AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Surface microstructure-controlled ZrO2 for highly sensitive room-temperature NO2 sensors

Yuhua YanaZongtao MaaJingyao SunaMiaomiao BuaYanming HuoaZiying Wanga( )Yunfei Lia,d,e( )Ning Hub,c( )
Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, PR China
State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300130, PR China
National Engineering Research Center for Technological Innovation Method and Tool, And School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, 300401, PR China
Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin, 300401, PR China
Show Author Information

Abstract

The high sensitivity of room-temperature gas sensors is the key to innovation in the areas of environment, energy conservation and safety. However, metal-oxide-based sensors generally operate at high temperatures. Herein, we designed three ZrO2-based sensors and explored their NO2 sensing properties at room temperature. ZrO2 with three different morphologies and microstructure were synthesized by simple hydrothermal methods. The microstructures of sensing materials are expected to significantly affect gas sensing properties. The rod-shaped ZrO2 (ZrO2-R) displayed the advantages such as higher crystallinity, larger pore size, narrower band gap and more chemisorbed adsorbed oxygen, compared to hollow sphere-shaped ZrO2 (ZrO2-HS), stellate-shaped ZrO2 (ZrO2–S). The ZrO2-R sensor showed the highest response towards 30 ​ppm NO2 (423.8%) at room temperature, and a quite high sensitivity of 198.0% for detecting 5 ​ppm NO2. Although ZrO2-HS and ZrO2–S sensors exhibited lower response towards 30 ​ppm NO2 (232.9% and 245.1%), the response time and recovery time of these two sensors are 5 ​s/19 ​s and 4 ​s/3 ​s, respectively. This work can provide a new strategy for the development of room-temperature metal-oxide-based sensors.

References

[1]

S. Bai, J. Guo, J. Sun, P. Tang, A. Chen, R. Luo, D. Li, Enhancement of NO2-sensing performance at room temperature by graphene-modified polythiophene, Ind. Eng. Chem. Res. 55 (2016) 5788–5794.

[2]

M.L. Wong, B.D. Charnay, P. Gao, Y.L. Yung, M.J. Russell, Nitrogen oxides in early earth’s atmosphere as electron acceptors for life’s emergence, Astrobiology 17 (2017) 975–983.

[3]

J.Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A.F. Chrimes, W. Wiodarski, S.P. Russo, Y.X. Li, K. Kalantar-zadeh, Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing, ACS Nano 9 (2015) 10313–10323.

[4]

Y. Zhen, J. Zhang, W. Wang, Y. Li, X. Gao, H. Xue, X. Liu, Z. Jia, Q. Xue, J. Zhang, Y. Yan, N.S. Alharbi, T. Hayat, Embedded SnO2/diatomaceous earth composites for fast humidity sensing and controlling properties, Sens. Actuator. B Chem. 303 (2020) 127137.

[5]

Y. Shen, T. Li, X. Zhong, G. Li, A. Li, D. Wei, Y. Zhang, K. Wei, Ppb-level NO2 sensing properties of Au-doped WO3 nanosheets synthesized from a low-grade scheelite concentrate, Vacuum 172 (2020) 109036.

[6]

J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Low-voltage-driven sensors based on ZnO nanowires for room-temperature detection of NO2 and CO gases, ACS Appl. Mater. Interfaces 11 (2019) 24172–24183.

[7]
LiZ.YanS.SunM.LiH.WuZ.WangJ.ShenW.FuY.Q.Significantly enhanced temperature-dependent selectivity for NO2 and H2S detection based on In2O3 nano-cubes prepared by CTAB assisted solvothermal processJ. Alloys Compd.2020816152518

Z. Li, S. Yan, M. Sun, H. Li, Z. Wu, J. Wang, W. Shen, Y.Q. Fu, Significantly enhanced temperature-dependent selectivity for NO2 and H2S detection based on In2O3 nano-cubes prepared by CTAB assisted solvothermal process, J. Alloys Compd. 816 (2020) 152518.

