PDF (6.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Biaxial versus uniaxial strain tuning of single-layer MoS2

Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049, Madrid, Spain
Show Author Information

Abstract

Strain engineering has arisen as a powerful technique to tune the electronic and optical properties of two-dimensional semiconductors like molybdenum disulfide (MoS2). Although several theoretical works predicted that biaxial strain would be more effective than uniaxial strain to tune the band structure of MoS2, a direct experimental verification is still missing in the literature. Here we implemented a simple experimental setup that allows to apply biaxial strain through the bending of a cruciform polymer substrate. We used the setup to study the effect of biaxial strain on the differential reflectance spectra of 12 single-layer MoS2 flakes finding a redshift of the excitonic features at a rate between −40 meV/% and −110 meV/% of biaxial tension. We also directly compare the effect of biaxial and uniaxial strain on the same single-layer MoS2 finding that the biaxial strain gauge factor is 2.3 times larger than the uniaxial strain one.

References

[1]

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, F. Guinea, Strain engineering in semiconducting two-dimensional crystals, J. Phys. Condens. Matter 27 (2015) 313201, https://doi.org/10.1088/0953-8984/27/31/313201.

[2]

B. Amorim, A. Cortijo, F. de Juan, A.G. Grushin, F. Guinea, A. Gutiérrez-Rubio, H. Ochoa, V. Parente, R. Roldán, P. San-Jose, et al., Novel effects of strains in graphene and other two dimensional materials, Phys. Rep. 617 (2016) 1–54, https://doi.org/10.1016/j.physrep.2015.12.006.

[3]

S. Deng, A.V. Sumant, V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene, Nano Today 22 (2018) 14–35, https://doi.org/10.1016/j.nantod.2018.07.001.

[4]

Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface, Adv. Mater. 31 (2019) 1805417, https://doi.org/10.1002/adma.201805417.

[5]

Y. Sun, K. Liu, Strain engineering in functional 2-dimensional materials, J. Appl. Phys. 125 (2019), https://doi.org/10.1063/1.5053795, 082402.

[6]

T. Huang, W. Wei, X. Chen, N. Dai, Strained 2D layered materials and heterojunctions, Ann. Phys. 531 (2019) 1800465, https://doi.org/10.1002/andp.201800465.

[7]

Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications, Light Sci. Appl. 9 (2020) 190, https://doi.org/10.1038/s41377-020-00421-5.

[8]

A. Chaves, J.G. Azadani, H. Alsalman, D.R. da Costa, R. Frisenda, A.J. Chaves, S.H. Song, Y.D. Kim, D. He, J. Zhou, et al., Bandgap engineering of two-dimensional semiconductor materials, npj 2D Mater. Appl. 4 (2020) 29, https://doi.org/10.1038/s41699-020-00162-4.

[9]

K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new directgap semiconductor, Phys. Rev. Lett. 105 (2010) 136805, https://doi.org/10.1103/PhysRevLett.105.136805.

[10]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. -Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10 (2010) 1271–1275, https://doi.org/10.1021/nl903868w.

[11]

A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, Optical identification of atomically thin dichalcogenide crystals, Appl. Phys. Lett. 96 (2010) 213116, https://doi.org/10.1063/1.3442495.

[12]

Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699–712, https://doi.org/10.1038/nnano.2012.193.

[13]

O.V. Yazyev, A. Kis, MoS 2 and semiconductors in the flatland, Mater. Today 18 (2015) 20–30, https://doi.org/10.1016/j.mattod.2014.07.005.

[14]

A. Kuc, T. Heine, A. Kis, Electronic properties of transition-metal dichalcogenides, MRS Bull. 40 (2015) 577–584, https://doi.org/10.1557/mrs.2015.143.

[15]

D. Lembke, S. Bertolazzi, A. Kis, Single-layer MoS 2 electronics, Acc. Chem. Res. 48 (2015) 100–110, https://doi.org/10.1021/ar500274q.

