivity to cyclohexanone for catalyst screening.

References

[1]

I. Dodgson, K. Griffin, G. Barberis, F. Pignataro, G. Tauszik, A low cost phenol to cyclohexanone process, Chem. Ind. (1989) 830-833.

[2]

T.F.S. Silva, G.S. Mishra, M.F. Guedes da Silva, R. Wanke, L.M.D.R.S. Martins, A.J.L. Pombeiro, CuII complexes bearing the 2, 2, 2-tris(1-pyrazolyl)ethanol or 2, 2, 2-tris(1-pyrazolyl)ethyl methanesulfonate scorpionates. X-Ray structural characterization and application in the mild catalytic peroxidative oxidation of cyclohexane, Dalton Trans. (2009) 9207-9215.

[3]

U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R.S. da Cruz, M.C. Guerreiro, D. Mandelli, E.V. Spinacé, E.L. Pires, Cyclohexane oxidation continues to be a challenge, Appl. Catal., A 211 (2001) 1-17.

[4]

Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation, Angew. Chem. Int. Ed. 49 (2010) 3356-3359.

[5]

Y. Chen, Z. Wang, S. Mao, Y. Wang, Rational design of hydrogenation catalysts using nitrogen-doped porous carbon, Chin. J. Catal. 40 (2019) 971-979.

[6]

M. Chatterjee, H. Kawanami, M. Sato, A. Chatterjee, T. Yokoyama, T. Suzuki, Hydrogenation of phenol in supercritical carbon dioxide catalyzed by palladium supported on Al-MCM-41: a facile route for one-pot cyclohexanone formation, Adv. Synth. Catal. 351 (2009) 1912-1924.

[7]

V.Z. Fridman, A.A. Davydov, Dehydrogenation of cyclohexanol on copper-containing catalysts, J. Catal. 195 (2000) 20-30.

[8]

Y. Wang, J. Yao, H. Li, D. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc. 133 (2011) 2362-2365.

[9]

C. Park, M.A. Keane, Catalyst support effects: gas-phase hydrogenation of phenol over palladium, J. Colloid Interface Sci. 266 (2003) 183-194.

[10]

P. Claus, H. Berndt, C. Mohr, J. Radnik, E. -J. Shin, M.A. Keane, Pd/MgO: catalyst characterization and phenol hydrogenation activity, J. Catal. 192 (2000) 88-97.

[11]

H. Liu, T. Jiang, B. Han, S. Liang, Y. Zhou, Selective phenol hydrogenation to cyclohexanone over a dual supported Pd–lewis acid catalyst, Science 326 (2009) 1250-1252.

[12]

X. Xu, Y. Li, Y. Gong, P. Zhang, H. Li, Y. Wang, Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade, J. Am. Chem. Soc. 134 (2012) 16987-16990.

[13]

M. Tang, S. Mao, M. Li, Z. Wei, F. Xu, H. Li, Y. Wang, RuPd alloy nanoparticles supported on N-doped carbon as an efficient and stable catalyst for benzoic acid hydrogenation, ACS Catal. 5 (2015) 3100-3107.

[14]

Y. Li, X. Xu, P. Zhang, Y. Gong, H. Li, Y. Wang, Highly selective Pd@mpg-C3N4 catalyst for phenol hydrogenation in aqueous phase, RSC Adv. 3 (2013) 10973-10982.

[15]

J. Zhong, J. Chen, L. Chen, Selective hydrogenation of phenol and related derivatives, Catal. Sci. Technol. 4 (2014) 3555-3569.

[16]

A.K. Talukdar, K.G. Bhattacharyya, S. Sivasanker, Hydrogenation of phenol over supported platinum and palladium catalysts, Appl. Catal., A 96 (1993) 229-239.

[17]

C.V. Rode, U.D. Joshi, O. Sato, M. Shirai, Catalytic ring hydrogenation of phenol under supercritical carbon dioxide, Chem. Commun. (2003) 1960-1961.

[18]

L. Wang, J. Zhang, X. Yi, A. Zheng, F. Deng, C. Chen, Y. Ji, F. Liu, X. Meng, F. -S. Xiao, Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules, ACS Catal. 5 (2015) 2727-2734.

[19]

J. Shi, M. Zhao, Y. Wang, J. Fu, X. Lu, Z. Hou, Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles, J. Mater. Chem. 4 (2016) 5842-5848.

[20]

A.N. Raut, S.U. Nandanwar, Y.R. Suryawanshi, M. Chakraborty, S. Jauhari, S. Mukhopadhyay, K.T. Shenoy, H.C. Bajaj, Liquid phase selective hydrogenation of phenol to cyclohexanone over Ru/Al2O3 nanocatalyst under mild conditions, Kinet. Catal. 57 (2016) 39-46.

