AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Corrosion inhibition of layered double hydroxides for metal-based systems

Chuan JingaBiqin DongbAikifa RazacTiejun ZhangcYuxin Zhanga( )
State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, PR China
Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen, 518060, PR China
Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
Show Author Information

Abstract

Layered double hydroxide (LDH), a kind of 2D layered materials, has been recognized as the promising anticorrosion materials for metal and its alloy. The microstructure, physical/chemical properties, usage in corrosion inhibition and inhibition performance of LDH have been studied separately in open literature. However, there is a lack of a complete review to summarize the status of LDH technology and the potential R&D opportunities in the field of corrosion inhibition. In addition, the challenges for LDH in corrosion inhibition of metal-based system have not been summarized systematically. Herein, we review recent advances in the rational design of LDH for corrosion inhibition of metal-based system (i.e. Mg alloy, Al alloy, steel and concrete) and high-throughput anticorrosion materials development. By evaluating the physical/chemical properties, usage in metal-based system and the corrosion inhibition mechanism of LDH, we highlight several important factors of LDH for anticorrosion performance and common features of LDH in applying different metal alloys. Finally, we provide our perspective and recommendation in this field, including high-throughput techiniques for combinatorial compositional design and rapid synthesis of anticorrosion alloys, with the goal of accelerating the development and application of LDH in corrosion inhibition of metal-based system.

References

[1]

M.K.P. Kumar, P.M. Laxmeesha, S. Ray, C. Srivastava, Enhancement in the corrosion resistance of nanocrystalline aluminium coatings by incorporation of graphene oxide, Appl. Surf. Sci. 533 (2020) 147512.

[2]

B. Goffin, N. Banthia, N. Yonemitsu, Use of infrared thermal imaging to detect corrosion of epoxy coated and uncoated rebar in concrete, Construct. Build. Mater. 263 (2020) 120162.

[3]

S. Al Bacha, I. Aubert, M. Zakhour, M. Nakhl, J.L. Bobet, Hydrolysis properties, corrosion behavior and microhardness of AZ91 "model" alloys, J. Alloys Compd. 845 (2020) 156283.

[4]

H. Ben Mansour, L. Dhouibi, H. Idrissi, Effect of Phosphate-based inhibitor on prestressing tendons corrosion in simulated concrete pore solution contaminated by chloride ions, Construct. Build. Mater. 171 (2018) 250–260.

[5]

B.R. Hou, X.G. Li, X.M. Ma, C.W. Du, D.W. Zhang, M. Zheng, W.C. Xu, D.Z. Lu, F.B. Ma, The cost of corrosion in China, Npj Mater. Degrad. 1 (2017) 4.

[6]

J. Ress, U. Martin, J. Bosch, D.M. Bastidas, pH-triggered release of NaNO2 corrosion inhibitors from novel colophony microcapsules in simulated concrete pore solution, ACS Appl. Mater. Interfaces 12 (2020) 46686–46700.

[7]

A.M. Atta, A.O. Ezzat, A.M. El-Saeed, M.H. Wahby, M.M.S. Abdallah, Superhydrophobic organic and inorganic clay nanocomposites for epoxy steel coatings, Prog. Org. Coating 140 (2020) 105502.

[8]

D. Nakhaie, A. Kosari, J.M.C. Mol, E. Asselin, Corrosion resistance of hot-dip galvanized steel in simulated soil solution: a factorial design and pit chemistry study, Corrosion Sci. 164 (2020) 108310.

[9]

E.H. Ramirez-Soria, U. Leon-Silva, L. Rejon-Garcia, T.E. Lara-Ceniceros, R.C. Advincula, J. Bonilla-Cruz, Super-anticorrosive materials based on bifunctionalized reduced graphene oxide, ACS Appl. Mater. Interfaces 12 (2020) 45254–45265.

[10]

M.A. Iqbal, M. Secchi, M.A. Iqbal, M. Montagna, C. Zanella, M. Fedel, MgAl-LDH/ graphene protective film: insight into LDH-graphene interaction, Surf. Coating. Technol. 401 (2020) 126253.

[11]

L. Santamaria, F. Devred, E.M. Gaigneaux, M.A. Vicente, S.A. Korili, A. Gil, Effect of the surface properties of Me2+/Al layered double hydroxides synthesized from aluminum saline slag wastes on the adsorption removal of drugs, Microporous Mesoporous Mater. 309 (2020) 110560.

[12]

L.N. Stepanova, O.B. Belskaya, A.V. Vasilevich, T.I. Gulyaeva, N.N. Leont'eva, A.N. Serkova, A.N. Salanov, V.A. Likholobov, The study of structural, textural and basic properties of MgAl- and LiAl-LDH prepared by mechanochemical method, Catal. Today 357 (2020) 638–645.

[13]

M. Rosset, L.W. Sfreddo, O.W. Perez-Lopez, L.A. Feris, Effect of concentration in the equilibrium and kinetics of adsorption of acetylsalicylic acid on ZnAl layered double hydroxide, J. Environ. Chem. Eng. 8 (2020) 103991.