[16]

E. Scalise, M. Houssa, G. Pourtois, V. Afanas'ev, A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Res 5 (2011) 43–48, https://doi.org/10.1007/s12274-011-0183-0.

[17]

P. Johari, V.B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains, ACS Nano 6 (2012) 5449–5456, https://doi.org/10.1021/nn301320r.

[18]

H. Peelaers, C.G. Van De Walle, Effects of strain on band structure and effective masses in MoS2, Phys. Rev. B Condens. Matter 86 (2012) 241401, https://doi.org/10.1103/PhysRevB.86.241401.

[19]

H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13 (2013) 3626–3630, https://doi.org/10.1021/nl4014748.

[20]

K. He, C. Poole, K.F. Mak, J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2, Nano Lett. 13 (2013) 2931–2936, https://doi.org/10.1021/nl4013166.

[21]

Y.Y. Hui, X. Liu, W. Jie, N.Y. Chan, J. Hao, Y. -T. Hsu, L. -J. Li, W. Guo, S.P. Lau, Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet, ACS Nano 7 (2013) 7126–7131, https://doi.org/10.1021/nn4024834.

[22]

C.R. Zhu, G. Wang, B.L. Liu, X. Marie, X.F. Qiao, X. Zhang, X.X. Wu, H. Fan, P.H. Tan, T. Amand, et al., Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS_{2}, Phys. Rev. B 88 (2013) 121301, https://doi.org/10.1103/PhysRevB.88.121301.

[23]

V. Seshan, D. Ullien, A. Castellanos-Gomez, S. Sachdeva, D.H.K. Murthy, T.J. Savenije, H.A. Ahmad, T.S. Nunney, S.D. Janssens, K. Haenen, et al., Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure, J. Chem. Phys. 138 (2013) 234707, https://doi.org/10.1063/1.4810866.

[24]

H. Shi, H. Pan, Y.W. Zhang, B.I. Yakobson, Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2, Phys. Rev. B Condens. Matter 87 (2013) 155304, https://doi.org/10.1103/PhysRevB.87.155304.

[25]

C.H. Chang, X. Fan, S.H. Lin, J.L. Kuo, Orbital analysis of electronic structure and phonon dispersion in MoS 2, MoSe2, WS2, and WSe2 monolayers under strain, Phys. Rev. B Condens. Matter 88 (2013) 195420, https://doi.org/10.1103/PhysRevB.88.195420.

[26]

Y. Wang, C. Cong, C. Qiu, T. Yu, Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer mos2 under uniaxial strain, Small 9 (2013) 2857–2861, https://doi.org/10.1002/smll.201202876.

[27]

C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K.S. Novoselov, Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2, Phys. Rev. B Condens. Matter 87 (2013), https://doi.org/10.1103/PhysRevB.87.081307, 081307.

[28]

Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A.G. Birdwell, F.J. Crowne, et al., Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition, Nat. Commun. 5 (2014) 5246, https://doi.org/10.1038/ncomms6246.

[29]

D.M. Guzman, A. Strachan, Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: an ab-initio study, J. Appl. Phys. 115 (2014) 243701, https://doi.org/10.1063/1.4883995.

[30]

E. Scalise, M. Houssa, G. Pourtois, V.V. Afanasev, A. Stesmans, First-principles study of strained 2D MoS2, Phys. E Low-Dimensional Syst. Nanostructures 56 (2014) 416–421, https://doi.org/10.1016/j.physe.2012.07.029.

[31]

G. Plechinger, A. Castellanos-Gomez, M. Buscema, H.S.J. van der Zant, G.A. Steele, A. Kuc, T. Heine, C. Schüller, T. Korn, Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate, 2D Mater. 2 (2015), https://doi.org/10.1088/2053-1583/2/1/015006, 015006.

[32]

D. Lloyd, X. Liu, J.W. Christopher, L. Cantley, A. Wadehra, B.L. Kim, B.B. Goldberg, A.K. Swan, J.S. Bunch, Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS 2, Nano Lett. 16 (2016) 5836–5841, https://doi.org/10.1021/acs.nanolett.6b02615.

