AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review

Xu TianaXiuxiu CuiaTingrun LaiaJie RenaZhichao YangaMingjing XiaoaBingsen WangaXuechun Xiaob( )Yude Wangc( )
School of Materials and Energy, Yunnan University, 650091, Kunming, PR China
National Center for International Research on Photoelectric and Energy Materials, Yunnan University, 650091, Kunming, PR China
Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091, Kunming, PR China
Show Author Information

Abstract

Hazardous gases have been strongly associated with being a detriment to human life within the environment. The development of a reliable gas sensor with high response and selectivity is of great significance for detecting different hazardous gases. TiO2 nanomaterials are promising candidates with great potential and excellent performance in gas sensor applications, such as hydrogen, acetone, ammonia, and ethanol detection. This review begins with a detailed discussion of the different dimensional morphologies of TiO2, which affect the gas sensing performance of TiO2 sensors. The diverse morphologies of TiO2 can easily be tuned by regulating the manufacturing conditions. Meanwhile, they exhibit unique characteristics for detecting gases, including large specific surface area, superior electron transport rates, extraordinary permeability, and active reaction sites, which offer new opportunities to improve the gas sensing properties. In addition, a variety of efforts have been made to functional TiO2 nanomaterials to further enhance sensing properties, including TiO2-based composites and light-assisted gas sensors. The enhanced gas sensing mechanisms of multi-component composite nanomaterials based on TiO2 include loaded noble metals, doped elements, constructed heterojunctions, and compounded with other functional materials. Finally, several studies have been summarized to demonstrate the comparative sensing properties of TiO2-based gas sensors.

References

[1]
Zhang Y. Preparation of silver-loaded titanium dioxide hedgehog-like architecture composed of hundreds of nanorods and its fast response to xyleneJ. Colloid Interface Sci.201853621522310.1016/j.jcis.2018.10.035

Y. Zhang, et al., Preparation of silver-loaded titanium dioxide hedgehog-like architecture composed of hundreds of nanorods and its fast response to xylene, J. Colloid Interface Sci. 536 (2018) 215–223.

[2]
Deng S.J. A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation methodSensor. Actuator. B Chem.2016233615623

S.J. Deng, et al., A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation method, Sensor. Actuator. B Chem. 233 (2016) 615–623.

10.1016/j.snb.2016.04.138
[3]
Zhao R.J. Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gasJ. Phys. Chem. Solid.20181124349

R.J. Zhao, et al., Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas, J. Phys. Chem. Solid. 112 (2018) 43–49.

10.1016/j.jpcs.2017.08.039
[4]

P.R. Chung, et al., Formaldehyde gas sensors: a Review, Sensors 13 (2013) 4468–4484.

[5]

J. Fonollosa, et al., Human activity monitoring using gas sensor arrays, Sensor. Actuator. B Chem. 199 (2014) 398–402.

[6]

T. Anukunprasert, et al., The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2, Sci. Technol. Adv. Mater. 6 (2005) 359–363.

[7]
He X. Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: simple synthesis and contribution of carbon speciesJ. Hazard Mater.2020403124048

X. He, et al., Metal-organic frameworks derived C/TiO2 for visible light photocatalysis: simple synthesis and contribution of carbon species, J. Hazard Mater. 403 (2020), 124048.

10.1016/j.jhazmat.2020.124048
[8]
Li T. Anatase TiO2 nanorod arrays as high-performance electron transport layers for perovskite solar cellsJ. Alloys Compd.2020156629

T. Li, et al., Anatase TiO2 nanorod arrays as high-performance electron transport layers for perovskite solar cells, J. Alloys Compd. (2020), 156629.

10.1016/j.jallcom.2020.156629
[9]

N. Chen, et al., Acetone sensing performances based on nanoporous TiO2synthesized by a facile hydrothermal method, Sensor. Actuator. B Chem. 238(2017) 491–500.

[10]
Heberto G.P. TiO2 thin film based gas sensors for CO-detectionJ. Mater. Sci. Mater. Electron.20182919

G.P. Heberto, et al., TiO2 thin film based gas sensors for CO-detection, J. Mater. Sci. Mater. Electron. 29 (2018) 1–9.

10.1007/s10854-018-9477-2
[11]
Liao Y. Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods arrayJ. Mater. Chem.2012227937794410.1039/c2jm16628c

Y. Liao, et al., Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array, J. Mater. Chem. 22 (2012) 7937–7944.

[12]
Jing Z.H. Preparation and gas sensing activity of La and Y co-doped titania nanoparticlesJ. Sol. Gel Sci. Technol.201473112117

Z.H. Jing, et al., Preparation and gas sensing activity of La and Y co-doped titania nanoparticles, J. Sol. Gel Sci. Technol. 73 (2014) 112–117.

10.1007/s10971-014-3501-7
[13]

A. Hazra, et al., Studies on a resistive gas sensor based on sol-gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection, Sensor. Actuator. B Chem. 183 (2013) 87–95.

[14]

S.T. Navale, et al., Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit, Sensor. Actuator. B Chem. 255 (2018) 1701–1710.

[15]

R.S. Dubey, et al., Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method, Mater. Lett. 215 (2018) 312–317.

[16]

T. Sugahara, et al., Formation of metal-organic decomposition derived nanocrystalline structure titanium dioxide by heat sintering and photosintering methods for advanced coating process, and its volatile organic compounds' gassensing properties, ACS Appl Elec Mater 2 (2020) 1670–1678.

[17]

N. Mintcheva, et al., Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles, Appl. Surf. Sci. 507 (2019), 145169.

[18]

C.J. Lim, et al., Luminescent oxygen sensing films with improved sensitivity based on light scattering by TiO2 particles, Funct. Mater. Lett. 253 (2017) 934–941.

[19]

A.S. Zuruzi, et al., Highly Sensitive gas sensor based on integrated titania nanosponge arrays, Appl. Phys. Lett. 88 (2006) 2004–2007.

[20]

Y. Zhang, et al., Preparation of Au-loaded TiO2 pecan-kernel-like and its enhanced toluene sensing performance, Sensor. Actuator. B Chem. (2017) 2240–2247.

