AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material

Hong Hea,bQiang Zhanga,bYaru ZhangaJianfeng ChenaLiqun Zhanga,c( )Fanzhu Lia,c( )
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China
Show Author Information

Abstract

Nonlinear finite element analysis is widely used for structural optimization of the design and the reliability analysis of complex elastomeric components. However, high-precision numerical results cannot be achieved without reliable strain energy functions (SEFs) of the rubber or rubber nanocomposite material. Although hyperelastic constitutive models have been studied for nearly 80 years, selecting one that accurately describes rubber's mechanical response is still a challenge. This work reviews 85 isotropic SEFs based on both the phenomenological theory and the micromechanical network theory proposed from the 1940s to 2019. A fitting algorithm which can realize the automatic fitting optimization and determination of the parameters of all SEFs reviewed is developed. The ability of each SEF to reproduce the experimental data of both the unfilled and highly filled rubber nanocomposite is quantitatively assessed based on a new proposed evaluation index. The top 30 SEFs for the unfilled rubber and the top 14 SEFs for the highly filled rubber nanocomposite are presented in the ranking lists. Finally, some suggestions on how to select an appropriate hyperelastic constitutive model are given, and the perspective on the future progress of constitutive models is summarized.

References

[1]
A. Amin, Constitutive Modeling for Strain-Rate Dependency of Natural and High Damping Rubbers, Saitama University Thesis, Saitama, 2001.
[2]

A. Amin, A. Lion, S. Sekita, Y. Okui, Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: experimental identification and numerical verification, Int. J. Plast. 22 (9) (2006) 1610–1657.

[3]
T.A. Vilgis, G. Heinrich, M. Klüppel, Reinforcement of Polymer Nano-Composites: Theory, Experiments and Applications, Cambridge University Press, Cambridge, 2009.
[4]

F. Laraba-Abbes, P. Ienny, R. Piques, A new 'Tailor-made'methodology for the mechanical behaviour analysis of rubber-like materials: Ⅱ. Application to the hyperelastic behaviour characterization of a carbon-black filled natural rubber vulcanizate, , Polymer 44 (3) (2003) 821–840.

[5]

A. Khodadadi, G. Liaghat, H. Ahmadi, A.R. Bahramian, Y. Anani, O. Razmkhah, S. Asemeni, Numerical and experimental study of impact on hyperelastic rubber panels, Iran. Polym. J. (Engl. Ed. ) 28 (2) (2019) 113–122.

[6]

M. Shahzad, A. Kamran, M.Z. Siddiqui, M. Farhan, Mechanical characterization and FE modelling of a hyperelastic material, Mater. Res. 18 (5) (2015) 918–924.

[7]
S. Göktepe, Micro-macro Approaches to Rubbery and Glassy Polymers: Predictive Micromechanically-Based Models and Simulations, Universit of Stuttgart Thesis, Stuttgart, 2007.
[8]

Y.T. Wei, Q.H. Fang, Z.B. Jin, X.J. Feng, Research progress on constitutive model of filled rubber, Polym. Bull. 5 (2014) 15–21 (Chinese).

[9]

M.C. Boyce, E.M. Arruda, Constitutive models of rubber elasticity: a review, Rubber Chem. Technol. 73 (3) (2000) 504–523.

[10]

L. Treloar, Stress-strain data for vulcanized rubber under various types of deformation, Rubber Chem. Technol. 17 (4) (1944) 813–825.

[11]

M.M. Attard, G.W. Hunt, Hyperelastic constitutive modeling under finite strain, Int. J. Solids Struct. 41 (18–19) (2004) 5327–5350.

[12]
L. Hoss, Universidade Federal do Rio Grande do Sul Thesis, Porto Alegre, 2009.
[13]

L. Hoss, R.J. Marczak, A new constitutive model for rubber-like materials, , Mec. Comput. 29 (28) (2010) 2759–2773.

[14]

G. Marckmann, E. Verron, Comparison of hyperelastic models for rubber-like materials, Rubber Chem. Technol. 79 (5) (2006) 835–858.

[15]

P. Steinmann, M. Hossain, G. Possart, Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar's data, Arch. Appl. Mech. 82 (9) (2012) 1183–1217.

[16]

M. Hossain, P. Steinmann, More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study, J. Mech. Behav. Mater. 22 (1–2) (2013) 27–50.