[33]

X. He, H. Li, Z. Zhu, Z. Dai, Y. Yang, P. Yang, Q. Zhang, P. Li, U. Schwingenschlogl, X. Zhang, Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure, Appl. Phys. Lett. 109 (2016) 173105.

[34]

C.V. Nguyen, N.N. Hieu, Effect of biaxial strain and external electric field on electronic properties of MoS2 monolayer: a first-principle study, Chem. Phys. 468 (2016) 9–14, https://doi.org/10.1016/j.chemphys.2016.01.009.

[35]

J.O. Island, A. Kuc, E.H. Diependaal, R. Bratschitsch, H.S.J. Van Der Zant, T. Heine, A. Castellanos-Gomez, Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain, Nanoscale 8 (2016), https://doi.org/10.1039/c5nr08219f.

[36]

R. Frisenda, M. Drüppel, R. Schmidt, S. Michaelis de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, A. Castellanos-Gomez, Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides, npj 2D Mater. Appl. 1 (2017) 10, https://doi.org/10.1038/s41699-017-0013-7.

[37]

I. Niehues, A. Blob, T. Stiehm, R. Schmidt, V. Jadriško, B. Radatović, D. Čapeta, M. Kralj, S.M. de Vasconcellos, R. Bratschitsch, Strain transfer across grain boundaries in MoS2 monolayers grown by chemical vapor deposition, 2D Mater. 5 (2018) 31003.

[38]

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, et al., Strain control of excitonphonon coupling in atomically thin semiconductors, Nano Lett. 18 (2018), https://doi.org/10.1021/acs.nanolett.7b04868.

[39]

I. Niehues, A. Blob, T. Stiehm, S.M. de Vasconcellos, Interlayer excitons in bilayer MoS2 under uniaxial tensile strain, Nanoscale 11 (27) (2019) 12788–12792.

[40]

J.W. Christopher, M. Vutukuru, D. Lloyd, J.S. Bunch, B.B. Goldberg, D.J. Bishop, A.K. Swan, Monolayer MoS 2 strained to 1.3% with a microelectromechanical system, J. Microelectromechanical Syst. 28 (2019) 254–263.

[41]

L. Mennel, M. Paur, T. Mueller, Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2, APL Photonics 4 (2019) 34404.

[42]

P. Gant, P. Huang, D. Pérez de Lara, D. Guo, R. Frisenda, A. Castellanos-Gomez, A strain tunable single-layer MoS2 photodetector, Mater. Today 27 (2019) 8–13, https://doi.org/10.1016/j.mattod.2019.04.019.

[43]

F. Carrascoso, D. -Y. Lin, R. Frisenda, A. Castellanos-Gomez, Biaxial strain tuning of interlayer excitons in bilayer MoS 2, J. Phys. Mater. 3 (2019), https://doi.org/10.1088/2515-7639/ab4432, 015003.

[44]

K. Zollner, P.E.F. Junior, J. Fabian, Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides, Phys. Rev. B 100 (2019) 195126, https://doi.org/10.1103/PhysRevB.100.195126.

[45]

Z. Li, Y. Lv, L. Ren, J. Li, L. Kong, Y. Zeng, Q. Tao, R. Wu, H. Ma, B. Zhao, Efficient strain modulation of 2D materials via polymer encapsulation, Nat. Commun. 11 (2020) 1–8.

[46]

A.P. John, A. Thenapparambil, M. Thalakulam, Strain-engineering the Schottky barrier and electrical transport on MoS 2, Nanotechnology 31 (2020) 275703.

[47]

F. Carrascoso, H. Li, R. Frisenda, A. Castellanos-Gomez, Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2, Nano Res (2020), https://doi.org/10.1007/s12274-020-2918-2.