[21]

X. Li, et al., Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2 microspheres, Sensor. Actuator. B Chem. 219 (2015) 158–163.

[22]
Lee K. Role of transparent electrodes for high efficiency TiO2 nanotube based dye-sensitized solar cellsJ. Phys. Chem. C2014118165621656610.1021/jp412351g

K. Lee, et al., Role of transparent electrodes for high efficiency TiO2 nanotube based dye-sensitized solar cells, J. Phys. Chem. C 118 (2014) 16562–16566.

[23]

P. Bindra, et al., 1-D TiO2 nanorods array-based parallel electrode sensor for selective and stable detection of organic vapors, IEEE Sensor. J. (2019), 1-1.

[24]
Rho W.Y. Recent progress in dye-sensitized solar cells for improving efficiency: TiO2 nanotube arrays in active layerJ. Nanomater.201511710.1155/2015/247689

W.Y. Rho, et al., Recent progress in dye-sensitized solar cells for improving efficiency: TiO2 nanotube arrays in active layer, J. Nanomater. (2015) 1–17.

[25]
Viet P.V. The effect of acid treatment and reactive temperature on the formation of TiO2 nanotubesJ. Nanosci. Nanotechnol.2015155202520610.1166/jnn.2015.10025

P.V. Viet, et al., The effect of acid treatment and reactive temperature on the formation of TiO2 nanotubes, J. Nanosci. Nanotechnol. 15 (2015) 5202–5206.

[26]

Y. Wang, et al., Visible photoelectrochemical sensing platform by in situ generated CdS quantum dots decorated branched-TiO2 nanorods equipped with Prussian blue electrochromic display, Biosens. Bioelectron. (2016) 859–865.

[27]
Xu C.K. Two-stage hydrothermal growth of long ZnO nanowires for efficient TiO2 nanotube-based dye-sensitized solar cellsJ. Phys. Chem. C20121167236724110.1021/jp300960r

C.K. Xu, et al., Two-stage hydrothermal growth of long ZnO nanowires for efficient TiO2 nanotube-based dye-sensitized solar cells, J. Phys. Chem. C 116 (2012) 7236–7241.

[28]
Osnat L. Fibrous TiO2 gas sensors produced by electrospinningJ. Electroceram.201535148159

L. Osnat, et al., Fibrous TiO2 gas sensors produced by electrospinning, J. Electroceram. 35 (2015) 148–159.

10.1007/s10832-015-0007-9
[29]

A.P. Caricato, et al., Films of brookite TiO2 nanorods/nanoparticles deposited bymatrix-assisted pulsed laser evaporation as NO2 gas-sensing layers, Appl. Phys. A104 (2011) 963–968.

[30]

V. Galstyan, et al., Large surface area biphase titania for chemical sensing, Sensor. Actuator. B Chem. 209 (2015) 1091–1096.

[31]

S. Zhang, et al., Preparation of g-C3N4/graphene composite for detecting NO2 at room temperature, Nanomaterials 7 (2017).

[32]

Y.Y. Liu, et al., Self-templated synthesis of large-scale hierarchical anatase titania nanotube arrays on transparent conductive substrate for dye-sensitized solar cells, Adv. Powder Technol. 30 (2018) 572–580.

[33]
Razali M.H. Morphological and structural studies of titanate and titania nanostructured materials obtained after heat treatments of hydrothermally produced layered titanateJ. Nanomater.2012962073

M.H. Razali, et al., Morphological and structural studies of titanate and titania nanostructured materials obtained after heat treatments of hydrothermally produced layered titanate, J. Nanomater. (2012), 962073.

10.1155/2012/962073
[34]
Kumar K.G. Photocatalytic activity and smartness of TiO2 nanotube arrays for room temperature acetone sensingJ. Mol. Liq.2019300112418

K.G. Kumar, et al., Photocatalytic activity and smartness of TiO2 nanotube arrays for room temperature acetone sensing, J. Mol. Liq. 300 (2019), 112418.

10.1016/j.molliq.2019.112418
[35]
Kim W.T. Fabrication of TiO2 nanotube arrays and their application to a gas sensorJ. Nanosci. Nanotechnol.2015158161816510.1166/jnn.2015.11278

W.T. Kim, et al., Fabrication of TiO2 nanotube arrays and their application to a gas sensor, J. Nanosci. Nanotechnol. 15 (2015) 8161–8165.

[36]
Sennik E. Electrical and VOC sensing properties of anatase and rutile TiO2 nanotubesJ. Alloys Compd.20146168996

E. Sennik, et al., Electrical and VOC sensing properties of anatase and rutile TiO2 nanotubes, J. Alloys Compd. 616 (2014) 89–96.

10.1016/j.jallcom.2014.07.097
[37]
Lin S. A selective room temperature formaldehyde gas sensor using TiO2 nanotube arraysSensor. Actuator. B Chem.2011156505509

S. Lin, et al., A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays, Sensor. Actuator. B Chem. 156 (2011) 505–509.

10.1016/j.snb.2011.02.046
[38]

T. Gakhar, et al., Oxygen vacancy modulation of titania nanotubes by cathodic polarization and chemical reduction routes for efficient detection of volatile organic compounds, Nanoscale 12 (2020) 9082–9093.

[39]
Perillo P.M. Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubesJ. Alloys Compd.2016657765769

P.M. Perillo, et al., Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes, J. Alloys Compd. 657 (2016) 765–769.

10.1016/j.jallcom.2015.10.167
[40]

A.O. Şennik, et al., Gas sensor application of hydrothermally growth TiO2nanorods, Procedia Eng. 120 (2015) 1163–1165.

[41]

Z.P. Tshabalala, et al., Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: detailed study on the annealing temperature, Sensor. Actuator. B Chem. 238 (2017) 402–419.

[42]
Wang H. A micro sensor based on TiO2 nanorod arrays for the detection of oxygen at room temperatureCeram. Int.20164285658571

H. Wang, et al., A micro sensor based on TiO2 nanorod arrays for the detection of oxygen at room temperature, Ceram. Int. 42 (2016) 8565–8571.

10.1016/j.ceramint.2016.02.084
[43]

B. Prateek, et al., Selective detection of organic vapors using TiO2 nanotubes based single sensor at room temperature, Sensor. Actuator. B Chem. 290 (2019) 684–690.