[14]

P. Koilraj, M. Takemoto, Y. Tokudome, A. Bousquet, V. Prevot, C. Mousty, Electrochromic thin films based on NiAl layered double hydroxide nanoclusters for smart windows and low-power displays, Acs Appl. Nano Mater. 3 (2020) 6552–6562.

[15]

S. Dresp, T.N. Thanh, M. Klingenhof, S. Bruckner, P. Hauke, P. Strasser, Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds, Energy Environ. Sci. 13 (2020) 1725–1729.

[16]

K.A. Yasakau, A. Kuznetsova, S. Kallip, M. Starykevich, J. Tedim, M.G.S. Ferreira, M.L. Zheludkevich, A novel bilayer system comprising LDH conversion layer and sol-gel coating for active corrosion protection of AA2024, Corrosion Sci. 143 (2018) 299–313.

[17]

E. Petrova, M. Serdechnova, T. Shulha, S.V. Lamaka, D.C.F. Wieland, P. Karlova, C. Blawert, M. Starykevich, M.L. Zheludkevich, Use of synergistic mixture of chelating agents for in situ LDH growth on the surface of PEO-treated AZ91, Sci. Rep. (U.K.) 10 (2020) 8645.

[18]

L. Guo, W. Wu, Y.F. Zhou, F. Zhang, R.C. Zeng, J.M. Zeng, Layered double hydroxide coatings on magnesium alloys: a review, J. Mater. Sci. Technol. 34 (2018) 1455–1466.

[19]

M.A. Iqbal, L.Y. Sun, A.T. Barrett, M. Fedel, Layered double hydroxide protective films developed on aluminum and aluminum alloys: synthetic methods and anticorrosion mechanisms, Coatings 10 (2020) 428.

[20]

M.H. Iuzviuk, A.C. Bouali, M. Serdechnova, K.A. Yasakau, D.C.F. Wieland, G. Dovzhenko, A. Mikhailau, C. Blawert, I.A. Zobkalo, M.G.S. Ferreira, M.L. Zheludkevich, In situkinetics studies of Zn-Al LDH intercalation with corrosion related species, Phys. Chem. Chem. Phys. 22 (2020) 17574–17586.

[21]

B.M. Hunter, W. Hieringer, J. Winkler, H. Gray, A. Müller, Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity, Energy Environ. Sci. 9 (2016) 1734–1743.

[22]

K. Abdellaoui, I. Pavlovic, M. Bouhent, A. Benhamou, C. Barriga, A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides, Appl. Clay Sci. 143 (2017) 142–150.

[23]

X.-J. Zhao, Y.-Q. Zhu, S.-M. Xu, H.-M. Liu, P. Yin, Y.-L. Feng, H. Yan, Anion exchange behavior of M II Al layered double hydroxides: a molecular dynamics and DFT study, Phys. Chem. Chem. Phys. 22 (2020) 19758–19768.

[24]

J.X. Xu, Y.B. Song, Q.P. Tan, L.H. Jiang, Chloride absorption by nitrate, nitrite and aminobenzoate intercalated layered double hydroxides, J. Mater. Sci. 52 (2017) 5908–5916.

[25]

M.Z. Chen, F. Wu, L.W. Yu, Y.X. Cai, H. Chen, M.T. Zhang, Chloride binding capacity of LDHs with various divalent cations and divalent to trivalent cation ratios in different solutions, CrystEngComm 21 (2019) 6790–6800.

[26]

X.Y. Ke, S.A. Bernal, J.L. Provis, Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement, Cement Concr. Res. 100 (2017) 1–13.

[27]

Y.R. Hu, H.H. Li, Q. Wang, J. Zhang, Q. Song, Characterization of LDHs prepared with different activity MgO and resisting Cl- attack of concrete in salt lake brine, Construct. Build. Mater. 229 (2019) 116921.

[28]

G. Zhang, L. Wu, A.T. Tang, B. Weng, A. Atrens, S.D. Ma, L. Liu, F.S. Pan, Sealing of anodized magnesium alloy AZ31 with MgAl layered double hydroxides layers, RSC Adv. 8 (2018) 2248–2259.

[29]

D. Mata, M. Serdechnova, M. Mohedano, C.L. Mendis, S.V. Lamaka, J. Tedim, T. Hack, S. Nixon, M.L. Zheludkevich, Hierarchically organized Li-Al-LDH nanoflakes: a low-temperature approach to seal porous anodic oxide on aluminum alloys, RSC Adv. 7 (2017) 35357–35367.

[30]

R.C. Zeng, Z.G. Liu, F. Zhang, S.Q. Li, H.Z. Cui, E.H. Han, Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy, J. Mater. Chem. 2 (2014) 13049–13057.

[31]

M.A. Iqbal, M. Fedel, The effect of the surface morphologies on the corrosion resistance of in situ growth MgAl-LDH based conversion film on AA6082, Surf. Coating. Technol. 352 (2018) 166–174.