[48]

Y. Guo, B. Li, Y. Huang, S. Du, C. Sun, H. Luo, B. Liu, X. Zhou, J. Yang, J. Li, et al., Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles, Nano Res 13 (2020) 2072–2078, https://doi.org/10.1007/s12274-020-2809-6.

[49]

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, F. Guinea, Strain engineering in semiconducting two-dimensional crystals, J. Phys. Condens. Matter 27 (2015) 313201, https://doi.org/10.1088/0953-8984/27/31/313201.

[50]

A. Castellanos-gomez, R. Rolda, E. Cappelluti, M. Buscema, F. Guinea, H.S. Zant, J. Van Der, G.A. Steele, Local strain engineering in atomically thin MoS2, Nano Lett. 13 (2013) 5361–5366, https://doi.org/10.1021/nl402875m.

[51]

Y.K. Ryu, F. Carrascoso, R. López-Nebreda, N. Agraït, R. Frisenda, A. Castellanos-Gomez, Microheater actuators as a versatile platform for strain engineering in 2D materials, Nano Lett. 20 (2020) 5339–5345, https://doi.org/10.1021/acs.nanolett.0c01706.

[52]

A.V. Tyurnina, D.A. Bandurin, E. Khestanova, V.G. Kravets, M. Koperski, F. Guinea, A.N. Grigorenko, A.K. Geim, I.V. Grigorieva, Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength, ACS Photonics 6 (2019) 516–524, https://doi.org/10.1021/acsphotonics.8b01497.

[53]

D. Tedeschi, E. Blundo, M. Felici, G. Pettinari, B. Liu, T. Yildrim, E. Petroni, C. Zhang, Y. Zhu, S. Sennato, et al., Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides, Adv. Mater. 31 (2019) 1903795, https://doi.org/10.1002/adma.201903795.

[54]

B. Liu, Q. Liao, X. Zhang, J. Du, Y. Ou, J. Xiao, Z. Kang, Z. Zhang, Y. Zhang, Strainengineered van der Waals interfaces of mixed-dimensional heterostructure arrays, ACS Nano 13 (2019) 9057–9066, https://doi.org/10.1021/acsnano.9b03239.

[55]

J. Chaste, A. Missaoui, S. Huang, H. Henck, Z. Ben Aziza, L. Ferlazzo, C. Naylor, A. Balan, A.T.C. Johnson, R. Braive, et al., Intrinsic properties of suspended MoS2 on SiO2/Si pillar arrays for nanomechanics and Optics, ACS Nano 12 (2018) 3235–3242, https://doi.org/10.1021/acsnano.7b07689.

[56]

E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, A. Polimeni, Evidence of the direct-to-indirect band gap transition in strained two-dimensional WS 2, MoS 2, and WSe 2, Phys. Rev. Res. 2 (2020), https://doi.org/10.1103/physrevresearch.2.012024, 012024.

[57]

R. Yang, J. Lee, S. Ghosh, H. Tang, R.M. Sankaran, C.A. Zorman, P.X.L. Feng, Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture, Nano Lett. 17 (2017) 4568–4575, https://doi.org/10.1021/acs.nanolett.7b00730.

[58]

H. Luo, X. Li, Y. Zhao, R. Yang, Y. Hao, Y. Gao, N.N. Shi, Y. Guo, G. Liu, L. Zhao, et al., Simultaneous generation of direct- and indirect-gap photoluminescence in multilayer MoS2 bubbles, Phys. Rev. Mater. 4 (2020), https://doi.org/10.1103/PhysRevMaterials.4.074006.

[59]
T. Peña, S.A. Chowdhury, A. Azizimanesh, A. Sewaket, H. Askari, S.M. Wu, Strain Engineering 2D MoS$_{2}$ with Thin Film Stress Capping Layers, 2020.
[60]

H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, X. Wang, J.M. Weisse, C.H. Lee, J. Zhao, P.M. Ajayan, et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide, Nat. Commun. 6 (2015) 7381, https://doi.org/10.1038/ncomms8381.