[44]

P. Bindra, et al., Multi-layered TiO2 nanotubes array-based highly sensitive roomtemperature vapor sensors, IEEE Trans. Nanotechnol. 18 (2019) 13–20.

[45]

G.D. Zhao, et al., In situ growing double-layer TiO2 nanorod arrays on new-type FTO electrodes for low-concentration NH3 detection at room temperature, ACS Appl. Mater. Interfaces 12 (2020) 8573–8582.

[46]

X.Y. Zhou, et al., Synergistic cooperation of rutile TiO2 {002}, {101} and {110}facets for hydrogen sensing, ACS Appl. Mater. Interfaces 10 (2018) 28199–28209.

[47]
Zhao P.X. One-Dimensional MoS2-Decorated TiO2 nanotube gas sensors for efficient alcohol sensingJ. Alloys Compd.2016674252258

P.X. Zhao, et al., One-Dimensional MoS2-Decorated TiO2 nanotube gas sensors for efficient alcohol sensing, J. Alloys Compd. 674 (2016) 252–258.

10.1016/j.jallcom.2016.03.029
[48]

Z. Zhu, et al., Synthesis of TiO2 nanowires for rapid NO2 detection, Sens. Actuat APhys. 272 (2018) 288–294.

[49]

H. Bian, et al., Characterization and acetone gas sensing properties of electrospun TiO2 nanorods, Superlattice. Microst. 81 (2015) 107–113.

[50]

A. Kumari, et al., Interface-driven multifunctionality in Two-dimensional TiO2 nanosheet/poly (dimercaptothiadiazole-triazine) hybrid resistive random access memory device, ACS Appl. Mater. Interfaces 12 (2020) 56568–56578.

[51]

A.P. Dral, et al., 2D metal oxide nanoflakes for sensing applications: review and perspective, Sensor. Actuator. B Chem. 272 (2018) 369–392.

[52]

W. Ge, et al., Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets, ACS Appl. Mater. Interfaces 12 (2020) 13200–13207.

[53]

R.K. Sonker, et al., Green synthesis of TiO2 nanosheet by chemical method for the removal of Rhodamin B from industrial waste, Mater. Sci. Eng. B-Adv. 258 (2020), 114577.

[54]

K. Hayashi, et al., Enhanced antibacterial property of facet-engineered TiO2 nanosheet in presence and absence of ultraviolet irradiation, Materials 13 (2020) 78.

[55]

M. Horprathum, et al., Oxygen partial pressure dependence of the properties of TiO2 thin films deposited by DC reactive magnetron sputtering, Procedia Eng. 32 (2012) 676–682.

[56]

B. Wang, et al., Growth of TiO2 nanostructures exposed {001} and {110} facets on SiC ultrafine fibers for enhanced gas sensing performance, Sensor. Actuator. B Chem. 276 (2018) 57–64.

[57]

B. Bhowmik, et al., Efficient gas sensor devices based on surface engineered oxygen vacancy controlled TiO2 nanosheets, IEEE Trans. Electron. Dev. 64 (2017) 2357–2363.

[58]

H. Zhang, et al., Extending the detection range and response of TiO2 based hydrogen sensors by surface defect engineering, Int. J. Hydrogen Energy 45 (2020) 18057–18065.

[59]
Chinh N.D. UV-light-activated H2S gas sensing by a TiO2 nanoparticulate thin film at room temperatureJ. Alloys Compd.2018778247255

N.D. Chinh, et al., UV-light-activated H2S gas sensing by a TiO2 nanoparticulate thin film at room temperature, J. Alloys Compd. 778 (2018) 247–255.

10.1016/j.jallcom.2018.11.153
[60]

R.L. Wilson, et al., The effect of film thickness on the gas sensing properties of ultra-thin TiO2 films deposited by atomic layer deposition, Sensors 18 (2018) 735.

[61]

W.C. Wang, et al., Effect of defects in TiO2 nanoplates with exposed {001} facets on the gas sensing properties, Chin. Chem. Lett. 30 (2019) 1261–1265.

[62]

W.Y. Ge, et al., Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets, ACS Appl. Mater. Interfaces 12 (2020) 13200–13207.

[63]

W.C. Wang, et al., Effect of defects in TiO2 nanoplates with exposed {001} facets on the gas sensing properties, Chin. Chem. Lett. 30 (2019) 1261–1265.

[64]
Liu C. Abnormal p-type sensing response of TiO2 nanosheets with exposed {001} facetsJ. Alloys Compd.201770511211710.5539/jmr.v9n6p112

C. Liu, et al., Abnormal p-type sensing response of TiO2 nanosheets with exposed {001} facets, J Alloys Compd. 705 (2017) 112-117

[65]
Feng Z.G. A strategy for supportless sensors: fluorine doped TiO2 nanosheets directly grown onto Ti foam enabling highly sensitive detection toward acetoneSensor. Actuator. B Chem.2020128633

Z.G. Feng, et al., A strategy for supportless sensors: fluorine doped TiO2 nanosheets directly grown onto Ti foam enabling highly sensitive detection toward acetone, Sensor. Actuator. B Chem. (2020), 128633.

10.1016/j.snb.2020.128633
[66]
Yang H.G. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facetsJ. Am. Chem. Soc.20091314078408310.1021/ja808790p

H.G. Yang, et al., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc. 131 (2009) 4078–4083.

[67]

J.H. Lee, et al., Gas sensors using hierarchical and hollow oxide nanostructures: Overview, Sensor. Actuator. B Chem. 140 (2009) 319–336.

[68]

S. Prabakar, et al., Liquid-phase synthesis of flower-like and flake-like titanium disulfide nanostructures, Chem. Mater. 21 (2009) 1725–1730.

[69]
Gao X. Hydrothermal synthesis of agglomerating TiO2 nanoflowers and its gas sensingJ. Mater. Sci.201728187811878610.1007/s10854-017-7827-0

X. Gao, et al., Hydrothermal synthesis of agglomerating TiO2 nanoflowers and its gas sensing, J. Mater. Sci. 28 (2017) 18781–18786.