[32]

S.Y. Xie, J.H. Wang, W.B. Hu, Synthesis and corrosion resistance of ZnAl layered double hydroxide film on Q235 steel, Int. J. Electrochem. Sci. 14 (2019) 6773–6789.

[33]

C.M. Fernandes, L.X. Alvarez, N.E. dos Santos, A.C.M. Barrios, E.A. Ponzio, Green synthesis of 1-benzyl-4-phenyl-1H-1, 2, 3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses, Corrosion Sci. 149 (2019) 185–194.

[34]

L.M. Calado, M.G. Taryba, Y. Morozov, M.J. Carmezim, M.F. Montemor, Novel smart and self-healing cerium phosphate-based corrosion inhibitor for AZ31 magnesium alloy, Corrosion Sci. (2020) 108648.

[35]

A. Liu, H.W. Tian, W.H. Li, W. Wang, X. Gao, P. Han, R. Ding, Delamination and self-assembly of layered double hydroxides for enhanced loading capacity and corrosion protection performance, Appl. Surf. Sci. 462 (2018) 175–186.

[36]

E. Alibakhshi, E. Ghasemi, M. Mandavian, B. Ramezanzadeh, A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn-Al-layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat, Corrosion Sci. 115 (2017) 159–174.

[37]

M.J. Anjum, J.M. Zhao, V.Z. Asl, G. Yasin, W. Wang, S.X. Wei, Z.J. Zhao, W.Q. Khan, In-situ intercalation of 8-hydroxyquinoline in Mg-Al LDH coating to improve the corrosion resistance of AZ31, Corrosion Sci. 157 (2019) 1–10.

[38]

M. Serdechnova, M. Mohedano, B. Kuznetsov, C.L. Mendis, M. Starykevich, S. Karpushenkov, J. Tedim, M.G.S. Ferreira, C. Blawert, M.L. Zheludkevich, PEO coatings with active protection based on in-situ formed LDH-nanocontainers, J. Electrochem. Soc. 164 (2017) C36–C45.

[39]

Y. Tang, F. Wu, L. Fang, T. Guan, J. Hu, S.F. Zhang, A comparative study and optimization of corrosion resistance of ZnAl layered double hydroxides films intercalated with different anions on AZ31 Mg alloys, Surf. Coating. Technol. 358 (2019) 594–603.

[40]

J.L. Chen, L. Fang, F. Wu, J. Xie, J. Hu, B. Jiang, H.J. Luo, Corrosion resistance of a self-healing rose-like MgAl-LDH coating intercalated with aspartic acid on AZ31 Mg alloy, Prog. Org. Coating 136 (2019) 105234.

[41]

D.S. Yan, Y.L. Wang, J.L. Liu, D.L. Song, T. Zhang, J.Y. Liu, F. He, M. Zhang, J. Wang, Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy, J. Alloys Compd. 824 (2020) 153918.

[42]

D. Jiang, X.C. Xia, J. Hou, G.Y. Cai, X.X. Zhang, Z.H. Dong, A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy, Chem. Eng. J. 373 (2019) 285–297.

[43]

L.X. Li, Z.H. Xie, C. Fernandez, L. Wu, D.J. Cheng, X.H. Jiang, C.J. Zhong, Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection, Electrochim. Acta 330 (2020) 135186.

[44]

G. Zhang, L. Wu, A.T. Tang, X.B. Chen, Y.L. Ma, Y. Long, P. Peng, X.X. Ding, H.L. Pan, F.S. Pan, Growth behavior of MgAl-layered double hydroxide films by conversion of anodic films on magnesium alloy AZ31 and their corrosion protection, Appl. Surf. Sci. 456 (2018) 419–429.

[45]

J. Rodriguez, E. Bonen, T.D. Nguyen, A. Portier, Y. Paint, M.G. Olivier, Incorporation of layered double hydroxides modified with benzotriazole into an epoxy resin for the corrosion protection of Zn-Mg coated steel, Prog. Org. Coating 149 (2020) 105894.

[46]

M.A. Zadeh, J. Tedim, M. Zheludkevich, S. van der Zwaag, S.J. Garcia, Synergetic active corrosion protection of AA2024-T3 by 2D-anionic and 3D-cationic nanocontainers loaded with Ce and mercaptobenzothiazole, Corrosion Sci. 135 (2018) 35–45.

[47]

J.K. Lin, J.Y. Uan, Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3-/CO32- and corresponding protection against corrosion by the coating, Corrosion Sci. 51 (2009) 1181–1188.

[48]

X.C. Zhang, J.X. Wang, C.Y. Zhang, B. Liu, P. Jiang, Y. Zhao, B. Buhe, T. Zhang, G.Z. Meng, F.H. Wang, formation process of an LDHs coating on magnesium alloy by a CO2 pressurization method, Coatings 9 (2019) 47.

[49]

M.G. Delgado, F.R. Garcia-Galvan, I. Llorente, P. Perez, P. Adeva, S. Feliu, Influence of aluminium enrichment in the near-surface region of commercial twinroll cast AZ31 alloys on their corrosion behaviour, Corrosion Sci. 123 (2017) 182–196.

