PDF (2.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

High-performance Fe–N–C electrocatalysts with a "chain mail" protective shield

Zixun YuChang LiuJunsheng ChenZiwen YuanYuan Chen()Li Wei()
School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia
Show Author Information

Abstract

Nitrogen-coordinated iron atoms on carbon supports (Fe–N–C) are among the most promising noble-metal-free electrocatalysts for oxygen reduction reaction (ORR). However, their unsatisfactory stability limits their practical application. Herein, we demonstrate a dual-shell Fe–N–C electrocatalyst with excellent catalytic activity and long-term stability. Pyrrole and dopamine are sequentially polymerized on a fumed silica nanoparticle template. Metal precursor (FeCl3) and pore formation agent (ZnCl2) were loaded on the inner polypyrrole shell. During carbonization, the Zn evaporation creates abundant mesopores in the polydopamine-derived outer carbon shell, forming a "chain mail" like outer shell that protects Fe–N–C active sites loaded on the inner carbon shell and enables efficient mass transfer. Systematical tuning of the shield thickness and porosity affords the optimal electrocatalyst with a large surface area of 934 ​m2 ​g−1 and a high Fe loading of 2.04 ​wt%. This electrocatalyst delivers excellent ORR activity and superior stability in both acidic and alkaline electrolytes. Primary Zn-air batteries fabricated from this electrocatalyst delivers a high-power density of 257 ​mW ​cm−2 and impressive durability of continuous discharging over 250 ​h. Creating a graphitic and porous carbon protective shell can be further extended to other electrocatalysts to enable their practical applications in energy conversion and storage.

References

[1]

Y. Li, H. Dai, Chem. Soc. Rev. 43 (2014) 5257-5275.

[2]

Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nature Energy 3 (2018) 279-289.

[3]

X. Chen, Z. Zhou, H.E. Karahan, Q. Shao, L. Wei, Y. Chen, Small 14 (2018) 1801929.

[4]

X.X. Wang, M.T. Swihart, G. Wu, Nature Catalysis 2 (2019) 578-589.

[5]

J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892.

[6]

Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44 (2015) 2060-2086.

[7]

Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 4 (2011) 3167-3192.

[8]

J. Zhang, Z. Xia, L. Dai, Science advances 1 (2015), e1500564.

[9]

L. Wei, H.E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, Y. Chen, Adv. Mater. 29 (2017) 1701410.

[10]

H.F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28 (2018) 1803329.

[11]

F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J. -P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Energy Environ. Sci. 4 (2011) 114-130.

[12]

C. Tang, Q. Zhang, J. Mater. Chem. 4 (2016) 4998-5001.

[13]

X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang, Y. Wu, Y. Li, Inside Chem. 5 (2019) 1486-1511.

[14]

R. Chen, H. Li, D. Chu, G. Wang, J. Phys. Chem. C 113 (2009) 20689-20697.

[15]

G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang, H. -L. Wang, L. Dai, Nanomater. Energy 29 (2016) 83-110.

[16]

K. Liu, G. Wu, G. Wang, J. Phys. Chem. C 121 (2017) 11319-11324.

[17]

Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J.W. Han, J. Lee, J. Am. Chem. Soc. 141 (2019) 6254-6262.

[18]

C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chem. Soc. Rev. 45 (2016) 517-531.

[19]

X. Huang, T. Shen, T. Zhang, H. Qiu, X. Gu, Z. Ali, Y. Hou, Adv. Energy Mater. 10 (2020) 1900375.

[20]

Q. Wu, L. Yang, X. Wang, Z. Hu, Adv. Mater. 32 (2019) 1904177.

[21]

H. Tian, J. Liang, J. Liu, Adv. Mater. (2019) 1903886.

[22]

J. Wang, J. Wan, N. Yang, Q. Li, D. Wang, Nature Reviews Chemistry (2020) 1-10.

[23]

G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332 (2011) 443-447.

[24]

H. Wang, Y. Shao, S. Mei, Y. Lu, M. Zhang, J. -k. Sun, K. Matyjaszewski, M. Antonietti, J. Yuan, Chem. Rev. 120 (2020) 9363-9419.

[25]

R. Wu, S. Chen, Y. Zhang, Y. Wang, Y. Nie, W. Ding, X. Qi, Z. Wei, J. Mater. Chem. 4 (2016) 2433-2437.

[26]

G.A. Ferrero, K. Preuss, A. Marinovic, A.B. Jorge, N. Mansor, D.J. Brett, A.B. Fuertes, M. Sevilla, M. -M. Titirici, ACS Nano 10 (2016) 5922-5932.

[27]

H. Tan, Y. Li, J. Kim, T. Takei, Z. Wang, X. Xu, J. Wang, Y. Bando, Y.M. Kang, J. Tang, Y. Yamauchi, Advanced Science 5 (2018) 1800120.

[28]

J. Li, S. Chen, W. Li, R. Wu, S. Ibraheem, J. Li, W. Ding, L. Li, Z. Wei, J. Mater. Chem. 6 (2018) 15504-15509.

[29]

N.D. Leonard, S. Wagner, F. Luo, J. Steinberg, W. Ju, N. Weidler, H. Wang, U.I. Kramm, P. Strasser, ACS Catal. 8 (2018) 1640-1647.