[70]

M. Akhtar, et al., Rapid growth of TiO2 nanoflowers via low-temperature solution process: photovoltaic and sensing applications, Materials 12 (2019) 566.

[71]
Wang M.Y. A novel room temperature ethanol gas sensor based on 3D hierarchical flower-like TiO2 microstructuresMater. Lett.2020277128372

M.Y. Wang, et al., A novel room temperature ethanol gas sensor based on 3D hierarchical flower-like TiO2 microstructures, Mater. Lett. 277 (2020), 128372.

10.1016/j.matlet.2020.128372
[72]
Liu M. Fabrication and photocatalytical properties of flower-like TiO2 nanostructuresT Nonferr. Metal Soc.20102022992302

M. Liu, et al., Fabrication and photocatalytical properties of flower-like TiO2 nanostructures, T Nonferr. Metal Soc. 20 (2010) 2299–2302.

10.1016/S1003-6326(10)60644-9
[73]

B. Sandeep, et al., Synthesis and characterizations of 3D TiO2 nanoflowers thin film: hydrothermal method, Macromol. Symp. 393 (2020), 2000040.

[74]

M.S. Prasad, et al., Directly grown of 3D-Nickel oxide nano flowers on TiO2 nanowire arrays by hydrothermal route for electrochemical determination of naringenin flavonoid in vegetable samples, Arab. J. Chem. 13 (2020) 1520–1531.

[75]

S.F. Sheng, et al., One-step growth of hierarchical nanotreelike TiO2 on ITO without template and its application in gas sensor, Chin. J. Struct. Chem. 38 (2019) 1743–1751.

[76]

B. Bhowmik, et al., Highly selective low-temperature acetone sensor based on hierarchical 3-D TiO2 Nanoflowers, IEEE Sensor. J. 16 (2016) 3488–3495.

[77]

L.Y. Zong, et al., Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3, Chem. Eng. J. 343 (2018) 500–511.

[78]

D. Mao, et al., Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties, Small 7 (2011) 578–582.

[79]

Y. Xiong, et al., Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor, Appl. Surf. Sci. 443 (2018) 114–121.

[80]

L. Zhu, et al., Xylene gas sensor based on Ni doped TiO2 bowl-like submicron particles with enhanced sensing performance, RSC Adv. 5 (2015) 28105–28110.

[81]

H. Mei, et al., Construction of pine-branch-like α-Fe2O3/TiO2 hierarchical heterostructure for gas sensing, Ceram. Int. 46 (2020) 18675–18682.

[82]
Yang G. TiO2 based sensor with butterfly wing configurations for fast acetone detection at room temperatureJ. Mater. Chem. C20197111181112510.1039/c9tc03110c

G. Yang, et al., TiO2 based sensor with butterfly wing configurations for fast acetone detection at room temperature, J. Mater. Chem. C 7 (2019) 11118–11125.

[83]

J.X. Ai, et al., Facile preparation of a super amphiphobic fabric coating with hierarchical TiO2 particles, New J. Chem. 44 (2020) 19192–19200.

[84]

Y. Yu, et al., Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance, Nano Lett. 14 (2014) 2528–2535.

[85]

M. Epifani, et al., Rhodium as efficient additive for boosting acetone sensing by TiO2 nanocrystals. Beyond the classical view of noble metal additives, Sensor. Actuator. B Chem. 319 (2020), 128338.

[86]

M. Epifani, et al., Pt doping triggers growth of TiO2 nanorods: nanocomposite synthesis and gas-sensing properties, CrystEngComm 14 (2012) 3882–3887.

[87]
Wang D. High ethanol sensitivity of Palladium/TiO2 nanobelt surface heterostructures dominated by enlarged surface area and nano-Schottky junctionsJ. Colloid Interface2012388144150

D. Wang, et al., High ethanol sensitivity of Palladium/TiO2 nanobelt surface heterostructures dominated by enlarged surface area and nano-Schottky junctions, J. Colloid Interface 388 (2012) 144–150.

10.1016/j.jcis.2012.08.034
[88]

N. Chen, et al., TiO2 nanoparticles functionalized by Pd nanoparticles for gassensing application with enhanced butane response performances, Sci. Rep. 7 (2017) 7692.

[89]

K. Li, et al., Au-decorated ZnFe2O4 yolk-shell spheres for trace sensing of chlorobenzene, ACS Appl. Mater. Interfaces 12 (2020) 16792–16804.

[90]

X. Xing, et al., Pt-functionalized nanoporous TiO2 nanoparticles with enhanced gas sensing performances toward acetone, Phys. Status Solidi 215 (2018), 1800100.

[91]

T.M. David, et al., Effect of Ni, Pd, and Pt nanoparticle dispersion on thick films of TiO2 nanotubes for hydrogen sensing: TEM and XPS Studies, ACS Omega 5 (2020) 11352–11360.

[92]

X.H. Yang, et al., Enhanced gas sensing performance based on the fabrication of polycrystalline Ag@TiO2 core-shell nanowires, Sensor. Actuator. B Chem. 286 (2019) 483–492.

[93]

H. Sun, et al., DFT study of SF6 decomposed products on Pd-TiO2: gas sensing mechanism study, Adsorption 25 (2019) 1643–1653.

[94]
Liu H. A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clustersRSC Adv.20199245192452610.1039/c9ra05439a

H. Liu, et al., A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clusters, RSC Adv. 9 (2019) 24519-24526

[95]

N. Mintcheva, et al., Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles, Appl. Surf. Sci. 507 (2019), 145169.

[96]

I. Fratoddi, et al., Platinum nanoparticles on electrospun titania nanofibers as hydrogen sensing materials working at room temperature, Nanoscale 6 (2014) 9177–9184.

[97]

J. Moon, et al., Pd-doped TiO2 nanofiber networks for gas sensor applications, Sensor. Actuator. B Chem. 149 (2010) 301–305.

[98]

S.H. Wu, et al., Flexible hydrogen sensor based on Pd/TiO2 nanofilm with fast response, IOP Conf. Ser. Mater. Sci. Eng. 634 (2019), 012002.

