AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Quantitative kinetic analysis on oxygen reduction reaction: A perspective

Juan Wanga,bChang-Xin ZhaocJia-Ning LiucDing RencBo-Quan Lia,b( )Jia-Qi Huanga,b( )Qiang Zhangc ( )
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
Show Author Information

Abstract

Oxygen reduction reaction (ORR) constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells. However, the kinetics of ORR is very sluggish and thus high-performance ORR electrocatalysts are highly regarded. Despite recent progress on minimizing the ORR half-wave potential as the current evaluation indicator, in-depth quantitative kinetic analysis on overall ORR electrocatalytic performance remains insufficiently emphasized. In this paper, a quantitative kinetic analysis method is proposed to afford decoupled kinetic information from linear sweep voltammetry profiles on the basis of the Koutecky–Levich equation. Independent parameters regarding exchange current density, electron transfer number, and electrochemical active surface area can be respectively determined following the proposed method. This quantitative kinetic analysis method is expected to promote understanding of the electrocatalytic effect and point out further optimization direction for ORR electrocatalysis.

References

[1]

Y. Li, J. Lu, Metal–air batteries: will they Be the future electrochemical energy storage device of choice? ACS Energy Lett 2 (2017) 1370–1377.

[2]

R. Yadav, A. Subhash, N. Chemmenchery, B. Kandasubramanian, Graphene and graphene oxide for fuel cell technology, Ind. Eng. Chem. Res. 57 (2018) 9333–9350.

[3]

J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler, Z. Chen, Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives, Adv. Mater. 29 (2017) 1604685.

[4]

S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nat. Mater. 16 (2016) 16–22.

[5]

Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design, Science 355 (2017), eaad4998.

[6]
XiangZ.P.TanA.D.FuZ.Y.PiaoJ.H.LiangZ.X.Oxygen reduction reaction on single Pt nanoparticleJ. Energy Chem.202049323326

Z.P. Xiang, A.D. Tan, Z.Y. Fu, J.H. Piao, Z.X. Liang, Oxygen reduction reaction on single Pt nanoparticle, J. Energy Chem. 49 (2020) 323–326.

10.1016/j.jechem.2020.02.051
[7]
LiD.H.JiaY.ChangG.J.ChenJ.LiuH.W.WangJ.C.HuY.F.XiaY.Z.YangD.J.YaoX.D.A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyteChem2018423452356

D.H. Li, Y. Jia, G.J. Chang, J. Chen, H.W. Liu, J.C. Wang, Y.F. Hu, Y.Z. Xia, D.J. Yang, X.D. Yao, A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte, Chem 4 (2018) 2345–2356.

10.1016/j.chempr.2018.07.005
[8]

X.M. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z.L. Liu, Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts, ACS Catal. 5 (2015) 4643–4667.

[9]

Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond, Chem. Rev. 117 (2017) 10121–10211.

[10]

W. Zhang, W. Lai, R. Cao, Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems, Chem. Rev. 117 (2017) 3717–3797.

[11]

Y.P. Lin, H. Wu, J. Robert Selman, Perturbation analysis of catalytic current at a rotating disk electrode, Ind. Eng. Chem. Res. 29 (1990) 1189–1194.

[12]
MarkovicN.M.GasteigerH.A.RossP.N.Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring DiskPt(htl) studiesJ. Phys. Chem. C199510067156721

N.M. Markovic, H.A. Gasteiger, P.N. Ross, Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring DiskPt(htl) studies, J. Phys. Chem. C 100 (1995) 6715–6721.

10.1021/jp9533382
[13]
ChlistunoffJ.RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable Tafel slopesJ. Phys. Chem. C20111156496650710.1021/jp108350t

J. Chlistunoff, RRDE and voltammetric study of ORR on pyrolyzed Fe/polyaniline catalyst. On the origins of variable Tafel slopes, J. Phys. Chem. C 115 (2011) 6496–6507.

[14]
JaouenF.DodeletJ.-P.O2 reduction mechanism on non-noble metal catalysts for PEM fuel cells. Part I: experimental rates of O2 electroreduction, H2O2 electroreduction, and H2O2 disproportionationJ. Phys. Chem. C2009113154221543210.1021/jp900837e

F. Jaouen, J.-P. Dodelet, O2 reduction mechanism on non-noble metal catalysts for PEM fuel cells. Part I: experimental rates of O2 electroreduction, H2O2 electroreduction, and H2O2 disproportionation, J. Phys. Chem. C 113 (2009) 15422–15432.

[15]

Z. Jiang, W. Sun, H. Shang, W. Chen, T. Sun, H. Li, J. Dong, J. Zhou, Z. Li, Y. Wang, R. Cao, R. Sarangi, Z. Yang, D. Wang, J. Zhang, Y. Li, Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions, Energy Environ. Sci. 12 (2019) 3508–3514.

[16]

Z. Sun, Y. Wang, L. Zhang, H. Wu, Y. Jin, Y. Li, Y. Shi, T. Zhu, H. Mao, J. Liu, C. Xiao, S. Ding, Simultaneously realizing rapid electron transfer and mass transport in jellyfish-like mott–Schottky nanoreactors for oxygen reduction reaction, Adv. Funct. Mater. 30 (2020) 1910482.