10.1016/j.jallcom.2019.152518
[8]

X. Chen, S. Wang, C. Su, Y. Han, C. Zou, M. Zeng, N. Hu, Y. Su, Z. Zhou, Z. Yang, Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance, Sens. Actuator. B Chem. 305 (2020) 127393.

[9]

Z. Yang, D. Zhang, H. Chen, MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing, Sens. Actuator. B Chem. 300 (2019) 127037.

[10]

B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim, Y.-J. Lee, S.-G. Park, J.-D. Kwon, C.S. Kim, M. Song, Y. Jeong, K.-S. Nam, S. Lee, T.J. Yoo, C.G. Kang, B.H. Lee, H.C. Ko, P.M. Ajayan, D.-H. Kim, Charge-transfer-based gas sensing using atomic-layer MoS2, Sci. Rep. 5 (2015) 8052.

[11]

Z. Wang, T. Han, T. Fei, S. Liu, T. Zhang, Investigation of microstructure effect on NO2 sensors based on SnO2 nanoparticles/reduced graphene oxide hybrids, ACS Appl. Mater. Interfaces 10 (2018) 41773–41783.

[12]

J. Wu, Z. Wu, H. Ding, Y. Wei, W. Huang, X. Yang, Z. Li, L. Qiu, X. Wang, Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor, Sens. Actuator. B Chem. 305 (2020) 127445.

[13]
LiuB.LiuX.YuanZ.JiangY.SuY.MaJ.TaiH.A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperatureSens. Actuator. B Chem.20192958692

B. Liu, X. Liu, Z. Yuan, Y. Jiang, Y. Su, J. Ma, H. Tai, A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature, Sens. Actuator. B Chem. 295 (2019) 86–92.

10.1016/j.snb.2019.05.065
[14]

C. Su, L. Zhang, Y. Han, C. Ren, M. Zeng, Z. Zhou, Y. Su, N. Hu, H. Wei, Z. Yang, Controllable synthesis of heterostructured CuO-NiO nanotubes and their synergistic effect for glycol gas sensing, Sens. Actuator. B Chem. 304 (2020) 127347.

[15]

Y. Han, Y. Liu, C. Su, X. Chen, M. Zeng, N. Hu, Y. Su, Z. Zhou, H. Wei, Z. Yang, Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection, Sens. Actuator. B Chem. 306 (2020) 127536.

[16]

S. Ghosh, D. Adak, R. Bhattacharyya, N. Mukherjeee, ZnO/gamma-Fe2O3 charge transfer interface toward highly selective H2S sensing at a low operating temperature of 30 degrees C, ACS Sens. 2 (2017) 1831–1838.

[17]

S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange, Nanoscale. Res. Lett. 10 (2015) 73.

[18]

Y. Lu, Z. Wang, S. Yuan, L. Shi, Y. Zhao, W. Deng, Microwave-hydrothermal synthesis and humidity sensing behavior of ZrO2 nanorods, RSC Adv. 3 (2013) 11707–11714.

[19]

I. Kuryliszyn-Kudelska, W. Dobrowolski, M. Arciszewska, A. Malolepszy, L. Stobinski, R. Minikayev, Adjusting the magnetic properties of ZrO2:Mn nanocrystals by changing hydrothermal synthesis conditions, Magnetochemistry 4 (2018).

[20]

E. Bharathi, G. Sivakumari, B. Karthikeyan, S. Senthilvelan, Hydrothermal implement with supporting of semiconductor ZrO2 (ZO), Ag doped ZrO2 (AZO) nanomaterial and its astrophysical, UV photocatalytic employment on Rh6G dye, Appl. Nanosci. 10 (2020) 3491–3502.

[21]

Q. Jin, W. Wen, S. Zheng, J.-M. Wu, Enhanced isopropanol sensing of coral-like ZnO-ZrO2 composites, Nanotechnology 31 (2020).

[22]

J. Wang, C. Wang, A. Liu, R. You, F. Liu, S. Li, L. Zhao, R. Jin, J. He, Z. Yang, P. Su, X. Yan, G. Lu, High-response mixed-potential type planar YSZ-based NO2 sensor coupled with CoTiO3 sensing electrode, Sens. Actuator. B Chem. 287 (2019) 185–190.