[50]

J.S. Liao, M. Hotta, Corrosion products of field-exposed Mg-Al series magnesium alloys, Corrosion Sci. 112 (2016) 276–288.

[51]

M. Zhang, Y. Liu, Enhancing the anti-corrosion performance of ZIF-8-based coatings via microstructural optimization, New J. Chem. 44 (2020) 2941–2946.

[52]

Y.H. Cao, D.J. Zheng, J.S. Luo, F. Zhang, C. Wang, S.G. Dong, Y.L. Ma, Z.Y. Liang, C.J. Lin, Enhanced corrosion protection by Al surface immobilization of in-situ grown layered double hydroxide films co-intercalated with inhibitors and low surface energy species, Corrosion Sci. 164 (2020) 108340.

[53]

A.C. Bouali, M.H. Iuzviuk, M. Serdechnova, K.A. Yasakau, D.C.F. Wieland, G. Dovzhenko, H. Maltanava, I.A. Zobkalo, M.G.S. Ferreira, M.L. Zheludkevich, Zn-Al LDH growth on AA2024 and zinc and their intercalation with chloride: comparison of crystal structure and kinetics, Appl. Surf. Sci. 501 (2020) 144027.

[54]

F.Y. Wang, Z.G. Guo, Insitu growth of durable superhydrophobic Mg-Al layered double hydroxides nanoplatelets on aluminum alloys for corrosion resistance, J. Alloys Compd. 767 (2018) 382–391.

[55]

H. Li, F. Peng, D.H. Wang, Y.Q. Qiao, D.M. Xu, X.Y. Liu, Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility, Biomater. Sci. (U.K.) 6 (2018) 1846–1858.

[56]

K. Hoshino, S. Furuya, R.G. Buchheit, Effect of NO3- intercalation on corrosion resistance of conversion coated Zn-Al-CO3 LDHs on electrogalvanized steel, J. Electrochem. Soc. 165 (2018) C461–C468.

[57]

A. Hayashi, H. Nakayama, Intercalation reaction of carbonate MgAl-layered double hydroxide using alcohol as solvent, Chem. Lett. 40 (2011) 276–278.

[58]

M. Zhou, X.L. Pang, L. Wei, K.W. Gao, Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties, Appl. Surf. Sci. 337 (2015) 172–177.

[59]

J.X. Xu, Q.P. Tan, Y.J. Mei, Corrosion protection of steel by Mg-Al layered double hydroxides in simulated concrete pore solution: effect of SO42-, Corrosion Sci. 163 (2020) 108223.

[60]

W.H. Li, A. Liu, H.W. Tian, D.P. Wang, Controlled release of nitrate and molybdate intercalated in Zn-Al-layered double hydroxide nanocontainers towards marine anticorrosion applications, Colloid Interface Sci. 24 (2018) 18–23.

[61]

D.T. Nguyen, H.T.X. To, J. Gervasi, Y. Paint, M. Gonon, M.G. Olivier, Corrosion inhibition of carbon steel by hydrotalcites modified with different organic carboxylic acids for organic coatings, Prog. Org. Coating 124 (2018) 256–266.

[62]

N. Wang, H.Y. Gao, J. Zhang, L. Li, X.L. Fan, X.L. Diao, Anticorrosive waterborne epoxy (EP) coatings based on sodium tripolyphosphate-pillared layered double hydroxides (STPP-LDHs), Prog. Org. Coating 135 (2019) 74–81.

[63]

Z.Y. Qu, Q.L. Yu, H.J.H. Brouwers, Relationship between the particle size and dosage of LDHs and concrete resistance against chloride ingress, Cement Concr. Res. 105 (2018) 81–90.

[64]

N.S. Puttaswamy, P.V. Kamath, Reversible thermal behaviour of layered double hydroxides: a thermogravimetric study, J. Mater. Chem. 7 (1997) 1941–1945.

[65]

Q.T. Meng, H. Yan, Theoretical study on the topotactic transformation and memory effect of M (II) M (III)-layered double hydroxides, Mol. Simulat. 43 (2017) 1338–1347.

[66]

P. Kowalik, M. Konkol, M. Kondracka, W. Prochniak, R. Bicki, P. Wiercioch, Memory effect of the CuZnAl-LDH derived catalyst precursor-In situ XRD studies, Appl. Catal. Gen. 464 (2013) 339–347.

[67]

F. Peng, D.H. Wang, H.L. Cao, X.Y. Liu, Loading 5-Fluorouracil into calcined Mg/ Al layered double hydroxide on AZ31 via memory effect, Mater. Lett. 213 (2018) 383–386.

[68]

B. Wu, J.D. Zuo, B.Q. Dong, F. Xing, C.Y. Luo, Study on the affinity sequence between inhibitor ions and chloride ions in Mg-Al layer double hydroxides and their effects on corrosion protection for carbon steel, Appl. Clay Sci. 180 (2019) 105181.

[69]

J.D. Zuo, B. Wu, C.Y. Luo, B.Q. Dong, F. Xing, Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution, Corrosion Sci. 152 (2019) 120–129.