[17]

C.O. Horgan, G. Saccomandi, Constitutive modelling of rubber-like and biological materials with limiting chain extensibility, Math. Mech. Solid 7 (4) (2002) 353–371.

[18]

C.O. Horgan, G. Saccomandi, A description of arterial wall mechanics using limiting chain extensibility constitutive models, Biomech. Model. Mechan. 1 (4) (2003) 251–266.

[19]

C.O. Horgan, G. Saccomandi, Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility, J. Elasticity 56 (2) (1999) 159–170.

[20]

P. Martins, R. Natal Jorge, A. Ferreira, A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues, , Strain 42 (3) (2006) 135–147.

[21]

T. Beda, An approach for hyperelastic model-building and parameters estimation a review of constitutive models, Eur. Polym. J. 50 (2014) 97–108.

[22]
H. Dal, Y. Badienia, K. Açikgöz, F. Denli, A comparative study on hyperelastic constitutive models on rubber: state of the art after 2006, in: Constitutive Models for Rubber XI: Proceedings of the 11th European Conference on Constitutive Models for Rubber (ECCMR 2019), CRC Press, France, 2019, pp. 239–244. June 25-27, 2019, Nantes.
[23]

F. Ding, H. Zhang, M.M. Ding, T.F. Shi, Y.Q. Li, L.J. An, Theoretical models for stress-strain curves of elastomer materials, Acta Polym. Sin. 50 (12) (2019) 1357–1366.

[24]
J.E. Mark, B. Erman, Rubberlike Elasticity: a Molecular Primer, second ed., Cambridge University Press, Cambridge, 2007.
[25]
L.R.G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, London, 1975.
[26]

G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier, P. Fort, A theory of network alteration for the Mullins effect, , J. Mech. Phys. Solid. 50 (9) (2002) 2011–2028.

[27]

A. Lion, A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation, Continuum Mech. Thermodyn. 8 (3) (1996) 153–169.

[28]

A.R. Payne, The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part Ⅰ, , J. Appl. Polym. Sci. 6 (19) (1962) 57–63.

[29]

A.R. Payne, The dynamic properties of carbon black loaded natural rubber vulcanizates. Part Ⅱ, , J. Appl. Polym. Sci. 6 (21) (1962) 368–372.

[30]

A. Payne, Nonlinearity in the dynamic properties of rubber, Rubber Chem. Technol. 30 (1) (1957) 218–241.

[31]

L. Mullins, Effect of stretching on the properties of rubber, Rubber Chem. Technol. 21 (2) (1948) 281–300.

[32]

L. Mullins, N. Tobin, Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers, Rubber Chem. Technol. 30 (2) (1957) 555–571.

[33]

L. Mullins, N. Tobin, Stress softening in rubber vulcanizates. Part Ⅰ. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber, J. Appl. Polym. Sci. 9 (9) (1965) 2993–3009.

[34]

J.C. Criscione, J.D. Humphrey, A.S. Douglas, et al., An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, J. Mech. Phys. Solid. 48 (12) (2000) 2445–2465.

[35]

J.C. Criscione, A.S. Douglas, W.C. Hunter, Physically based strain invariant set for materials exhibiting transversely isotropic behavior, J. Mech. Phys. Solid. 49 (4) (2001) 871–897.

[36]
J.T. Bauman, Fatigue, Stress, and Strain of Rubber Components: Guide for Design Engineers, Carl Hanser Verlag GmbH Co KG, Munich, 2012.
[37]

G. Ayoub, F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, G. Kridli, A viscohyperelastic damage model for cyclic stress-softening, hysteresis and permanent set in rubber using the network alteration theory, Int. J. Plastic. 54 (3) (2014) 19–33.

[38]

J. -B. Le Cam, B. Huneau, E. Verron, Fatigue damage in carbon black filled natural rubber under uni-and multiaxial loading conditions, Int. J. Fatig. 52 (2013) 82–94.

[39]
L.E. Malvern, Introduction to the Mechanics of a Continuous Medium, PrenticeHall Inc, Englewood, 1969.
[40]
J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, Cambridge, 1997.
[41]

V. Vahapoğlu, S. Karadeniz, Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930–2003), , Rubber Chem. Technol. 79 (3) (2006) 489–499.

[42]

R. Rivlin, Large elastic deformations of isotropic materials. I. Fundamental concepts, Proc. Roy. Soc. Lond. A. 240 (822) (1948) 459–490.