[23]
YooY.-S.BhardwajA.HongJ.-W.ImH.-N.SongS.-J.Sensing performance of a YSZ-based electrochemical NO2 sensor using nanocomposite electrodesJ. Electrochem. Soc.2019166B799B80410.1149/2.1261910jes

Y.-S. Yoo, A. Bhardwaj, J.-W. Hong, H.-N. Im, S.-J. Song, Sensing performance of a YSZ-based electrochemical NO2 sensor using nanocomposite electrodes, J. Electrochem. Soc. 166 (2019) B799–B804.

[24]

Q. Diao, X. Zhang, J. Li, Y. Yin, M. Jiao, J. Cao, C. Su, K. Yang, Improved sensing performances of NO2 sensors based on YSZ and porous sensing electrode prepared by MnCr2O4 admixed with phenol-formaldehyderesin microspheres, Ionics 25 (2019) 6043–6050.

[25]

T.N. Myasoedova, T.S. Mikhailova, G.E. Yalovega, N.K. Plugotarenko, Resistive low-temperature sensor based on the SiO2ZrO2 film for detection of high concentrations of NO2 gas, Chemosensors 6 (2018) 6–67.

[26]

M.R. Mohammadia, D.J. Frayb, Synthesis and characterisation of nanosized TiO2-ZrO2 binary system prepared by an aqueous sol-gel process: physical and sensing properties, Sens. Actuator. B Chem. 155 (2011) 568–576.

[27]

T.Y. Han, S. Gao, Z.Y. Wang, T. Fei, S. Liu, T. Zhang, Investigation of the effect of oxygen-containing groups on reduced graphene oxide-based room-temperature NO2 sensor, J.Alloy. Compd. 801 (2019) 142–150.

[28]

N.T. Thang, L.T. Hong, N.H. Thoan, et al., Controlled synthesis of ultrathin MoS2 nanoflowers for highly enhanced NO2 sensing at room temperature, RSC Adv. 10 (2020) 12759–12771.

[29]

Y.B. Shen, T.T. Li, X.X. Zhong, et al., Ppb-level NO2 sensing properties of Au-doped WO3 nanosheets synthesized from a low-grade scheelite concentrate, Vacuum 172 (2020) 109036.

[30]

Z. Wang, S. Gao, T. Fei, S. Liu, T. Zhang, Construction of ZnO/SnO2 heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature, ACS Sens. 4 (2019) 2048–2057.

[31]

Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach, Sens. Actuator. B Chem. 242 (2017) 269–279.

[32]

Y. Pan, Y. Gao, D. Kong, G. Wang, J. Hou, S. Hu, H. Pan, J. Zhu, Interaction of Au with thin ZrO2 films: influence of ZrO2 morphology on the adsorption and thermal stability of Au nanoparticles, Langmuir 28 (2012) 6045–6051.

[33]
SiddiqueyI.A.FurusawaT.SatoM.BahadurN.M.UddinM.N.SuzukiN.A rapid method for the preparation of silica-coated ZrO2 nanoparticles by microwave irradiationCeram. Int.20113717551760

I.A. Siddiquey, T. Furusawa, M. Sato, N.M. Bahadur, M.N. Uddin, N. Suzuki, A rapid method for the preparation of silica-coated ZrO2 nanoparticles by microwave irradiation, Ceram. Int. 37 (2011) 1755–1760.

10.1016/j.ceramint.2011.01.003
[34]
WangZ.LuY.YuanS.ShiL.ZhaoY.ZhangM.DengW.Hydrothermal synthesis and humidity sensing properties of size-controlled zirconium oxide (ZrO2) nanorodsJ. Colloid Interface Sci.2013396915

Z. Wang, Y. Lu, S. Yuan, L. Shi, Y. Zhao, M. Zhang, W. Deng, Hydrothermal synthesis and humidity sensing properties of size-controlled zirconium oxide (ZrO2) nanorods, J. Colloid Interface Sci. 396 (2013) 9–15.