[17]

C. Tang, H.F. Wang, Q. Zhang, Multiscale principles to boost reactivity in gas-involving energy electrocatalysis, Acc. Chem. Res. 51 (2018) 881–889.

[18]

Y.M. Chen, H. Wang, S. Ji, R.F. Wang, Tailoring the porous structure of N-doped carbon for increased oxygen reduction reaction activity, Catal. Commun. 107 (2018) 29–32.

[19]

C.H. Lin, R.G. Compton, Understanding mass transport influenced electrocatalysis at the nanoscale via numerical simulation, Curr. Opin. Electrochem. 14 (2019) 186–199.

[20]
NørskovJ.K.BligaardT.LogadottirA.KitchinJ.R.ChenJ.G.PandelovS.StimmingU.Trends in the exchange current for hydrogen evolutionJ. Electrochem. Soc.2005152J2310.1149/1.1856988

J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152 (2005) J23.

[21]
SaravanakumarR.PirabaharanP.AbukhaledM.RajendranL.Theoretical analysis of voltammetry at a rotating disk electrode in the absence of supporting electrolyteJ. Phys. Chem. B202012444345010.1021/acs.jpcb.9b07191

R. Saravanakumar, P. Pirabaharan, M. Abukhaled, L. Rajendran, Theoretical analysis of voltammetry at a rotating disk electrode in the absence of supporting electrolyte, J. Phys. Chem. B 124 (2020) 443–450.

[22]

J. Biemolt, G. Rothenberg, N. Yan, Understanding the roles of amorphous domains and oxygen-containing groups of nitrogen-doped carbon in oxygen reduction catalysis: toward superior activity, Inorg.Chem. Front. 7 (2020) 177–185.

[23]

G. Wang, E. Johannessen, C.R. Kleijn, S.W. de Leeuw, M.-O. Coppens, Optimizing transport in nanostructured catalysts: a computational study, Chem. Eng. Sci. 62 (2007) 5110–5116.

[24]
ScholzJ.RischM.StoerzingerK.A.WartnerG.Shao-HornY.JoossC.Rotating ring–disk electrode study of oxygen evolution at a perovskite surface: correlating activity to manganese concentrationJ. Phys. Chem. C2016120277462775610.1021/acs.jpcc.6b07654

J. Scholz, M. Risch, K.A. Stoerzinger, G. Wartner, Y. Shao-Horn, C. Jooss, Rotating ring–disk electrode study of oxygen evolution at a perovskite surface: correlating activity to manganese concentration, J. Phys. Chem. C 120 (2016) 27746–27756.

[25]

K. Sengupta, S. Chatterjee, A. Dey, In situ mechanistic investigation of O2 reduction by iron porphyrin electrocatalysts using surface-enhanced resonance Raman spectroscopy coupled to rotating disk electrode (SERRS-RDE) setup, ACS Catal. 6 (2016) 6838–6852.

[26]

A. Kulkarni, S. Siahrostami, A. Patel, J.K. Norskov, Understanding catalytic activity trends in the oxygen reduction reaction, Chem. Rev. 118 (2018) 2302–2312.

[27]

L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang, C. He, Z.Y. Wu, L.J. Zhang, J. Wu, W. Yang, L. Gu, J.S. Hu, L.J. Wan, Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts, Nat. Commun. 10 (2019) 1278.

[28]

S.C. Xu, Y. Kim, D. Higgins, M. Yusuf, T.F. Jaramillo, F.B. Prinz, Building upon the Koutecky–levich equation for evaluation of next-generation oxygen reduction reaction catalysts, Electrochim. Acta 255 (2017) 99–108.

[29]

A. Zana, G.K.H. Wiberg, Y.J. Deng, T. Ostergaard, J. Rossmeisl, M. Arenz, Accessing the inaccessible: analyzing the oxygen reduction reaction in the diffusion limit, ACS Appl. Mater. Interfaces 9 (2017) 38176–38180.

[30]

M.H. Seo, S.M. Choi, H.J. Kim, W.B. Kim, The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition, Electrochem. Commun. 13 (2011) 182–185.

[31]

D. Voiry, M. Chhowalla, Y. Gogotsi, N.A. Kotov, Y. Li, R.M. Penner, R.E. Schaak, P.S. Weiss, Best practices for reporting electrocatalytic performance of nanomaterials, ACS Nano 12 (2018) 9635–9638.

[32]

R.F. Zhou, Y. Zheng, M. Jaroniec, S.Z. Qiao, Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment, ACS Catal. 6 (2016) 4720–4728.

[33]

L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou, H. Xu, S.Z. Qiao, Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon, Adv. Energy Mater. 10 (2020) 2000789.

[34]

C. Tang, Y. Jiao, B. Shi, J.N. Liu, Z. Xie, X. Chen, Q. Zhang, S.Z. Qiao, Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts, Angew. Chem. Int. Ed. 59 (2020) 9171–9176.