[70]

G. Zhang, L. Wu, A.T. Tang, Y.L. Ma, G.L. Song, D.J. Zheng, B. Jiang, A. Atrens, F.S. Pan, Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31, Corrosion Sci. 139 (2018) 370–382.

[71]

G. Zhang, L. Wu, A.T. Tang, H.L. Pan, Y.L. Ma, Q. Zhan, Q.Y. Tan, F.S. Pan, A. Atrens, Effect of micro-arc oxidation coatings formed at different voltages on the in situ growth of layered double hydroxides and their corrosion protection, J. Electrochem. Soc. 165 (2018) C317–C327.

[72]

G. Zhang, A.T. Tang, L. Wu, Z.Y. Zhang, H.X. Liao, Y. Long, L.J. Li, A. Atrens, F.S. Pan, In-situ grown super- or hydrophobic Mg-Al layered double hydroxides films on the anodized magnesium alloy to improve corrosion properties, Surf. Coating. Technol. 366 (2019) 238–247.

[73]

G. Zhang, L. Wu, A.T. Tang, S. Zhang, B. Yuan, Z.C. Zheng, F.S. Pan, A novel approach to fabricate protective layered double hydroxide films on the surface of anodized Mg-Al alloy, Adv. Mater. Interfaces 4 (2017) 1700163.

[74]

L. Wu, G. Zhang, A.T. Tang, Y.L. Liu, A. Atrens, F.S. Pan, Communicationfabrication of protective layered double hydroxide films by conversion of anodic films on magnesium alloy, J. Electrochem. Soc. 164 (2017) C339–C341.

[75]

L. Wu, D.N. Yang, G. Zhang, Z. Zhang, S. Zhang, A.T. Tang, F.S. Pan, Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31, Appl. Surf. Sci. 431 (2018) 177–186.

[76]

L. Wu, F.S. Pan, Y.H. Liu, G. Zhang, A.T. Tang, A. Atrens, Influence of pH on the growth behaviour of Mg-Al LDH films, Surf. Eng. 34 (2018) 674–681.

[77]

J.H. Liu, H.B. Shi, M. Yu, R.T. Du, G. Rong, S.M. Li, Effect of divalent metal ions on durability and anticorrosion performance of layered double hydroxides on anodized 2A12 aluminum alloy, Surf. Coating. Technol. 373 (2019) 56–64.

[78]

Y. Zhang, P.H. Yu, Y. Zuo, H.Y. Tian, X.Y. Chen, F. Chen, Investigating the growth behavior of LDH layers on MAO-coated aluminum alloy: influence of microstructure and surface element, Int. J. Electrochem. Sci. 13 (2018) 610–620.

[79]

L.Q. Zhu, G.L. Song, Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating, Surf. Coating. Technol. 200 (2006) 2834–2840.

[80]

Y.-X. Zhu, G.-L. Song, P.-P. Wu, J.-F. Huang, D.-J. Zheng, A protective superhydrophobic Mg–Zn–Al LDH film on Surface-Alloyed Magnesium, J. Alloys Compd. 855 (2021) 157550.

[81]

A.R. Marder, The metallurgy of zinc-coated steel, Prog. Mater. Sci. 45 (2000) 191–271.

[82]

H.E. Townsend, J.C. Zoccola, Atmospheric corrosion-resistance of 55-percent AlZn coated sheet steel - 13-year test-results, Mater. Perform. 18 (1979) 13–20.

[83]

N. LeBozec, D. Thierry, D. Persson, J. Stoulil, Atmospheric corrosion of zincaluminum alloyed coated steel in depleted carbon dioxide environments, J. Electrochem. Soc. 165 (2018) C343–C353.

[84]

F. Brownlie, L. Giourntas, T. Hodgkiess, I. Palmeira, O. Odutayo, A.M. Galloway, A. Pearson, Effect of cathodic protection methods on ferrous engineering materials under corrosive wear conditions, Corrosion Eng. Sci. Technol. 55 (2020) 480–486.

[85]

N. LeBozec, D. Thierry, D. Persson, C.K. Riener, G. Luckeneder, Influence of microstructure of zinc-aluminium-magnesium alloy coated steel on the corrosion behavior in outdoor marine atmosphere, Surf. Coating. Technol. 374 (2019) 897–909.

[86]

J. Duchoslav, R. Steinberger, M. Arndt, T. Keppert, G. Luckeneder, K.H. Stellnberger, J. Hagler, G. Angeli, C.K. Riener, D. Stifter, Evolution of the surface chemistry of hot dip galvanized Zn-Mg-Al and Zn coatings on steel during short term exposure to sodium chloride containing environments, Corrosion Sci. 91 (2015) 311–320.

[87]

Q.S. Yao, F. Zhang, L. Song, R.C. Zeng, L.Y. Cui, S.Q. Li, Z.L. Wang, E.H. Han, Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Allayered double hydroxide on AZ31 magnesium alloy, J. Alloys Compd. 764 (2018) 913–928.