[43]

R. Rivlin, Large elastic deformations of isotropic materials. Ⅱ. Some uniqueness theorems for pure, homogeneous deformation, Proc. Roy. Soc. Lond. A. 240 (822) (1948) 491–508.

[44]

R. Rivlin, Large elastic deformations of isotropic materials. Ⅲ. Some simple problems in cylindrical polar co-ordinates, Proc. Roy. Soc. Lond. A. 240 (823) (1948) 509–525.

[45]
G. Holzapfel, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, John Wiley & Sons, Chichester, New York, 2001.
[46]

R. Rivlin, Large elastic deformations of isotropic materials Ⅳ. Further developments of the general theory, Proc. Roy. Soc. Lond. A. 241 (835) (1948) 379–397.

[47]

R.S. Rivlin, D. Saunders, Large elastic deformations of isotropic materials Ⅶ. Experiments on the deformation of rubber, Proc. Roy. Soc. Lond. A. 243 (865) (1951) 251–288.

[48]

L. Treloar, The elasticity of a network of long-chain molecules, Ⅱ, Trans. Faraday Soc. 39 (1943) 241–246.

[49]

M. Mooney, A theory of large elastic deformation, , J. Appl. Phys. 11 (9) (1940) 582–592.

[50]

N.W. Tschoegl, Constitutive equations for elastomers, J. Polym. Sci. Pol. Chem. 9 (7) (1971) 1959–1970.

[51]

A. Isihara, N. Hashitsume, M. Tatibana, Statistical theory of rubber-like elasticity. Ⅳ. (Two-dimensional stretching), J. Chem. Phys. 19 (12) (1951) 1508–1512.

[52]
V.L. Biderman, Calculation of Rubber Parts, Rascheti na Prochnost, Moscow, 1958 (in Russian).
[53]

A. James, A. Green, G. Simpson, Strain energy functions of rubber. I. Characterization of gum vulcanizates, J. Appl. Polym. Sci. 19 (7) (1975) 2033–2058.

[54]

D. Haines, W. Wilson, Strain-energy density function for rubberlike materials, J. Mech. Phys. Solid. 27 (4) (1979) 345–360.

[55]

O.H. Yeoh, Characterization of elastic properties of carbon-black-filled rubber vulcanizates, Rubber Chem. Technol. 63 (5) (1990) 792–805.

[56]

A. Lion, On the large deformation behaviour of reinforced rubber at different temperatures, J. Mech. Phys. Solid. 45 (11–12) (1997) 1805–1834.

[57]

P. Haupt, K. Sedlan, Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling, Arch. Appl. Mech. 71 (2) (2001) 89–109.

[58]

S. Hartmann, P. Neff, Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Solids Struct. 40 (11) (2003) 2767–2791.

[59]

M. Carroll, A strain energy function for vulcanized rubbers, , J. Elasticity 103 (2) (2011) 173–187.

[60]

L. Nunes, Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test, Mat. Sci. Eng. A-Struct. 528 (3) (2011) 1799–1804.

[61]

M. Bahreman, H. Darijani, New polynomial strain energy function; application to rubbery circular cylinders under finite extension and torsion, J. Appl. Polym. Sci. 132 (13) (2015) 1–14.

[62]

Z. Zhao, X. Mu, F. Du, Modeling and verification of a new hyperelastic model for rubber-like materials, Math. Probl Eng. (2019) 1–10, 2019.

[63]

J. Humphrey, F. Yin, On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function, J. Biomech. Eng. 109 (4) (1987) 298–304.

[64]

J.D. Humphrey, Continuum biomechanics of soft biological tissues, Proc. Roy. Soc. Lond. A. 459 (2029) (2003) 3–46.

[65]

J.K. Knowles, The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids, Int, J. Fracture 13 (5) (1977) 611–639.

[66]

S. Swanson, A constitutive model for high elongation elastic materials, , J. Eng. Mater. Technol. 107 (2) (1985) 110–114.

[67]

Y. Yamashita, S. Kawabata, Approximated form of the strain energy-density function of carbon-black filled rubbers for industrial applications, Nippon Gomu Kyokaishi (J. Soc. Rubber Ind. Jpn. ) 65 (9) (1992) 517–528.

[68]

C. Davies, D.K. De, A. Thomas, Characterization of the behavior of rubber for engineering design purposes. 1. Stress-strain relations, Rubber Chem. Technol. 67 (4) (1994) 716–728.