10.1016/j.jcis.2012.12.068
[35]
WuY.ChenJ.QuP.HuW.ShenP.ZhangG.JiaoY.ZhongL.ChenY.Promotion of yttrium (Y) on the water resistance and hydrothermal stability of Pd/ZrO2 catalyst coated on the monolith for complete methane oxidationJ. Taiwan. Inst. Chem. E.20191034456

Y. Wu, J. Chen, P. Qu, W. Hu, P. Shen, G. Zhang, Y. Jiao, L. Zhong, Y. Chen, Promotion of yttrium (Y) on the water resistance and hydrothermal stability of Pd/ZrO2 catalyst coated on the monolith for complete methane oxidation, J. Taiwan. Inst. Chem. E. 103 (2019) 44–56.

10.1016/j.jtice.2019.07.002
[36]

W. Li, Y. Ren, Y. Guo, ZrO2/ZnO nanocomposite materials for chemiresistive butanol sensors, Sens. Actuator. B Chem. 308 (2020) 127658.

[37]

Z. Wang, A. Sackmann, S. Gao, U. Weimar, G. Lu, S. Liu, T. Zhang, N. Barsan, Study on highly selective sensing behavior of ppb-level oxidizing gas sensors based on Zn2SnO4 nanoparticles immobilized on reduced graphene oxide under humidity conditions, Sens. Actuators, B 285 (2019) 590–600.

[38]

Y. Liu, G. Zhu, B. Ge, H. Zhou, A. Yuan, X. Shen, Concave Co3O4 octahedral mesocrystal: polymer-mediated synthesis and sensing properties, CrystEngComm 14 (2012) 6264–6270.

[39]

Z.M. Seeley, A. Bandyopadhyay, S. Bose, Influence of crystallinity on CO gas sensing for TiO2 films, Mater. Sci. Eng. B-Adv. 164 (2009) 38–43.

[40]

A. Katoch, G.-J. Sun, S.-W. Choi, J.-H. Byun, S.S. Kim, Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers, Sens. Actuator. B Chem. 185 (2013) 411–416.

[41]
XuY.TianX.LiuP.SunY.DuG.In2O3 nanoplates with different crystallinity and porosity: controllable synthesis and gas-sensing properties investigationJ. Alloys Compd.201978710631073

Y. Xu, X. Tian, P. Liu, Y. Sun, G. Du, In2O3 nanoplates with different crystallinity and porosity: controllable synthesis and gas-sensing properties investigation, J. Alloys Compd. 787 (2019) 1063–1073.

10.1016/j.jallcom.2019.02.176
[42]

P.V. Shinde, N.M. Shinde, S.F. Shaikh, D. Lee, J.M. Yun, L.J. Woo, A.M. Al-Enizi, R.S. Mane, K.H. Kim, Room-temperature synthesis and CO2-gas sensitivity of bismuth oxide nanosensors, RSC Adv. 10 (2020) 17217–17227.

[43]

C. Tzompantzi-Flores, J.C. Castillo-Rodriguez, R. Gomez, R. Perez Hernandez, C.E. Santolalla-Vargas, F. Tzompantzi, Photocatalytic evaluation of the ZrO2: Zn5(OH)6(CO3)2 composite for the H2 production via water splitting, Top. Catal. 63 (2020) 575–585.

[44]

A. Dankeaw, G. Poungchan, M. Panapoy, B. Ksapabutr, In-situ one-step method for fabricating three-dimensional grass-like carbon-doped ZrO2 films for room temperature alcohol and acetone sensors, Sens. Actuator. B Chem. 242 (2017) 202–214.

Nano Materials Science
Pages 268-275
Cite this article:
Yan Y, Ma Z, Sun J, et al. Surface microstructure-controlled ZrO2 for highly sensitive room-temperature NO2 sensors. Nano Materials Science, 2021, 3(3): 268-275. https://doi.org/10.1016/j.nanoms.2021.02.001

474

Views

8

Downloads

44

Crossref

43

Web of Science

46

Scopus

0

CSCD

Altmetrics

Received: 14 December 2020
Accepted: 26 February 2021
Published: 06 March 2021
© 2021 Chongqing University.
Return