AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Compulsive malposition of birnessite slab in 2D-Parallel birnessite on β-MnO2 networks for enhanced pseudocapacitance performances

Shijin Zhua,1Wangchen Huoa,1Tian WangaKailin LiaXiaoying LiucJunyi JidHongchang YaoeFan DongbYuxin Zhanga( )Lili Zhangb( )
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou City, Henan Province, 450001, PR China

1 The authors contributed equally to this work.

Show Author Information

Abstract

High electrochemically active birnessite is always desirable pseudocapacitive material for supercapacitor. Here, two-dimensional (2D) compulsive malposition parallel birnessite standing on β-MnO2 interconnected networks have been designed. Due to the restriction of β-MnO2, compulsive malposition, slippage of MnO6 slab, occurred in birnessite resulting in weaken binding force between birnessite slab and interlayer cations, which enhanced their electrochemical performances. Additionally, the electrical conductivity of the structure was largely promoted by the 2D charge transfer route and double-exchange mechanism in birnessite, also leading to desirable electrochemical properties. Based on the fraction of as-prepared nanostructure, the parallel birnessite exhibited good pseudocapacitance performance (660 ​F ​g−1) with high rate capability. In addition, the asymmetric supercapacitor assembled by reduced graphene oxide (RGO) and as-prepared nanostructure, which respectively served as the negative and positive electrode, delivered an energy density of 33.1 ​Wh kg−1 and a maximum power density of 64.0 ​kW ​kg−1 with excellent cycling stability (95.8% after 10000 cycles). Finally, the study opens new avenues for synthesizing high electrochemically active birnessite structure for high-performance energy storage devices.

References

[1]

P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.

[2]

J.R. Miller, P. Simon, Materials science-Electrochemical capacitors for energy management, Science 321 (2008) 651-652.

[3]

X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong, Z. Wang, WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors, Adv. Mater. 24 (2012) 938.

[4]

L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S.Y. Qiao, M. Antonietti, M.M. Titirici, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors, Adv. Mater. 22 (2010) 5202.

[5]

T. Qiu, B. Luo, M. Giersig, E-M. Akinoglu, L. Hao, X. Wang, L. Shi, M. Jin, L. Zhi, Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors, Small 10 (2014) 4136-4141.

[6]

M. Huang, Y. Zhang, F. Li, L. Zhang, R-S. Ruoff, Z. Wen, Q. Liu, Self-assembly of mesoporous nanotubes assembledfrom interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors, Sci. Rep. 4 (2014).

[7]

Y. Liu, D. Yan, R. Zhuo, S. Li, Z. Wu, J. Wang, P. Ren, P. Yan, Z. Geng, Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors, J. Power Sources 242 (2013) 78-85.

[8]

A.J. Roberts, R.C.T. Slade, Birnessite nanotubes for electrochemical supercapacitor electrodes, Energ. Environ. Sci. 4 (2011) 2813-2817.

[9]

M. Kim, J. Kim, Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes, ACS Appl. Mater. Interfaces 6 (2014) 9036-9045.

[10]

N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, Flexible all-solid-state MnO2 thin films based symmetric supercapacitors, Electrochim. Acta, 165 (2015) 338-347.

[11]

K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, P. Jiang, Z. Wei, An all-solid-state flexible micro-supercapacitor on a chip, Adv. Energ. Mater. 1 (2011) 1068-1072.

[12]

H. Jiang, L.P. Yang, C.Z. Li, C.Y. Yan, P.S. Lee, J. Ma, High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires, Energ. Environ. Sci. 4 (2011) 1813-1819.

[13]

A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors, Nano Lett. 7 (2007) 281-286.

[14]

X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, Y. Ma, Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications, Electrochim. Acta 89 (2013) 523-529.

[15]

X. Zhang, M. He, P. He, C. Li, H. Liu, X. Zhang, Y. Ma, Ultrafine nano-network structured bacterial cellulose as reductant and bridging ligands to fabricate ultrathin K-birnessite type MnO2 nanosheets for supercapacitors, Appl. Surf. Sci. 433 (2018) 419-427.

[16]

L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, G. Yu, Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors, Nano Lett. 13 (2013) 2151-2157.

[17]

D. Kong, J. Luo, Y. Wang, W. Ren, T. Yu, Y. Luo, Y. Yang, C. Cheng, Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage, Adv. Funct. Mater. 24 (2014) 3815-3826.