[69]
I.H. Gregory, A.H. Muhr, I.J. Stephens, Engineering applications of rubber in simple extension, in: International Rubber Conference (Manchester 1996-06-17), Institute of Materials, London, 1997, pp. 118–122.
[70]

T. Beda, Reconciling the fundamental phenomenological expression of the strain energy of rubber with established experimental facts, J. Polym. Sci., Polym. Phys. 43 (2) (2005) 125–134.

[71]

A. Amin, S. Wiraguna, A. Bhuiyan, Y. Okui, Hyperelasticity model for finite element analysis of natural and high damping rubbers in compression and shear, J. Eng. Mech. 132 (1) (2006) 54–64.

[72]

O. Lopez-Pamies, A new I1-based hyperelastic model for rubber elastic materials, CR Mecanique 338 (1) (2010) 3–11.

[73]

T.W. Hohenberger, R.J. Windslow, N.M. Pugno, J.J. Busfield, A constitutive model for both low and high strain nonlinearities in highly filled elastomers and implementation with user-defined material subroutines in ABAQUS, , Rubber Chem. Technol. 92 (4) (2019) 653–686.

[74]

L. Hart-Smith, Elasticity parameters for finite deformations of rubber-like materials, Z. Angew. Math. Phys. 17 (5) (1966) 608–626.

[75]

D. Veronda, R. Westmann, Mechanical characterization of skin - finite deformations, J. Biomech. 3 (1) (1970) 111–124.

[76]

Y. Fung, Elasticity of soft tissues in simple elongation, Am. J. Physiol. Legacy C 213 (6) (1967) 1532–1544.

[77]

H. Demiray, A note on the elasticity of soft biological tissues, , J. Biomech. 5 (3) (1972) 309–311.

[78]

R. Vito, A note on arterial elasticity, , J. Biomech. 6 (5) (1973) 561–564.

[79]

J. Humphrey, F. Yin, On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function, J. Biomech. Eng. 109 (4) (1987) 298–304.

[80]

O.H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chem. Technol. 66 (5) (1993) 754–771.

[81]

J. Martins, E. Pires, R. Salvado, P. Dinis, A numerical model of passive and active behavior of skeletal muscles, , Comput. Methods Appl. Math. 151 (3–4) (1998) 419–433.

[82]

L. Chevalier, Y. Marco, Tools for multiaxial validation of behavior laws chosen for modeling hyper-elasticity of rubber-like materials, Polym. Eng. Sci. 42 (2) (2002) 280–298.

[83]
L. Gornet, G. Marckmann, P. Charrier, R. Desmorat, A new isotropic hyperelastic strain energy function in terms of invariants and its derivation into a pseudoelastic model for Mullins effect: application to finite element analysis, in: S. Jerrams, N. Murphy (Eds. ), Constitutive Models for Rubber Ⅶ, CRC Press, Boca Raton, FL, 2012, pp. 265–271.
[84]

M. Mansouri, H. Darijani, Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach, Int. J. Solid Struct. 51 (25–26) (2014) 4316–4326.

[85]

A.N. Gent, A. Thomas, Forms for the stored (strain) energy function for vulcanized rubber, J. Polym. Sci. 28 (118) (1958) 625–628.

[86]

H. Alexander, A constitutive relation for rubber-like materials, Int, J. Eng. Sci. 6 (9) (1968) 549–563.

[87]

J. Lambert-Diani, C. Rey, New phenomenological behavior laws for rubbers and thermoplastic elastomers, Eur, J. Mech. A Solids 18 (6) (1999) 1027–1043.

[88]

H. Khajehsaeid, J. Arghavani, R. Naghdabadi, A hyperelastic constitutive model for rubber-like materials, Eur, J. Mech. A Solids 38 (2013) 144–151.

[89]

A.N. Gent, A New Constitutive relation for rubber, , Rubber Chem. Technol. 69 (1) (1996) 59–61.

[90]

H.R. Warner Jr., Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells, Ind. Eng. Chem. Fundam. 11 (3) (1972) 379–387.

[91]

H. -G. Kilian, Equation of state of real networks, Polymer 22 (2) (1981) 209–217.

[92]

H. -G. Kilian, H. Enderle, K. Unseld, The use of the van der Waals model to elucidate universal aspects of structure-property relationships in simply extended dry and swollen rubbers, Colloid Polym. Sci. 264 (10) (1986) 866–876.