[99]
Yang W. Enhanced acetone sensing performance in black TiO2 by Ag modificationJ. Mater. Sci.202055103991041110.1007/s10853-020-04703-6

W. Yang, et al., Enhanced acetone sensing performance in black TiO2 by Ag modification, J. Mater. Sci. 55 (2020) 10399–10411.

[100]

I. Maity, et al., Potentiallity of surface modified TiO2 nanoflowers for alcohol sensing application, 2019 2nd International Symposium on Devices, Circuits and Systems (ISDCS). (2019)

[101]

A.A. Haidry, et al., Remarkable improvement in hydrogen sensing characteristics with Pt/TiO2 interface control, ACS Sens. 4 (2019) 2997–3006.

[102]

Z. Wang, et al., Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method, Appl. Surf. Sci. 533 (2020), 147383.

[103]

Z. Li, et al., Hydrogen sensing with Ni-doped TiO2 nanotubes, Sensors 13 (2013) 8393–8402.

[104]

X. Tong, et al., Enhanced H2S sensing performance of cobalt doped free-standing TiO2 nanotube array film and theoretical simulation based on density functional theory, Appl. Surf. Sci. 469 (2019) 414–422.

[105]

Z. Li, et al., The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2, Appl. Surf. Sci. 412 (2017) 638–647.

[106]
Tshabalala Z.P. Ultra-sensitive and selective NH3 room temperature gas sensing induced by manganese-doped titanium dioxide nanoparticlesJ. Colloid Interface Sci.2017504371386

Z.P. Tshabalala, et al., Ultra-sensitive and selective NH3 room temperature gas sensing induced by manganese-doped titanium dioxide nanoparticles, J. Colloid Interface Sci. 504 (2017) 371–386.

10.1016/j.jcis.2017.05.061
[107]

Z. Li, et al., Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure, Appl. Phys. Lett. 111 (2017), 032104.

[108]

Z. Li, et al., Ni-doped TiO2 nanotubes for wide-range hydrogen sensing, Nanoscale Res. Lett. 9 (2014) 118.

[109]
Dong X. A first principle simulation of competitive adsorption of SF6 decomposition components on nitrogen-doped anatase TiO2 (101) surfaceAppl. Surf. Sci.2017422331338

X. Dong, et al., A first principle simulation of competitive adsorption of SF6 decomposition components on nitrogen-doped anatase TiO2 (101) surface, Appl. Surf. Sci. 422 (2017) 331–338.

10.1016/j.apsusc.2017.06.039
[110]

D. Li, et al., Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies, Chem. Phys. Lett. 401 (2005) 579–584.

[111]
Zhang X.X. A dsorption mechanism of SF6 decomposition components onto N, F-co-doped TiO2: a DFT studyJ. Fluor. Chem.20182131823

X.X. Zhang, et al., A dsorption mechanism of SF6 decomposition components onto N, F-co-doped TiO2: a DFT study, J. Fluor. Chem. 213 (2018) 18–23.

10.1016/j.jfluchem.2018.05.014
[112]

Y.Q. Wang, et al., Synthesis and gas sensing properties of La and V Co-doped TiO2 thick film, Funct. Mater. Lett. 11 (2018), 1850019.

[113]

D. Zhao, et al., C-doped TiO2 nanoparticles to detect alcohols with different carbon chains and their sensing mechanism analysis, Sensor. Actuator. B Chem. 312 (2020), 127942.

[114]

M. Duta, et al., Nb-doped TiO2 sol-gel films for CO sensing applications, Mater. Sci. Semicond. Process. 42 (2016) 397–404.

[115]
Liang F. The decoration of Nb-doped TiO2 microspheres by reduced graphene oxide for enhanced CO gas sensingJ. Phys. Chem. Solid.2018114195200

F. Liang, et al., The decoration of Nb-doped TiO2 microspheres by reduced graphene oxide for enhanced CO gas sensing, J. Phys. Chem. Solid. 114 (2018) 195–200.

10.1016/j.jpcs.2017.11.001
[116]

E.S. Babu, et al., Novel preparation of Fe doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation, Ann. Mater. Sci. Eng. (2017), 2191659.

[117]

D. Mardare, et al., The effect of CO2 gas adsorption on the electrical properties of Fe doped TiO2 films, Phys. B Condens. Matter 524 (2017) 17–21.

[118]

N. Nithya, et al., Synthesis and characterization of yttrium doped titania nanoparticles for gas sensing activity, Mater. Sci. Semicond. Process. 99 (2019) 14–22.

[119]
Krishnan V.G. Surface characterization and gas sensing performance of yttrium doped TiO2 nanofilms prepared by automated nebulizer spray pyrolysis (ANSP)J. Mater. Sci. Mater. Electron.201829392401

V.G. Krishnan, et al., Surface characterization and gas sensing performance of yttrium doped TiO2 nanofilms prepared by automated nebulizer spray pyrolysis (ANSP), J. Mater. Sci. Mater. Electron. 29 (2018) 392–401.

10.1007/s10854-017-7928-9
[120]

X. Zhang, et al., Gas response enhancement of VOCs sensor based on Sn doped nanoporous anatase TiO2 nanoparticles at a relative low operating temperature, Mater. Res. Express 6 (2019), 105008.

[121]

V.G. Krishnan, et al., Gas sensing nature and characterization of Zr doped TiO2 films prepared by automated nebulizer spray pyrolysis technique, Optik 206 (2020), 164347.

[122]
Wang L.H. W-doped nanoporous TiO2 for high performances sensing material toward acetone gasJ. Nanostruct.202010148156

L.H. Wang, et al., W-doped nanoporous TiO2 for high performances sensing material toward acetone gas, J. Nanostruct. 10 (2020) 148–156.

[123]

R.L. Fomekong, et al., High-temperature hydrogen sensing performance of Nidoped TiO2 Prepared by Co-precipitation method, Sensors 20 (2020) 5992.

[124]

Z. Li, et al., Ni-doped TiO2 nanotubes for wide-range hydrogen sensing, Nanoscale Res. Lett. 9 (2014) 1–9.

[125]
Tong X. Synthesis and density functional theory study of free-standing Fe-doped TiO2 nanotube array film for H2S gas sensing properties at low temperatureJ. Alloys Compd.2020832155015

X. Tong, et al., Synthesis and density functional theory study of free-standing Fedoped TiO2 nanotube array film for H2S gas sensing properties at low temperature, J. Alloys Compd. 832 (2020), 155015.