[21]

A. Sanna, T.P. Vispute, G.W. Huber, Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts, Appl. Catal., B 165 (2015) 446-456.

[22]

Q. Tan, G. Wang, L. Nie, A. Dinse, C. Buda, J. Shabaker, D.E. Resasco, Different product distributions and mechanistic aspects of the hydrodeoxygenation of m-cresol over platinum and ruthenium catalysts, ACS Catal. 5 (2015) 6271-6283.

[23]

J.R. Gonzalez-Velasco, M.P. Gonzalez-Marcos, S. Arnaiz, J.I. Gutierrez-Ortiz, M.A. Gutierrez-Ortiz, Activity and selectivity of palladium catalysts during the liquid-phase hydrogenation of phenol, Influence of Temperature and Pressure, Ind. Eng. Chem. Res. 34 (1995) 1031-1036.

[24]
C. -J. Liu, N. -N. Zhu, J. -G. Ma, P. Cheng, Toward Green Production of Chewing Gumand Diet: Complete Hydrogenation of Xylose to Xylitol over Ruthenium CompositeCatalysts under Mild Conditions, 2019, p. 5178573. Research, 2019.
[25]
H. Wang, Y. Chen, R. Fan, J. Chen, Z. Wang, S. Mao, Y. Wang, SelectiveElectrochemical Reduction of Nitrogen to Ammonia by Adjusting the Three-phaseInterface, 2019, p. 1401209. Research, 2019.
[26]

Z. Zhang, L. Ding, J. Gu, Y. Li, N. Xue, L. Peng, Y. Zhu, W. Ding, 3D charged grid induces a high performance catalyst: ruthenium clusters enclosed in X-zeolite for hydrogenation of phenol to cyclohexanone, Catal. Sci. Technol. 7 (2017) 5953-5963.

[27]

N.C. Nelson, J.S. Manzano, A.D. Sadow, S.H. Overbury, I.I. Slowing, Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure, ACS Catal. 5 (2015) 2051-2061.

[28]

I.E. Ertas, M. Gulcan, A. Bulut, M. Yurderi, M. Zahmakiran, Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: highly efficient catalytic material in the phenol hydrogenation, Microporous Mesoporous Mater. 226 (2016) 94-103.

[29]

J. Fontana, C. Vignado, E. Jordão, W.A. Carvalho, Support effect over bimetallic ruthenium–promoter catalysts in hydrogenation reactions, Chem. Eng. J. 165 (2010) 336-346.

[30]
J.J.H. Koch, P.N. Rylander, Hydrogenation Process Using RutheniumcontainingCatalysts, U.S. Patent, 1965.
[31]

H. Duan, D. Wang, Y. Kou, Y. Li, Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation, Chem. Commun. 49 (2013) 303-305.

[32]

X. Kong, Y. Gong, S. Mao, Y. Wang, Selective hydrogenation of phenol, ChemNanoMat 4 (2018) 432-450.

[33]

V. Hančil, L. Beránek, Kinetics of consecutive heterogeneous catalytic reaction: gas-phase hydrogenation of phenol on a platinum catalyst, Chem. Eng. Sci. 25 (1970) 1121-1126.

[34]

S.T. Srinivas, P.K. Rao, Highly selective Pt–Cr/C alloy catalysts for single-step vapour phase hydrogenation of phenol to give cyclohexanone, J. Chem. Soc., Chem. Commun. (1993) 33-34.

[35]

L. Giraldo, M. Bastidas-Barranco, J.C. Moreno-Piraján, Vapour phase hydrogenation of phenol over rhodium on SBA-15 and SBA-16, Molecules 19 (2014) 20594-20612.

[36]

E. -J. Shin, M.A. Keane, Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts, Ind. Eng. Chem. Res. 39 (2000) 883-892.

[37]

P.M. Mortensen, J. -D. Grunwaldt, P.A. Jensen, A.D. Jensen, Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil, ACS Catal. 3 (2013) 1774-1785.

[38]

Y. Pérez, M. Fajardo, A. Corma, Highly selective palladium supported catalyst for hydrogenation of phenol in aqueous phase, Catal. Commun. 12 (2011) 1071-1074.

[39]

J. Matos, A. Corma, Selective phenol hydrogenation in aqueous phase on Pd-based catalysts supported on hybrid TiO2-carbon materials, Appl. Catal., A 404 (2011) 103-112.

[40]

G. Li, J. Han, H. Wang, X. Zhu, Q. Ge, Role of dissociation of phenol in its selective hydrogenation on Pt(111) and Pd(111), ACS Catal. (2015) 2009-2016.

[41]

M. Xu, X. -L. Huai, H. Liu, Role of Keto–Enol isomerization on surface chemistry and hydrogenation of acetone on Pt(111): a DFT study, Ind. Eng. Chem. Res. 53 (2014) 5451-5454.