[93]

H. Ambacher, H. Enderle, H. Kilian, A. Sauter, Relaxation in permanent networks, Prog. Colloid Polym. Sci. 80 (1989) 209–220.

[94]

H. -G. Kilian, A molecular interpretation of the parameters of the Van der Waals equation of state for real networks, , Polym. Bull. 3 (3) (1980) 151–158.

[95]

K. Takamizawa, K. Hayashi, Strain energy density function and uniform strain hypothesis for arterial mechanics, J. Biomech. 20 (1) (1987) 7–17.

[96]

O.H. Yeoh, P. Fleming, A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity, , J. Polym. Sci., Part B: Polym. Phys. 35 (12) (1997) 1919–1931.

[97]

A. Gent, Elastic instabilities of inflated rubber shells, Rubber Chem. Technol. 72 (2) (1999) 263–268.

[98]

E. Pucci, G. Saccomandi, A note on the Gent model for rubber-like materials, , Rubber Chem. Technol. 75 (5) (2002) 839–852.

[99]

C.O. Horgan, G. Saccomandi, Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility, J. Elasticity 77 (2) (2004) 123–138.

[100]

M.F. Beatty, On constitutive models for limited elastic, molecular based materials, Math. Mech. Solid 13 (5) (2008) 375–387.

[101]

C.O. Horgan, J.G. Murphy, Limiting chain extensibility constitutive models of Valanis–Landel type, J. Elasticity 86 (2) (2007) 101–111.

[102]

K. Valanis, R.F. Landel, The strain-energy function of a hyperelastic material in terms of the extension ratios, , J. Appl. Phys. 38 (7) (1967) 2997–3002.

[103]

T. Peng, R. Landel, Stored energy function of rubberlike materials derived from simple tensile data, J. Appl. Phys. 43 (7) (1972) 3064–3067.

[104]

R.W. Ogden, Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids, Proc. Roy. Soc. Lond. A. 326 (1567) (1972) 565–584.

[105]

R. Rivlin, K. Sawyers, The strain-energy function for elastomers, , Trans. Soc. Rheol. 20 (4) (1976) 545–557.

[106]

M. Shariff, Strain energy function for filled and unfilled rubberlike material, Rubber Chem. Technol. 73 (1) (2000) 1–18.

[107]

K. Narooei, M. Arman, Modification of exponential based hyperelastic strain energy to consider free stress initial configuration and Constitutive modeling, J. Comput. Appl. Mech. 49 (1) (2018) 189–196.

[108]

T. Beda, Y. Chevalier, Hybrid continuum model for large elastic deformation of rubber, J. Appl. Phys. 94 (4) (2003) 2701–2706.

[109]

H. Bechir, L. Chevalier, M. Chaouche, K. Boufala, Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant, Eur. J. Mech. Solid. 25 (1) (2006) 110–124.

[110]
A.G. Korba, M.E. Barkey, New model for hyper-elastic materials behavior with an application on natural rubber, in: Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference Collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, American Society of Mechanical Engineers Digital Collection, Los Angeles, CA, USA, 2017, pp. 1–10. June 4-8, 2017.
[111]

W. Kuhn, über die gestalt fadenförmiger moleküle in lösungen, Kolloid Z. 68 (1) (1934) 2–15.

[112]

W. Kuhn, Beziehungen zwischen Molekülgröße, Statistischer molekülgestalt und elastischen eigenschaften hochpolymerer stoffe, Kolloid Z. 76 (3) (1936) 258–271.

[113]

L. Treloar, The elasticity of a network of long-chain molecules. I, , Trans. Faraday Soc. 39 (1943) 36–41.

[114]

W. Kuhn, Dependence of the average transversal on the longitudinal dimensions of statistical coils formed by chain molecules, J. Polym. Sci. 1 (5) (1946) 380–388.

[115]

F.T. Wall, P.J. Flory, Statistical thermodynamics of rubber elasticity, J. Chem. Phys. 19 (12) (1951) 1435–1439.

[116]

P.J. Flory, Statistical thermodynamics of random networks, Proc. Roy. Soc. Lond. A. 351 (1666) (1976) 351–380.

[117]

H.M. James, E. Guth, Theory of the elastic properties of rubber, J. Chem. Phys. 11 (10) (1943) 455–481.