10.1016/j.jallcom.2020.155015
[126]

Y. Goenuellue, et al., Nanotubular Cr-doped TiO2 for use as high-temperature NO2 gas sensor, Sensor. Actuator. B Chem. 217 (2015) 78–87.

[127]

A. Monamary, et al., Hybrid Cr/TiO2/ITO nanoporous film prepared by novel two step deposition for room temperature hydrogen sensing, Physica B 553 (2019) 182–189.

[128]

G. Murali, et al., Enhancing the charge carriers separation and transport via nitrogen-doped graphene quantum dot-TiO2 nanoplate hybrid structure for an efficient NO gas sensor, ACS Appl. Mater. Interfaces 12 (2020) 13428–13436.

[129]
Feng Z. A strategy for supportless sensors: fluorine doped TiO2 nanosheets directly grown onto Ti foam enabling highly sensitive detection toward acetoneSensor. Actuator. B Chem.2020128633

Z. Feng, et al., A strategy for supportless sensors: fluorine doped TiO2 nanosheets directly grown onto Ti foam enabling highly sensitive detection toward acetone, Sensor. Actuator. B Chem. (2020), 128633.

10.1016/j.snb.2020.128633
[130]

Y. Zhang, et al., One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance, Microporous Mesoporous Mater. 270 (2018) 75–81.

[131]

C. Wang, et al., Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor, ACS Appl. Mater. Interfaces 6 (2014) 12031–12037.

[132]

H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensor. Actuator. B Chem. 192 (2014) 607–627.

[133]

K. Grossmann, U. Weimar, N. Barsan, Semiconducting metal oxides based gas sensors, Oxide Semicond. 88 (2013) 261–282.

[134]

W. Zeng, et al., Hierarchical SnO2-Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2, Sensor. Actuator. B Chem. 301 (2019), 127010.

[135]

N. Chen, et al., The xylene sensing performance of WO3 decorated anatase TiO2 nanoparticles as a sensing material for a gas sensor at a low operating temperature, RSC Adv. 6 (2016) 49692–49701.

[136]
Lou Z. A class of hierarchical nanostructures: ZnO surface functionalized TiO2 with enhanced sensing proprietiesRCS Adv.201333131313610.1039/c2ra22655c

Z. Lou, et al., A class of hierarchical nanostructures: ZnO surface functionalized TiO2 with enhanced sensing proprieties, RCS Adv. 3 (2013) 3131–3136.

[137]

F. Li, et al., Electrospun TiO2/SnO2 Janus nanofibers and its application in ethanol sensing, Mater. Lett. 262 (2019), 127070.

[138]

N. Ramgir, et al., TiO2 ZnO heterostructure nanowire based NO2 sensor, Mater. Sci. Semicond. Process. 106 (2020), 104770.

[139]

T. Zhao, et al., Hierarchical branched mesoporous TiO2-SnO2 nanocomposites with well-defined n-n heterojunctions for highly efficient ethanol sensing, Adv. Sci. 6 (2019), 1902008.

[140]
Yao Y.G. In situ construction and sensing mechanism of TiO2-WO3 composite coatings based on the semiconductor heterojunctionsJ. Mater. Res. Technol.2019835803588

Y.G. Yao, et al., In situ construction and sensing mechanism of TiO2-WO3 composite coatings based on the semiconductor heterojunctions, J. Mater. Res. Technol. 8 (2019) 3580–3588.

10.1016/j.jmrt.2019.05.016
[141]
Wang X. Highly sensitive and low working temperature detection of trace triethylamine based on TiO2 nanoparticles decorated CuO nanosheets sensorsSensor. Actuator. B Chem.2019301127019

X. Wang, et al., Highly sensitive and low working temperature detection of trace triethylamine based on TiO2 nanoparticles decorated CuO nanosheets sensors, Sens Actuators B Chem. 301 (2019) 127019

10.1016/j.snb.2019.127019
[142]
Alev O. Improved gas sensing performance of p-copper oxide thin film/n-TiO2 nanotubes heterostructureJ. Alloys Compd.2018749221228

O. Alev, et al., Improved gas sensing performance of p-copper oxide thin film/nTiO2 nanotubes heterostructure, J. Alloys Compd. 749 (2018) 221–228.

10.1016/j.jallcom.2018.03.268
[143]

B. Zhang, et al., TiO2/ZnCo2O4 porous nanorods: synthesis and temperaturedependent dual selectivity for sensing HCHO and TEA, Sensor. Actuator. B Chem. 321 (2020), 128461.

[144]

F. Kheiri, et al., The microstructure, optical and gas sensing properties of bilayer TiO2/ZnO systems in terms of annealing temperature Mat, Sci. Semicon. Proc. 121 (2021), 105465.

[145]

Y.C. Liang, et al., Morphology-dependent photocatalytic and gas-sensing functions of three-dimensional TiO2-ZnO nanoarchitectures, CrystEngComm 22 (2020) 7575–7589.

[146]

Y. Xu, et al., Chemiresistive sensors based on core-shell ZnO@TiO2 nanorods designed by atomic layer deposition for n-butanol detection, Sensor. Actuator. B Chem. 310 (2020), 127846.

[147]
Chen K. Ultraviolet irradiation enhanced formaldehyde-sensing performance based on SnO2@TiO2 nanofiber heteroarchitecturesJ. Phys. D Appl. Phys.20205312530110.1088/1361-6463/ab5f40

K. Chen, et al., Ultraviolet irradiation enhanced formaldehyde-sensing performance based on SnO2@TiO2 nanofiber heteroarchitectures, J. Phys. D Appl. Phys. 53 (2020), 125301.

[148]

A. Nasriddinov, et al., Sub-ppm formaldehyde detection by n-n TiO2@SnO2 nanocomposites, Sensors 19 (2019) 3182.

[149]

K. Chen, et al., SnO2 nanoparticles/TiO2 nanofibers heterostructures: in situ fabrication and enhanced gas sensing performance, Solid State Electron. 157 (2019) 42–47.