[30]

L. Qu, Y. Liu, J. -B. Baek, L. Dai, ACS Nano 4 (2010) 1321-1326.

[31]

H. -W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 5 (2014) 1-7.

[32]

R. Wu, J. Wang, K. Chen, S. Chen, J. Li, Q. Wang, Y. Nie, Y. Song, H. Chen, Z. Wei, Electrochim. Acta 244 (2017) 47-53.

[33]

B. -C. Hu, Z. -Y. Wu, S. -Q. Chu, H. -W. Zhu, H. -W. Liang, J. Zhang, S. -H. Yu, Energy Environ. Sci. 11 (2018) 2208-2215.

[34]

M. Liu, J. Liu, Z. Li, Y. Song, F. Wang, J. Catal. 370 (2019) 21-29.

[35]

S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee, M.J. Kim, B.S. Mun, S.G. Kwon, Y. - E. Sung, T. Hyeon, J. Am. Chem. Soc. 141 (2019) 2035-2045.

[36]

X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nature Catalysis 2 (2019) 259-268.

[37]

U. Martinez, S. Komini Babu, E.F. Holby, H.T. Chung, X. Yin, P. Zelenay, Adv. Mater. (2019) 1806545.

[38]

Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei, L. Wei, J. Chen, C. Wang, R. Qi, Z. Liu, Y. Chen, Angew. Chem. Int. Ed. 59 (2020) 4793-4799.

[39]

R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, J. Am. Chem. Soc. 140 (2018) 11594-11598.

[40]

L. Jiao, G. Wan, R. Zhang, H. Zhou, S. -H. Yu, H. -L. Jiang, Angew. Chem. Int. Ed. 57 (2018) 8525-8529.

[41]

J. Li, H. Zhang, W. Samarakoon, W. Shan, D.A. Cullen, S. Karakalos, M. Chen, D. Gu, K.L. More, G. Wang, Z. Feng, Z. Wang, G. Wu, Angew. Chem. Int. Ed. 58 (2019) 18971-18980.

[42]

H. -F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 49 (2020) 1414-1448.

[43]

M. Yuasa, A. Yamaguchi, H. Itsuki, K. Tanaka, M. Yamamoto, K. Oyaizu, Chem. Mater. 17 (2005) 4278-4281.

[44]

Z. Shi, H. Liu, K. Lee, E. Dy, J. Chlistunoff, M. Blair, P. Zelenay, J. Zhang, Z. -S. Liu, J. Phys. Chem. C 115 (2011) 16672-16680.

[45]

M.J. LaVoie, B.L. Ostaszewski, A. Weihofen, M.G. Schlossmacher, D.J. Selkoe, Nat. Med. 11 (2005) 1214-1221.

[46]

K. Qu, Y. Zheng, X. Zhang, K. Davey, S. Dai, S.Z. Qiao, ACS Nano 11 (2017) 7293-7300.

[47]

F. Jaouen, M. Lefèvre, J. -P. Dodelet, M. Cai, J. Phys. Chem. B 110 (2006) 5553-5558.

[48]

J. Pels, F. Kapteijn, J. Moulijn, Q. Zhu, K. Thomas, Carbon 33 (1995) 1641-1653.

[49]

H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, J. Am. Chem. Soc. 139 (2017) 14143-14149.

[50]

L. Jiao, R. Zhang, G. Wan, W. Yang, X. Wan, H. Zhou, J. Shui, S. -H. Yu, H. -L. Jiang, Nat. Commun. 11 (2020) 1-7.

[51]

W. -J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. -J. Zhang, J. -Q. Wang, J. -S. Hu, Z. Wei, L. -J. Wan, J. Am. Chem. Soc. 138 (2016) 3570-3578.

[52]

L. Bulusheva, A. Okotrub, I. Kinloch, I. Asanov, A. Kurenya, A. Kudashov, X. Chen, H. Song, Physica Status Solidi B Basic Solid State Physics 245 (2008) 1971-1974.

[53]

T. Sharifi, F. Nitze, H.R. Barzegar, C. -W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, T. Wågberg, Carbon 50 (2012) 3535-3541.

[54]

J. Kong, W.A. Yee, L. Yang, Y. Wei, S.L. Phua, H.G. Ong, J.M. Ang, X. Li, X. Lu, Chem. Commun. 48 (2012) 10316-10318.

[55]

Y. Liu, K. Ai, L. Lu, Chem. Rev. 114 (2014) 5057-5115.

[56]

K. Qu, Y. Wang, A. Vasileff, Y. Jiao, H. Chen, Y. Zheng, J. Mater. Chem. 6 (2018) 21827-21846.

[57]

D.Y. Chung, S.W. Jun, G. Yoon, S.G. Kwon, D.Y. Shin, P. Seo, J.M. Yoo, H. Shin, Y. - H. Chung, H. Kim, B.S. Mun, K. -S. Lee, N. -S. Lee, S.J. Yoo, D. -H. Lim, K. Kang, Y. - E. Sung, T. Hyeon, J. Am. Chem. Soc. 137 (2015) 15478-15485.

[58]

D.Y. Chung, S.W. Jun, G. Yoon, H. Kim, J.M. Yoo, K. -S. Lee, T. Kim, H. Shin, A.K. Sinha, S.G. Kwon, K. Kang, T. Hyeon, Y. -E. Sung, J. Am. Chem. Soc. 139 (2017) 6669-6674.

Nano Materials Science
Pages 420-428
Cite this article:
Yu Z, Liu C, Chen J, et al. High-performance Fe–N–C electrocatalysts with a "chain mail" protective shield. Nano Materials Science, 2021, 3(4): 420-428. https://doi.org/10.1016/j.nanoms.2021.05.008
Metrics & Citations  
Article History
Copyright
Return