[118]

H.M. James, Statistical properties of networks of flexible chains, , Chem. Phys. 15 (9) (1947) 651–668.

[119]

S.F. Edwards, The statistical mechanics of polymerized material, , Proc. Phys. Soc. 92 (1) (1967) 9–16.

[120]

R.C. Ball, M. Doi, S.F. Edwards, M. Warner, Elasticity of entangled networks, Polymer 22 (8) (1981) 1010–1018.

[121]

P.J. Flory, B. Erman, Theory of elasticity of polymer networks. 3, Macromolecules 15 (3) (1982) 800–806.

[122]

B. Erman, P.J. Flory, Relationships between stress, strain, and molecular constitution of polymer networks. Comparison of theory with experiments, Macromolecules 15 (3) (1982) 806–811.

[123]

S. Edwards, T. Vilgis, The effect of entanglements in rubber elasticity, , Polymer 27 (4) (1986) 483–492.

[124]

B. Erman, L. Monnerie, Theory of elasticity of amorphous networks: effect of constraints along chains, Macromolecules 22 (8) (1989) 3342–3348.

[125]

G. Heinrich, M. Kaliske, Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity, Comput. Theor. Polym. Sci. 7 (3) (1997) 227–241.

[126]

M. Rubinstein, S. Panyukov, Nonaffine deformation and elasticity of polymer networks, Macromolecules 30 (25) (1997) 8036–8044.

[127]

W. Kuhn, F. Grün, Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe, Kolloid Z. 101 (3) (1942) 248–271.

[128]

P.J. Flory, Network Structure and the elastic properties of vulcanized rubber, Chem. Rev. 35 (1) (1944) 51–75.

[129]

E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, , J. Mech. Phys. Solid. 41 (2) (1993) 389–412.

[130]

M. Kaliske, G. Heinrich, An extended tube-model for rubber elasticity: statisticalmechanical theory and finite element implementation, Rubber Chem. Technol. 72 (4) (1999) 602–632.

[131]

B. Meissner, L. Matějka, A Langevin-elasticity-theory-based constitutive equation for rubberlike networks and its comparison with biaxial stress–strain data. Part Ⅰ, Polymer 44 (16) (2003) 4599–4610.

[132]

B. Meissner, L. Matějka, A Langevin-elasticity-theory-based constitutive equation for rubberlike networks and its comparison with biaxial stress–strain data. Part Ⅱ, Polymer 45 (21) (2004) 7247–7260.

[133]

C. Miehe, S. Goktepe, F. Lulei, A micro-macro approach to rubber-like materials—part Ⅰ: the non-affine micro-sphere model of rubber elasticity, , J. Mech. Phys. Solid. 52 (11) (2004) 2617–2660.

[134]

D. Miroshnychenko, W.A. Green, D.M. Turner, Composite and filament models for the mechanical behaviour of elastomeric materials, J. Mech. Phys. Solid. 53 (4) (2005) 748–770.

[135]

D. Miroshnychenko, W.A. Green, Heuristic search for a predictive strain-energy function in nonlinear elasticity, Int. J. Solid Struct. 46 (2) (2009) 271–286.

[136]

J.D. Davidson, N.C. Goulbourne, A nonaffine network model for elastomers undergoing finite deformations, , J. Mech. Phys. Solid. 61 (8) (2013) 1784–1797.

[137]

V.N. Khiêm, M. Itskov, Analytical network-averaging of the tube model: rubber elasticity, J. Mech. Phys. Solid. 95 (2016) 254–269.

[138]

Y. Xiang, D. Zhong, P. Wang, G. Mao, H. Yu, S. Qu, A general constitutive model of soft elastomers, , J. Mech. Phys. Solid. 117 (2018) 110–122.

[139]

L. Treloar, G. Riding, A non-Gaussian theory for rubber in biaxial strain. I. Mechanical properties, Proc. Roy. Soc. Lond. A. 369 (1737) (1979) 261–280.

[140]

P. Wu, E. Van Der Giessen, On improved 3-D non-Gaussian network models for rubber elasticity, Mech. Res. Commun. 19 (5) (1992) 427–433.

[141]

P. Wu, E. Van Der Giessen, On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solid. 41 (3) (1993) 427–456.

[142]

A. Elias Zuniga, M.F. Beatty, Constitutive equations for amended non-Gaussian network models of rubber elasticity, Int. J. Eng. Sci. 40 (20) (2002) 2265–2294.