[18]

J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials, Adv. Mater., 23 (2011) 2076-2081.

[19]

Y. Zhang, B. Wang, F. Liu, J. Cheng, X. -w. Zhang, L. Zhang, Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors, Nano Energy 27 (2016) 627-637.

[20]

F. Bao, Z. Zhang, W. Guo, X. Liu, Facile synthesis of three dimensional NiCo2O4@MnO2 core-shell nanosheet arrays and its supercapacitive performance, Electrochim. Acta, 157 (2015) 31-40.

[21]

Q. Wang, J. Xu, X. Wang, B. Liu, X. Hou, G. Yu, P. Wang, D. Chen, G. Shen, Core–shell CuCo2O4@MnO2 nanowires on carbon fabrics as high-Performance materials for flexible, all-solid-state, electrochemical capacitors, ChemElectroChem 1 (2014) 559-564.

[22]

S. Lian, C. Sun, W. Xu, W. Huo, Y. Luo, K. Zhao, G. Yao, W. Xu, Y. Zhang, Z. Li, K. Yu, H. Zhao, H. Cheng, J. Zhang, L. Mai, Built-in oriented electric field facilitating durable Zn MnO2 battery, Nano Energy 62 (2019) 79-84.

[23]

D. Su, H.J. Ahn, G. Wang, Hydrothermal synthesis of alpha-MnO2 and beta-MnO2 nanorods as high capacity cathode materials for sodium ion batteries, J. Mater. Chem. A, 1 (2013) 4845-4850.

[24]

S. Zhu, L. Li, J. Liu, H. Wang, T. Wang, Y. Zhang, L. Zhang, R.S. Ruoff, F. Dong, Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors, ACS Nano 12 (2018) 1033-1042.

[25]

N. Wang, P. Zhao, K. Liang, M.Q. Yao, Y. Yang, W.C. Hu, CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors, Chem. Eng. J. 307 (2017) 105-112.

[26]

Y.X. Zhang, M. Dong, S.J. Zhu, C.P. Liu, Z.Q. Wen, MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors, Mater. Res. Bull. 49 (2014) 448-453.

[27]

A.B. Yuan, Q.L. Zhang, A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte, Electrochem. Commun. 8 (2006) 1173-1178.

[28]

M.J. Zhi, C.C. Xiang, J.T. Li, M. Li, N.Q. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review, Nanoscale 5 (2013) 72-88.

[29]

S.J. Zhu, L. Li, J.B. Liu, H.T. Wang, T. Wang, Y.X. Zhang, L.L. Zhang, R.S. Ruoff, F. Dong, Structural directed growth of ultrathin parallel birnessite on beta-MnO2 for high-performance asymmetric supercapacitors, Acs Nano 12 (2018) 1033-1042.

[30]

X. Peng, Y.Q. Guo, Q. Yin, J.C. Wu, J.Y. Zhao, C.M. Wang, S. Tao, W.S. Chu, C.Z. Wu, Y. Xie, Double-exchange effect in two-dimensional MnO2 nanomaterials, J. Am. Chem. Soc. 139 (2017) 5242-5248.

[31]

Z.B. Lei, J.T. Zhang, X.S. Zhao, Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes, J. Mater. Chem. 22 (2012) 153-160.

[32]

S.J. Zhu, J. Zhang, J.J. Ma, Y.X. Zhang, K.X. Yao, Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors, J. Power Sources 278 (2015) 555-561.

[33]

L.J. Deng, G. Zhu, J.F. Wang, L.P. Kang, Z.H. Liu, Z.P. Yang, Z.L. Wang, Graphene-MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte, J. Power Sources 196 (2011) 10782-10787.

[34]

Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors, Carbon 49 (2011) 2917-2925.

Nano Materials Science
Pages 404-411
Cite this article:
Zhu S, Huo W, Wang T, et al. Compulsive malposition of birnessite slab in 2D-Parallel birnessite on β-MnO2 networks for enhanced pseudocapacitance performances. Nano Materials Science, 2021, 3(4): 404-411. https://doi.org/10.1016/j.nanoms.2021.06.008

315

Views

5

Downloads

6

Crossref

4

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 07 May 2021
Accepted: 28 June 2021
Published: 05 July 2021
© 2021 Chongqing University.
Return