[42]

Y. Yoon, R. Rousseau, R.S. Weber, D. Mei, J.A. Lercher, First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase, J. Am. Chem. Soc. 136 (2014) 10287-10298.

[43]

X. Xu, C.M. Friend, The role of coverage in determining adsorbate stability: phenol reactivity on rhodium(111), J. Phys. Chem. 93 (1989) 8072-8080.

[44]

J.N. Russell Jr., S.S. Sarvis, R.E. Morris, Adsorption and thermal decomposition of phenol on Ni(110), Surf. Sci. 338 (1995) 189-203.

[45]

H. Ihm, J.M. White, Stepwise dissociation of thermally activated phenol on Pt(111), J. Phys. Chem. B 104 (2000) 6202-6211.

[46]

X. -C. Guo, R.J. Madix, Monolayer structure of phenoxy species on Cu(110): an STM study, Surf. Sci. 341 (1995) L1065-L1071.

[47]

M.G. Ramsey, G. Rosina, D. Steinmüller, H.H. Graen, F.P. Netzer, Ordered overlayers of aniline and phenol on Pd(110): surface structure and bonding, Surf. Sci. 232 (1990) 266-274.

[48]

M.L. Honkela, J. Bjork, M. Persson, Computational study of the adsorption and dissociation of phenol on Pt and Rh surfaces, Phys. Chem. Chem. Phys. 14 (2012) 5849-5854.

[49]

G.H. Gu, C.A. Mullen, A.A. Boateng, D.G. Vlachos, Mechanism of dehydration of phenols on noble metals via first-principles microkinetic modeling, ACS Catal. 6 (2016) 3047-3055.

[50]

P.M. de Souza, R.C. Rabelo-Neto, L.E.P. Borges, G. Jacobs, B.H. Davis, T. Sooknoi, D.E. Resasco, F.B. Noronha, Role of Keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports, ACS Catal. 5 (2015) 1318-1329.

[51]

Y. Chen, X. Kong, S. Mao, Z. Wang, Y. Gong, Y. Wang, Study of the role of alkaline sodium additive in selective hydrogenation of phenol, Chin. J. Catal. 40 (2019) 1516-1524.

[52]

H. Zhou, B. Han, T. Liu, X. Zhong, G. Zhuang, J. Wang, Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media, Green Chem. 19 (2017) 3585-3594.

[53]

L. Nie, D.E. Resasco, Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst, J. Catal. 317 (2014) 22-29.

[54]

J.A. Herron, Y. Morikawa, M. Mavrikakis, Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces, Proc. Natl. Acad. Sci. Unit. States Am. 113 (2016) E4937-E4945.

[55]

V. Fajt, L. Kurc, L. Červený, The effect of solvents on the rate of catalytic hydrogenation of 6-ethyl-1, 2, 3, 4-tetrahydroanthracene-9, 10-dione, Int. J. Chem. Kinet. 40 (2008) 240-252.

[56]

R.A. Rajadhyaksha, S.L. Karwa, Solvent effects in catalytic hydrogenation, Chem. Eng. Sci. 41 (1986) 1765-1770.

[57]

M. Chatterjee, H. Kawanami, M. Sato, A. Chatterjee, T. Yokoyama, T. Suzuki, Hydrogenation of phenol in supercritical carbon dioxide catalyzed by palladium supported on Al-MCM-41: a facile route for one-pot cyclohexanone formation, Adv. Synth. Catal. 351 (2009) 1912-1924.

[58]

Y. Deng, R. Gao, L. Lin, T. Liu, X. -D. Wen, S. Wang, D. Ma, Solvent tunes the selectivity of hydrogenation reaction over α-MoC catalyst, J. Am. Chem. Soc. 140 (2018) 14481-14489.

[59]

S. Wang, B. Ge, Y. Yin, X. Wu, H. Zhu, Y. Yue, Z. Bai, X. Bao, P. Yuan, Solvent effect in heterogeneous catalytic selective hydrogenation of nitrile butadiene rubber: relationship between reaction activity and solvents with density functional theory analysis, ChemCatChem 12 (2020) 663-672.

[60]

I. McManus, H. Daly, J.M. Thompson, E. Connor, C. Hardacre, S.K. Wilkinson, N. Sedaie Bonab, J. ten Dam, M.J.H. Simmons, E.H. Stitt, C. D'Agostino, J. McGregor, L.F. Gladden, J.J. Delgado, Effect of solvent on the hydrogenation of 4-phenyl-2-butanone over Pt based catalysts, J. Catal. 330 (2015) 344-353.