[143]
G.T. Lim, Scratch Behavior of Polymers, Texas A & M University, College Station, Texas, 2005.
[144]

H. Bechir, L. Chevalier, M. Idjeri, A three-dimensional network model for rubber elasticity: the effect of local entanglements constraints, Int. J. Eng. Sci. 48 (3) (2010) 265–274.

[145]
D.C. Drucker, A Definition of Stable Inelastic Material, Ft. Belvoir: Defense Technical Information Center, 1957. SEP.
[146]

R. Hill, A general theory of uniqueness and stability in elastic-plastic solids, , J. Mech. Phys. Solid. 6 (3) (1958) 236–249.

[147]

S. Kawabata, M. Matsuda, K. Tei, H. Kawai, Experimental survey of the strain energy density function of isoprene rubber vulcanizate, Macromolecules 14 (1) (1981) 154–162.

[148]

D. Seibert, N. Schoche, Direct comparison of some recent rubber elasticity models, Rubber Chem. Technol. 73 (2) (2000) 366–384.

[149]

M. Hossain, A. Amin, M.N. Kabir, Eight-chain and full-network models and their modified versions for rubber hyperelasticity: a comparative study, J. Mech. Behav. Mater. 24 (1–2) (2015) 11–24.

[150]

C.O. Horgan, M.G. Smayda, The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials, Mech. Mater. 51 (2012) 43–52.

[151]

M. Fujikawa, N. Maeda, J. Yamabe, M. Koishi, Performance evaluation of hyperelastic models for carbon-black-filled SBR vulcanizates, Rubber Chem. Technol. 93 (1) (2020) 142–156.

[152]

A. Benjeddou, E. Jankovich, T. Hadhri, Determination of the parameters of Ogden's law using biaxial data and Levenberg-Marquardt-Fletcher algorithm, J. Elastomers Plastics 25 (3) (1993) 224–248.

[153]

N. Nörenberg, R. Mahnken, Parameter identification for rubber materials with artificial spatially distributed data, Comput. Mech. 56 (2) (2015) 353–370.

[154]

R.W. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental data, Comput. Mech. 34 (6) (2004) 484–502.

[155]

E.H. Twizell, R. Ogden, Non-linear optimization of the material constants in Ogden's stress-deformation function for incompressinle isotropic elastic materials, ANZIAM J. 24 (4) (1983) 424–434.

[156]
H. Dal, Y. Badienia, K. Akgz, F.A. Denli, A novel parameter identification toolbox for the selection of hyperelastic constitutive models from experimental data, in: Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry vols. 11–13, Germany, Stuttgart, 2017, p. 2017. October.
[157]

Y. Gorash, T. Comlekci, R. Hamilton, CAE-based application for identification and verification of hyperelastic parameters, P. I. Mech. Eng. L-J. Mat. 231 (7) (2017) 611–626.

[161]

X. Li, Z. Li, Y. Xia, Test and calculation of the carbon black reinforcement effect on the hyper-elastic properties of tire rubbers, Rubber Chem. Technol. 88 (1) (2015) 98–116.

[162]

X. Li, Y. Wei, Classic strain energy functions and constitutive tests of rubber-like materials, Rubber Chem. Technol. 88 (4) (2015) 604–627.

[163]

A.R. Srinivasa, On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials, Int. J. Eng. Sci. 60 (2012) 1–12.

[164]
J.C. Criscione, Rivlin's Representation Formula Is Ill-Conceived for the Determination of Response Functions via Biaxial Testing. The Rational Spirit in Modern Continuum Mechanics, Springer, Dordrecht, 2004, pp. 197–215.
[165]

J. Plagge, A. Ricker, N.H. Kröger, et al., Efficient modeling of filled rubber assuming stress-induced microscopic restructurization, Int. J. Eng. Sci. 151 (2020), 103291.

Nano Materials Science
Pages 64-82
Cite this article:
He H, Zhang Q, Zhang Y, et al. A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. Nano Materials Science, 2022, 4(2): 64-82. https://doi.org/10.1016/j.nanoms.2021.07.003

504

Views

9

Downloads

50

Crossref

59

Web of Science

59

Scopus

3

CSCD

Altmetrics

Received: 02 April 2021
Accepted: 21 June 2021
Published: 16 July 2021
© 2021 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return