[88]

A. Farhadian, A. Rahimi, N. Safaei, A. Shaabani, M. Abdouss, A. Alavi, A theoretical and experimental study of castor oil-based inhibitor for corrosion inhibition of mild steel in acidic medium at elevated temperatures, Corrosion Sci. 175 (2020) 108871.

[89]

C. Monticelli, A. Balbo, J. Esvan, C. Chiavari, C. Martini, F. Zanotto, L. Marvelli, L. Robbiola, Evaluation of 2-(salicylideneimino) thiophenol and other Schiff bases as bronze corrosion inhibitors by electrochemical techniques and surface analysis, Corrosion Sci. 148 (2019) 144–158.

[90]

Y.W. Tian, C.F. Dong, G. Wang, X.Q. Cheng, X.G. Li, Zn-Al-NO2 layered double hydroxide as a controlled-release corrosion inhibitor for steel reinforcements, Mater. Lett. 236 (2019) 517–520.

[91]

E. Alibakhshi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, Fabrication and characterization of layered double hydroxide/silane nanocomposite coatings for protection of mild steel, J. Taiwan Inst. Chem. Eng. 80 (2017) 924–934.

[92]

H. Hayatdavoudi, M. Rahsepar, Smart inhibition action of layered double hydroxide nanocontainers in zinc-rich epoxy coating for active corrosion protection of carbon steel substrate, J. Alloys Compd. 711 (2017) 560–567.

[93]

S.P. Dalawai, M.A.S. Aly, S.S. Latthe, R.M. Xing, R.S. Sutar, S. Nagappan, C.S. Ha, K.K. Sadasivuni, S.H. Liu, Recent Advances in durability of superhydrophobic selfcleaning technology: a critical review, Prog. Org. Coating 138 (2020) 105381.

[94]

P.F. Liu, Y.P. Zhang, S.Q. Liu, Y.J. Zhang, L.B. Qu, Fabrication of superhydrophobic marigold shape LDH films on stainless steel meshes via in-situ growth for enhanced anti-corrosion and high efficiency oil-water separation, Appl. Clay Sci. 182 (2019) 105292.

[95]

J. Kuang, Z.X. Ba, Z.Z. Li, Z.Z. Wang, J.H. Qiu, The study on corrosion resistance of superhydrophobic coatings on magnesium, Appl. Surf. Sci. 501 (2020) 144137.

[96]

J.K. Lin, C.L. Hsia, J.Y. Uan, Characterization of Mg,Al-hydrotalcite conversion film on Mg alloy and Cl- and CO32- anion-exchangeability of the film in a corrosive environment, Scripta Mater. 56 (2007) 927–930.

[97]

V.Z. Asl, J.M. Zhao, M.J. Anjum, S.X. Wei, W. Wang, Z.J. Zhao, The effect of cerium cation on the microstructure and anti-corrosion performance of LDH conversion coatings on AZ31 magnesium alloy, J. Alloys Compd. 821 (2020) 153248.

[98]

T.N. Shulha, M. Serdechnova, S.V. Lamaka, D.C.F. Wieland, K.N. Lapko, M.L. Zheludkevich, Chelating agent-assisted in situ LDH growth on the surface of magnesium alloy, Sci. Rep. (U.K.) 8 (2018) 16409.

[99]

L. Wu, J.H. Wu, Z.Y. Zhang, C. Zhang, Y.X. Zhang, A.T. Tang, L.J. Li, G. Zhang, Z.C. Zheng, A. Atrens, F.S. Pan, Corrosion resistance of fatty acid and fluoroalkylsilane-modified hydrophobic Mg-Al LDH films on anodized magnesium alloy, Appl. Surf. Sci. 487 (2019) 569–580.

[100]

T.F. Xiang, M. Zhang, H.R. Sadig, Z.C. Li, M.X. Zhang, C.D. Dong, L. Yang, W.M. Chan, C. Li, Slippery liquid-infused porous surface for corrosion protection with self-healing property, Chem. Eng. J. 345 (2018) 147–155.

[101]

C.D. Ding, Y. Tai, D. Wang, L.H. Tan, J.J. Fu, Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection, Chem. Eng. J. 357 (2019) 518–532.

[102]

A.F. Carreira, A.M. Pereira, E.P. Vaz, A.M. Cabral, T. Ghidini, L. Pigliaru, T. Rohr, Alternative corrosion protection pretreatments for aluminum alloys, J. Coating Technol. Res. 14 (2017) 879–892.

[103]

R.G. Buchheit, H. Guan, S. Mahajanam, F. Wong, Active corrosion protection and corrosion sensing in chromate-free organic coatings, Prog. Org. Coating 47 (2003) 174–182.

[104]

G. Williams, H.N. McMurray, Inhibition of filiform corrosion on polymer coated AA2024-T3 by hydrotalcite-like pigments incorporating organic anions, Electrochem. Solid State 7 (2004) B13–B15.

[105]

G. Williams, H.N. McMurray, Anion-exchange inhibition of filiform corrosion on organic coated AA2024-T3 aluminum alloy by hydrotalcite-like pigments, Electrochem. Solid State 6 (2003) B9–B11.