[61]

C. Androulidakis, E.N. Koukaras, J. Parthenios, G. Kalosakas, K. Papagelis, C. Galiotis, Graphene flakes under controlled biaxial deformation, Sci. Rep. 5 (2015) 1–11, https://doi.org/10.1038/srep18219.

[62]

Q. Zhao, R. Frisenda, T. Wang, A. Castellanos-Gomez, InSe: a two-dimensional semiconductor with superior flexibility, Nanoscale 11 (2019) 9845–9850, https://doi.org/10.1039/C9NR02172H.

[63]

N.S. Taghavi, P. Gant, P. Huang, I. Niehues, R. Schmidt, S. Michaelis de Vasconcellos, R. Bratschitsch, M. García-Hernández, R. Frisenda, A. CastellanosGomez, Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials, Nano Res 12 (2019) 1691–1695, https://doi.org/10.1007/s12274-019-2424-6.

[64]

C. Backes, A.M. Abdelkader, C. Alonso, A. Andrieux-Ledier, R. Arenal, J. Azpeitia, N. Balakrishnan, L. Banszerus, J. Barjon, R. Bartali, Production and processing of graphene and related materials, 2D Mater. 7 (2020) 22001.

[65]

Y. Niu, S. Gonzalez-Abad, R. Frisenda, P. Marauhn, M. Drüppel, P. Gant, R. Schmidt, N. Taghavi, D. Barcons, A. Molina-Mendoza, et al., Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2, Nanomaterials 8 (2018) 725, https://doi.org/10.3390/nano8090725.

[66]

R. Frisenda, Y. Niu, P. Gant, A.J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. Liu, L. Fu, D. Dumcenco, A. Kis, et al., Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials, J. Phys. D Appl. Phys. 50 (2017), https://doi.org/10.1088/1361-6463/aa5256, 074002.

[67]

A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S.J. van der Zant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater. 1 (2014), https://doi.org/10.1088/2053-1583/1/1/011002, 011002.

[68]

R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Pérez De Lara, P. Jarillo-Herrero, R.V. Gorbachev, A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials, Chem. Soc. Rev. 47 (2018) 53–68, https://doi.org/10.1039/C7CS00556C.

[69]

Q. Zhao, T. Wang, Y.K.Y.K. Ryu, R. Frisenda, A. Castellanos-Gomez, An inexpensive system for the deterministic transfer of 2D materials, J. Phys. Mater. 3 (2020), https://doi.org/10.1088/2515-7639/ab6a72, 016001.

[70]

K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new directgap semiconductor, Phys. Rev. Lett. 105 (2010) 136805, https://doi.org/10.1103/PhysRevLett.105.136805.

[71]

A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, T.F. Heinz, Exciton binding energy and nonhydrogenic rydberg series in monolayer WS 2, Phys. Rev. Lett. 113 (2014), https://doi.org/10.1103/PhysRevLett.113.076802, 076802.

[72]

A. Castellanos-Gomez, J. Quereda, H.P. van der Meulen, N. Agraït, G. RubioBollinger, Spatially resolved optical absorption spectroscopy of single- and fewlayer MoS 2 by hyperspectral imaging, Nanotechnology 27 (2016) 115705, https://doi.org/10.1088/0957-4484/27/11/115705.

[73]

A. Michail, D. Anestopoulos, N. Delikoukos, J.N. Parthenios, S. Grammatikopoulos, S. Tsirkas, N.N. Lathiotakis, O. Frank, K. Filintoglou, K. Papagelis, Biaxial strain engineering of CVD and exfoliated single- and bi-layer MoS 2 crystals, 2D Mater. (2020), https://doi.org/10.1088/2053-1583/abc2de.

Nano Materials Science
Pages 44-51
Cite this article:
Carrascoso F, Frisenda R, Castellanos-Gomez A. Biaxial versus uniaxial strain tuning of single-layer MoS2. Nano Materials Science, 2022, 4(1): 44-51. https://doi.org/10.1016/j.nanoms.2021.03.001
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return