[61]

J. Deng, T. Xiong, F. Xu, M. Li, C. Han, Y. Gong, H. Wang, Y. Wang, Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors, Green Chem. 17 (2015) 4053-4060.

[62]

G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50.

[63]

G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169.

[64]

P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.

[65]

G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758.

[66]

B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B 59 (1999) 7413.

[67]
R.F.W. Bader, Atoms in molecules, in: Encyclopedia of Computational Chemistry, John Wiley & Sons, Ltd, 2002.
[68]

G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901-9904.

[69]

C. -c. Chiu, A. Genest, A. Borgna, N. Rösch, Hydrodeoxygenation of guaiacol over Ru(0001): a DFT study, ACS Catal. 4 (2014) 4178-4188.

[70]
R.A. van Santen, Molecular catalytic kinetics concepts, in: Novel Concepts inCatalysis and Chemical Reactors, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 1–30.
[71]

T.A. Manz, D.S. Sholl, A dimensionless reaction coordinate for quantifying the lateness of transition states, J. Comput. Chem. 31 (2010) 1528-1541.

[72]

V. Pallassana, M. Neurock, Electronic factors governing Ethylene hydrogenation and dehydrogenation activity of pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) surfaces, J. Catal. 191 (2000) 301-317.

[73]

J.E. Leffler, Parameters for the description of transition states, Science 117 (1953) 340-341.

[74]

E. Díaz, A.F. Mohedano, L. Calvo, M.A. Gilarranz, J.A. Casas, J.J. Rodríguez, Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts, Chem. Eng. J. 131 (2007) 65-71.

[75]

A.J. Foster, P.T.M. Do, R.F. Lobo, The synergy of the support acid function and the metal function in the catalytic hydrodeoxygenation of m-cresol, Top. Catal. 55 (2012) 118-128.

[76]

M.A. Gutierrez-Ortiz, A. Castano, M.P. Gonzalez-Marcos, J.I. Gutierrez-Ortiz, J.R. Gonzalez-Velasco, Influence of operational variables on the catalytic behavior of Pt/alumina in the slurry-phase hydrogenation of phenol, Ind. Eng. Chem. Res. 33 (1994) 2571-2577.

[77]

C. Michel, J. Zaffran, A.M. Ruppert, J. Matras-Michalska, M. Jedrzejczyk, J. Grams, P. Sautet, Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone, Chem. Commun. 50 (2014) 12450-12453.

[78]

C. Michel, P. Gallezot, Why is ruthenium an efficient catalyst for the aqueous-phase hydrogenation of biosourced carbonyl compounds?, ACS Catal. 5 (2015) 4130-4132.

[79]

C. -R. Chang, Z. -Q. Huang, J. Li, The promotional role of water in heterogeneous catalysis: mechanism insights from computational modeling, Wiley Interdisciplinary Reviews, Comput. Mol. Sci. 6 (2016) 679-693.

[80]

B.S. Akpa, C. D'Agostino, L.F. Gladden, K. Hindle, H. Manyar, J. McGregor, R. Li, M. Neurock, N. Sinha, E.H. Stitt, D. Weber, J.A. Zeitler, D.W. Rooney, Solvent effects in the hydrogenation of 2-butanone, J. Catal. 289 (2012) 30-41.

[81]

M. Tatarkhanov, E. Fomin, M. Salmeron, K. Andersson, H. Ogasawara, L.G.M. Pettersson, A. Nilsson, J.I. Cerdá, The structure of mixed H2O–OH monolayer films on Ru(0001), J. Chem. Phys. 129 (2008) 154109.

[82]

A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces, Surf. Sci. Rep. 64 (2009) 381-451.

[83]

C.S. Chen, C.C. Chen, T.W. Lai, J.H. Wu, C.H. Chen, J.F. Lee, Water adsorption and dissociation on Cu nanoparticles, J. Phys. Chem. C 115 (2011) 12891-12900.

[84]

S. Maier, I. Stass, J.I. Cerdá, M. Salmeron, Unveiling the mechanism of water partial dissociation on Ru(0001), Phys. Rev. Lett. 112 (2014) 126101.

[85]

S.K. Desai, M. Neurock, First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy, Phys. Rev. B 68 (2003) 075420.

[86]

J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals, J. Chem. Phys. 120 (2004) 10240-10246.

Nano Materials Science
Pages 91-100
Cite this article:
Mao S, Wang Z, Chen Z, et al. Towards the selectivity distinction of phenol hydrogenation on noble metal catalysts. Nano Materials Science, 2023, 5(1): 91-100. https://doi.org/10.1016/j.nanoms.2020.11.002

300

Views

3

Downloads

9

Crossref

11

Web of Science

10

Scopus

0

CSCD

Altmetrics

Revised: 15 September 2020
Accepted: 12 November 2020
Published: 19 November 2020
© 2020 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return