[106]

H.Y. Chen, F.Z. Zhang, S.S. Fu, X. Duan, In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials, Adv. Mater. 18 (2006) 3089–3093.

[107]

F.Z. Zhang, L.L. Zhao, H.Y. Chen, S.L. Xu, D.G. Evans, X. Duan, Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum, Angew. Chem. Int. Ed. 47 (2008) 2466–2469.

[108]

X.X. Guo, S.L. Xu, L.L. Zhao, W. Lu, F.Z. Zhang, D.G. Evans, X. Duan, One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties, Langmuir 25 (2009) 9894–9897.

[109]

Y. Zhang, J.H. Liu, Y.D. Li, M. Yu, S.M. Li, B. Xue, Fabrication of inhibitor anionintercalated layered double hydroxide host films on aluminum alloy 2024 and their anticorrosion properties, J. Coating Technol. Res. 12 (2015) 293–302.

[110]

Y.H. Cao, D.J. Zheng, X.L. Li, J.Y. Lin, C. Wang, S.G. Dong, C.J. Lin, Enhanced corrosion resistance of superhydrophobic layered double hydroxide films with long-term stability on Al substrate, Acs Appl. Mater. Interfaces 10 (2018) 15150–15162.

[111]

J. Alcantara, D. de la Fuente, B. Chico, J. Simancas, I. Diaz, M. Morcillo, Marine atmospheric corrosion of carbon steel: a review, Materials 10 (2017) 406.

[112]

T.X.H. To, T.A. Truc, N.T. Duong, N. Pebere, M.G. Olivier, Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel, Prog. Org. Coating 74 (2012) 343–348.

[113]

N. Granizo, J.M. Vega, D. de la Fuente, B. Chico, M. Morcillo, Ion-exchange pigments in primer paints for anticorrosive protection of steel in atmospheric service: anion-exchange pigments, Prog. Org. Coating 76 (2013) 411–424.

[114]

E. Alibakhshi, E. Ghasemi, M. Mandavian, B. Ramezanzadeh, S. Farashi, Active corrosion protection of Mg-Al-PO43- LDH nanoparticle in silane primer coated with epoxy on mild steel, J. Taiwan Inst. Chem. Eng. 75 (2017) 248–262.

[115]

P. Volovitch, T.N. Vu, C. Allely, A.A. Aal, K. Ogle, Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel, Corrosion Sci. 53 (2011) 2437–2445.

[116]

N. LeBozec, D. Thierry, M. Rohwerder, D. Persson, G. Luckeneder, L. Luxem, Effect of carbon dioxide on the atmospheric corrosion of Zn-Mg-Al coated steel, Corrosion Sci. 74 (2013) 379–386.

[117]

D. Persson, D. Thierry, N. LeBozec, T. Prosek, In situ infrared reflection spectroscopy studies of the initial atmospheric corrosion of Zn-Al-Mg coated steel, Corrosion Sci. 72 (2013) 54–63.

[118]

V. Shkirskiy, P. Keil, H. Hintze-Bruening, F. Leroux, P. Vialat, G. Lefevre, K. Ogle, P. Volovitch, Factors affecting MoO42- inhibitor release from Zn2Al based layered double hydroxide and their implication in protecting hot dip galvanized steel by means of organic coatings, Acs Appl. Mater. Interfaces 7 (2015) 25180–25192.

[119]

N.T. Duong, T.T.X. Hang, A. Nicolay, Y. Paint, M.G. Olivier, Corrosion protection of carbon steel by solvent free epoxy coating containing hydrotalcites intercalated with different organic corrosion inhibitors, Prog. Org. Coating 101 (2016) 331–341.

[120]

M. Stefanoni, U. Angst, B. Elsener, Corrosion rate of carbon steel in carbonated concrete - a critical review, Cement Concr. Res. 103 (2018) 35–48.

[121]

Z.M. Mir, A. Bastos, D. Hoche, M.L. Zheludkevich, Recent advances on the application of layered double hydroxides in concrete-A review, Materials 13 (2020) 1426.

[122]

A.M. Scheidegger, E. Wieland, A.C. Scheinost, R. Dahn, P. Spieler, Spectroscopic evidence for the formation of layered Ni-Al double hydroxides in cement, Environ. Sci. Technol. 34 (2000) 4545–4548.

[123]

X.H. Zhu, X.J. Kang, K. Yang, C.H. Yang, Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement, Construct. Build. Mater. 132 (2017) 290–295.

[124]

X.Y. Ke, M. Criado, J.L. Provis, S.A. Bernal, Slag-based cements that resist damage induced by carbon dioxide, Acs Sustain. Chem. Eng. 6 (2018) 5067–5075.

[125]

P. Duan, W. Chen, J.T. Ma, Z.H. Shui, Influence of layered double hydroxides on microstructure and carbonation resistance of sulphoaluminate cement concrete, Construct. Build. Mater. 48 (2013) 601–609.

[126]

Y.Y. Wu, P. Duan, C.J. Yan, Role of layered double hydroxides in setting, hydration degree, microstructure and compressive strength of cement paste, Appl. Clay Sci. 158 (2018) 123–131.