[150]

R. Malik, et al., Ordered mesoporous In-(TiO2/WO3) nanohybrid: an ultrasensitive n-butanol sensor, Sensor. Actuator. B Chem. 239 (2017) 364–373.

[151]
Meng W. A novel mixed potential NH3 sensor based on TiO2@WO3 core-shell composite sensing electrodeElectrochim. Acta2016193302310

W. Meng, et al., A novel mixed potential NH3 sensor based on TiO2@WO3 coreshell composite sensing electrode, Electrochim. Acta 193 (2016) 302–310.

10.1016/j.electacta.2016.02.028
[152]

C.Y. Wang, et al., Controllable synthesis of highly crystallized mesoporous TiO2/WO3 heterojunctions for acetone gas sensing, Chin. Chem. Lett. 31 (2020) 1119–1123.

[153]

H.J. Xiao, et al., Hierarchical porous nanorod@core-shellα-Fe2O3/TiO2 microspheres: synthesis, characterization, and gas-sensing applications, Appl. Surf. Sci. 481 (2019) 1001–1010.

[154]

H. Mei, et al., Construction of pine-branch-like α-Fe2O3/TiO2 hierarchical heterostructure for gas sensing, Ceram. Int. 46 (2020) 18675–18682.

[155]
Xu Z.W. A low operating temperature and high performance sensor for H2S detection based on α-Fe2O3/TiO2 heterojunction nanoparticles compositeJ. Mater. Sci. Mater. Electron.201930126951270910.1007/s10854-019-01634-0

Z.W. Xu, et al., A low operating temperature and high performance sensor for H2S detection based on α-Fe2O3/TiO2 heterojunction nanoparticles composite, J. Mater. Sci. Mater. Electron. 30 (2019) 12695–12709.

[156]

H. Kheel, et al., Enhanced H2S sensing performance of TiO2-decorated α-Fe2O3 nanorod sensors, Ceram. Int. 42 (2016) 18597–18604.

[157]

G. Li, et al., Ethanol sensing properties and reduced sensor resistance using porous Nb2O5 -TiO2 n-n junction nanofibers, Sensor. Actuator. B Chem. 283 (2019) 602–612.

[158]
Zhou Y. TiO2/InVO4 n-n heterojunctions for efficient ammonia gas detection and their sensing mechanismsJ. Mater. Sci.201954136601367310.1007/s10853-019-03868-z

Y. Zhou, et al., TiO2/InVO4 n-n heterojunctions for efficient ammonia gas detection and their sensing mechanisms, J. Mater. Sci. 54 (2019) 13660–13673.

[159]

J.H. Lee, et al., CuO-TiO2 p-n core-shell nanowires: sensing mechanism and p/n sensing-type transition, Appl. Surf. Sci. 448 (2018) 489–497.

[160]

P.P. Subha, et al., Solution-processed CuO/TiO2 heterojunction for enhanced room temperature ethanol sensing applications, Phys. Scripta 93 (2018), 055001.

[161]

P. Chaudhari, et al., Effect of CuO as a dopant in TiO2 on ammonia and hydrogen sulphide sensing at room temperature, Measurement 90 (2016) 468–474.

[162]

W. Maziarz, et al., TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors, Appl. Surf. Sci. 480 (2019) 361–370.

[163]
Sun G.J. Prominent Gas Sensing performance of TiO2-Core/NiO-shell nanorod sensorsJ. Nanosci. Nanotechnol.2017174099410210.1166/jnn.2017.13409

G.J. Sun, et al., Prominent Gas Sensing performance of TiO2-Core/NiO-shell nanorod sensors, J. Nanosci. Nanotechnol. 17 (2017) 4099–4102.

[164]

A. Kumar, et al., Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films, RSC Adv. 6 (2016) 77636–77643.

[165]

G.J. Sun, et al., Synthesis of TiO2 nanorods decorated with NiO nanoparticles and their acetone sensing properties, Ceram. Int. 42 (2016) 1063–1069.

[166]

Y. Xiong, et al., Layer-by-layer self-assembly of polyaniline nanofibers/TiO2 nanotubes heterojunction thin film for ammonia detection at room temperature, Nanotechnology 30 (2019), 135501.

[167]

C.H. Zhu, et al., Enhanced Sub-ppm NH3 gas sensing performance of PANI/TiO2 nanocomposites at room temperature, Front. Chem. 6 (2018) 493.

[168]
Yadav B.C. TiO2-PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensingJ. Mater. Sci. Mater. Electron.2016271172611732

B.C. Yadav, et al., TiO2-PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing, J. Mater. Sci. Mater. Electron. 27 (2016) 11726–11732.

10.1007/s10854-016-5310-y
[169]
A. Seif, et al., UV Enhanced Ammonia Gas Sensing Properties of PANI/TiO2 CoreShell Nanofibers, vol. 298, 2019, 126906.
[170]
Kumaresan M. Significant enhancement in the hydrogen-sensing performance of polypyrrole/titanium oxide (PPy/TiO2) hybrid sensors by a chemical oxidation polymerization approachJ. Mater. Sci. Mater. Electron.2020318183819310.1007/s10854-020-03353-3

M. Kumaresan, et al., Significant enhancement in the hydrogen-sensing performance of polypyrrole/titanium oxide (PPy/TiO2) hybrid sensors by a chemical oxidation polymerization approach, J. Mater. Sci. Mater. Electron. 31 (2020) 8183–8193.

[171]

B.C. Sertel, et al., Development of MgO:TiO2 thin films for gas sensor applications, Ceram. Int. 45 (2019) 2917–2921.

[172]

O. Alev, et al., Gas sensing properties of p-Co3O4/n-TiO2 nanotube heterostructures, Sensors 18 (2018) 956.

[173]
Zhang J. Facile synthesis of mesoporous hierarchical Co3O4-TiO2 p-n heterojunctions with greatly enhanced gas sensing performanceJ. Mater. Chem. A20175103871039710.1039/C6TA11208K

J. Zhang, et al., Facile synthesis of mesoporous hierarchical Co3O4-TiO2 p-n heterojunctions with greatly enhanced gas sensing performance, J. Mater. Chem. A 5 (2017) 10387–10397.