[35]

S. Sinha, M. Ghosh, J.J. Warren, Changing the selectivity of O2 reduction catalysis with one ligand heteroatom, ACS Catal. 9 (2019) 2685–2691.

[36]

J. Shin, J. Guo, T. Zhao, Z. Guo, Functionalized carbon dots on graphene as outstanding non-metal bifunctional oxygen electrocatalyst, Small 15 (2019) 1900296.

[37]

C. Wei, S. Sun, D. Mandler, X. Wang, S.Z. Qiao, Z.J. Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev. 48 (2019) 2518–2534.

[38]

W. Zheng, M. Liu, L.Y.S. Lee, Best practices in using foam-type electrodes for electrocatalytic performance benchmark, ACS Energy Lett. 5 (2020) 3260–3264.

[39]

S.S. Shinde, C.H. Lee, A. Sami, D.H. Kim, S.U. Lee, J.H. Lee, Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries, ACS Nano 11 (2017) 347–357.

[40]

Y.Y. Zhang, H.H. Sun, Y.F. Qiu, X.Y. Ji, T.G. Ma, F. Gao, Z. Ma, B.X. Zhang, P.G. Hu, Multiwall carbon nanotube encapsulated Co grown on vertically oriented graphene modified carbon cloth as bifunctional electrocatalysts for solid-state Zn–air battery, Carbon 144 (2019) 370–381.

[41]

B.Q. Li, C.X. Zhao, S. Chen, J.N. Liu, X. Chen, L. Song, Q. Zhang, Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn–air batteries, Adv. Mater. 31 (2019) 1900592.

[42]

N. Huang, L. Yang, M.Y. Zhang, S.F. Yan, Y.Y. Ding, P.P. Sun, X.H. Sun, Cobaltembedded N-doped carbon arrays derived in situ as trifunctional catalyst toward hydrogen and oxygen evolution, and oxygen reduction, ChemElectroChem 6 (2019) 4522–4532.

[43]

J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance, Angew. Chem. Int. Ed. 51 (2012) 11496–11500.

[44]
MunY.LeeS.KimK.KimS.LeeS.HanJ.W.LeeJ.Versatile strategy for tuning ORR activity of a single Fe–N4 site by controlling electron-withdrawing/donating properties of a carbon planeJ. Am. Chem. Soc.20191416254626210.1021/jacs.8b13543

Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J.W. Han, J. Lee, Versatile strategy for tuning ORR activity of a single Fe–N4 site by controlling electron-withdrawing/donating properties of a carbon plane, J. Am. Chem. Soc. 141 (2019) 6254–6262.

[45]

Y.C. Wang, Y.J. Lai, L. Song, Z.Y. Zhou, J.G. Liu, Q. Wang, X.D. Yang, C. Chen, W. Shi, Y.P. Zheng, M. Rauf, S.G. Sun, S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density, Angew. Chem. Int. Ed. 54 (2015) 9907–9910.

[46]
YuanK.Lutzenkirchen-HechtD.LiL.ShuaiL.LiY.CaoR.QiuM.ZhuangX.LeungM.K.H.ChenY.ScherfU.Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordinationJ. Am. Chem. Soc.20201422404241210.1021/jacs.9b11852

K. Yuan, D. Lutzenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M.K.H. Leung, Y. Chen, U. Scherf, Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination, J. Am. Chem. Soc. 142 (2020) 2404–2412.

[47]

J. Zhang, X. Wu, W.C. Cheong, W. Chen, R. Lin, J. Li, L. Zheng, W. Yan, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li, Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes, Nat. Commun. 9 (2018) 1002.

[48]

X.X. Chen, X.J. Zhen, H.Y. Gong, L. Li, J.W. Xiao, Z. Xu, D.Y. Yan, G.Y. Xiao, R.Z. Yang, Cobalt and nitrogen codoped porous carbon as superior bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reaction in alkaline medium, Chin. Chem. Lett. 30 (2019) 681–685.

[49]
ZhangH.HwangS.WangM.FengZ.KarakalosS.LuoL.QiaoZ.XieX.WangC.SuD.ShaoY.WuG.Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activationJ. Am. Chem. Soc.2017139141431414910.1021/jacs.7b06514

H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation, J. Am. Chem. Soc. 139 (2017) 14143–14149.

[50]

X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M.H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K.L. More, J.S. Spendelow, G. Wu, Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells, Adv. Mater. 30 (2018) 1706758.

Nano Materials Science
Pages 313-318
Cite this article:
Wang J, Zhao C-X, Liu J-N, et al. Quantitative kinetic analysis on oxygen reduction reaction: A perspective. Nano Materials Science, 2021, 3(3): 313-318. https://doi.org/10.1016/j.nanoms.2021.03.006

473

Views

15

Downloads

84

Crossref

78

Web of Science

84

Scopus

5

CSCD

Altmetrics

Revised: 06 February 2021
Accepted: 09 March 2021
Published: 28 April 2021
© 2021 Chongqing University.
Return