[127]

Z.M. Mir, A. Bastos, C. Gomes, U. Mueller, M.C. Alonso, K. Villar, M.P. Rabade, F. Maia, C.M. Rocha, P. Maincon, D. Hoche, M.G.S. Ferreira, M.L. Zheludkevich, Numerical and experimental analysis of self-protection in reinforced concrete due to application of Mg-Al-NO(2)Layered double hydroxides, Adv. Eng. Mater. (2020) 2000398.

[128]

Z.X. Yang, H. Fischer, R. Polder, Synthesis and characterization of modified hydrotalcites and their ion exchange characteristics in chloride-rich simulated concrete pore solution, Cement Concr. Compos. 47 (2014) 87–93.

[129]

A. Machner, M. Zajac, M. Ben Haha, K.O. Kjellsen, M.R. Geiker, K. De Weerdt, Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin, Cement Concr. Res. 107 (2018) 163–181.

[130]

T. Yang, Z.H. Zhang, F. Zhang, Y.N. Gao, Q.S. Wu, Chloride and heavy metal binding capacities of hydrotalcite-like phases formed in greener one-part sodium carbonate-activated slag cements, J. Clean. Prod. 253 (2020) 120047.

[131]

Y.H. Cao, S.G. Dong, D.J. Zheng, J.J. Wang, X.J. Zhang, R.G. Du, G.L. Song, C.J. Lin, Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete, Corrosion Sci. 126 (2017) 166–179.

[132]

T.T. Wen, R. Yan, N. Wang, Y.X. Li, T. Chen, H.Y. Ma, PPA-containing layered double hydroxide (LDH) films for corrosion protection of a magnesium alloy, Surf. Coating. Technol. 383 (2020) 125255.

[133]

Y. Song, Y. Tang, L. Fang, F. Wu, X. Zeng, J. Hu, S.F. Zhang, B. Jiang, H. Luo, Enhancement of corrosion resistance of AZ31 Mg alloys by one-step in situ synthesis of ZnAl-LDH films intercalated with organic anions (ASP, La), J. Magnes. Alloy (2020), https://doi.org/10.1016/j.jma.2020.03.013. In press.

[134]

X.X. Yin, P. Mu, Q.T. Wang, J. Li, Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy, Acs Appl. Mater. Interfaces 12 (2020) 35453–35463.

[135]

B.T. Zhou, X.F. Wei, Y.B. Wang, Q.Y. Huang, B. Hong, Y.Z. Wei, Effect of lanthanum addition on microstructures and corrosion behavior of ZnAl-LDHs film of 6061 aluminum alloys, Surf. Coating. Technol. 379 (2019) 125056.

[136]

M.A. Iqbal, L.Y. Sun, A.M. LaChance, H. Ding, M. Fedel, In situ growth of a CaAlNO3–layered double hydroxide film directly on an aluminum alloy for corrosion resistance, Dalton Trans. 49 (2020) 3956–3964.

[137]

F.Y. Wang, Z.G. Guo, Facile synthesis of superhydrophobic three-metal-component layered double hydroxide films on aluminum foils for highly improved corrosion inhibition, New J. Chem. 43 (2019) 2289–2298.

[138]

K. Lin, X. Luo, X. Pan, C. Zhang, Y. Liu, Enhanced corrosion resistance of LiAllayered double hydroxide (LDH) coating modified with a Schiff base salt on aluminum alloy by one step in-situ synthesis at low temperature, Appl. Surf. Sci. 463 (2019) 1085–1096.

[139]

Q.Q. He, M.J. Zhou, J.M. Hu, Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys, Electrochim. Acta 355 (2020) 136796.

[140]

Y.G. Yao, Z.N. Huang, T.Y. Li, H. Wang, Y.F. Liu, H.S. Stein, Y.M. Mao, J.L. Gao, M.L. Jiao, Q. Dong, J.Q. Dai, P.F. Xie, H. Xie, S.D. Lacey, I. Takeuchi, J.M. Gregoire, R.Z. Jiang, C. Wang, A.D. Taylor, R. Shahbazian-Yassar, L.B. Hu, High-throughput, combinatorial synthesis of multimetallic nanoclusters, P Natl. Acad. Sci. USA 117 (2020) 6316–6322.

[141]

M.Y. Ren, M. Yang, G.W. Chen, Q. Yuan, High-Throughput Preparation of Monodispersed Layered Double Hydroxides via Microreaction Technology, J Flow Chem. 4 (2014) 164–167.

Nano Materials Science
Pages 47-67
Cite this article:
Jing C, Dong B, Raza A, et al. Corrosion inhibition of layered double hydroxides for metal-based systems. Nano Materials Science, 2021, 3(1): 47-67. https://doi.org/10.1016/j.nanoms.2020.12.001

355

Views

3

Downloads

34

Crossref

33

Web of Science

39

Scopus

1

CSCD

Altmetrics

Received: 16 August 2020
Accepted: 01 December 2020
Published: 19 December 2020
© 2020 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return