[174]
Hsu K.C. Response and characteristics of TiO2/perovskite heterojunctions for CO gas sensorsJ. Alloys Compd.2019794576584

K.C. Hsu, et al., Response and characteristics of TiO2/perovskite heterojunctions for CO gas sensors, J. Alloys Compd. 794 (2019) 576–584.

10.1016/j.jallcom.2019.04.238
[175]
Zhang D. Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructureJ. Mater. Sci. Mater. Electron.201930110701107810.1007/s10854-019-01449-z

D. Zhang, et al., Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructure, J. Mater. Sci. Mater. Electron. 30 (2019) 11070–11078.

[176]

L.L. Jiang, et al., Gas sensitivity of heterojunction TiO2 NT/GO materials prepared by a simple method with low-concentration acetone, Ceram. Int. 46 (2020) 5344–5350.

[177]

S.A.M. Chachuli, et al., Response of TiO2/MWCNT/B2O3 gas sensor to hydrogen using different organic binder, Mater. Sci. Semicond. Process. 99 (2019) 140–148.

[178]

H. Kim, et al., CO gas sensing properties of direct-patternable TiO2 thin films containing multi-wall carbon nanotubes, Thin Solid Films 529 (2013) 89–93.

[179]

S. Bandi, et al., In-situ TiO2-rGO nanocomposites for CO gas sensing, Bull. Mater. Sci. 41 (2018) 115.

[180]

P. Karthik, et al., Propose of high performance resistive type H2S and CO2 gas sensing response of reduced graphene oxide/titanium oxide (rGO/TiO2) hybrid sensors, Mater. Sci. Semicond. Process. 31 (2020) 3695–3705.

[181]

D. Acharyya, et al., Highly sensitive ppb level methanol sensor by tuning C:O ratio of rGO-TiO2 nanotube hybrid structure, IEEE T Nanotechnol. 16 (2017) 1122–1128.

[182]

Z. Ye, et al., Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology, Appl. Surf. Sci. 419 (2017) 84–90.

[183]

A. Abbasi, et al., Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: applications to gas sensor devices, Appl. Surf. Sci. 436 (2017) 27–41.

[184]

W.J. Pan, et al., Self-assembly fabrication of titanium dioxide nanospheresdecorated tungsten diselenide hexagonal nanosheets for ethanol gas sensing application, Appl. Surf. Sci. 527 (2020), 146781.

[185]

H.L. Tai, et al., Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature, Sensor. Actuator. B Chem. 298 (2019), 126784.

[186]

P. Castillero, et al., Optical gas sensing of ammonia and amines based on protonated porphyrin/TiO2 composite thin films, Sensors 17 (2017) 24.

[187]

Y. Kang, et al., Highly sensitive detection of benzene, toluene, and xylene based on CoPP-functionalized TiO2 nanoparticles with low-power consumption, ACS Sens. 3 (2020) 754–763.

[188]
Dong X. TiO2 nanotubes/g-C3N4 quantum dots/rGO Schottky heterojunction nanocomposites as sensors for ppb-level detection of NO2J. Mater. Sci.2019547834784910.1007/s10853-019-03468-x

X. Dong, et al., TiO2 nanotubes/g-C3N4 quantum dots/rGO Schottky heterojunction nanocomposites as sensors for ppb-level detection of NO2, J. Mater. Sci. 54 (2019) 7834–7849.

[189]
Oueslati I. Calixarene functionalization of TiO2 nanoarrays: an effective strategy for enhancing the sensor versatilityJ. Mater. Chem.201861064910654

I. Oueslati, et al., Calixarene functionalization of TiO2 nanoarrays: an effective strategy for enhancing the sensor versatility, J. Mater. Chem. 6 (2018) 10649–10654.

10.1039/C8TA01906A
[190]

S. Chen, et al., High-performance room-temperature TiO2-functionalized GaN nanowire gas sensors, Appl. Phys. Lett. 115 (2019), 121602.

[191]

Y.C. Liang, et al., Synthesis of TiO2-ZnS nanocomposites: via sacrificial template sulfidation and their ethanol gas-sensing performance, RSC Adv. 8 (2018) 22437–22446.

[192]

A.M. Laera, et al., Synthesis of nanocrystalline ZnS/TiO2 films for enhanced NO2 gas sensing, Thin Solid Films 709 (2020), 138190.

[193]

P. Karthik, et al., Design and fabrication of g-C3N4 nanosheets decorated TiO2 hybrid sensor films for improved performance towards CO2 gas, Inorg. Chem. Commun. 119 (2020), 108060.

[194]

X.Y. Peng, et al., Comparative study of ultraviolet light and visible light on the photo-assisted conductivity and gas sensing property of TiO2, Sensor. Actuator. B Chem. 248 (2017) 724–732.

[195]

M.N. Pour, et al., Gas sensor array assisted with UV illumination for discriminating several analytes at room temperature, Micro & Nano Lett. 14 (2019) 1064–1068.

[196]

R. Kumar, et al., Room-temperature gas sensors under photoactivation: from metal oxides to 2D Materials, Nano-Micro Lett. 12 (2020) 164.

[197]

T.H. Lo, et al., The response of UV/Blue light and ozone sensing using Ag-TiO2 planar nanocomposite thin film, Sensors 19 (2019) 5061.

[198]

Y.M. Sabri, et al., Soot template TiO2 fractals as a photoactive gas sensor for acetone detection, Sensor. Actuator. B Chem. 275 (2018) 215–222.

[199]

T. Xie, et al., The effects of surface conditions of TiO2 thin film on the UV assisted sensing response at room temperature, Thin Solid Films 620 (2016) 76–81.

Nano Materials Science
Pages 390-403
Cite this article:
Tian X, Cui X, Lai T, et al. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Materials Science, 2021, 3(4): 390-403. https://doi.org/10.1016/j.nanoms.2021.05.011

559

Views

27

Downloads

146

Crossref

136

Web of Science

149

Scopus

3

CSCD

Altmetrics

Received: 29 December 2020
Accepted: 22 March 2021
Published: 07 July 2021
© 2021 Chongqing University.
Return