AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fracture behavior of hybrid epoxy nanocomposites based on multi-walled carbon nanotube and core-shell rubber

Zewen Zhua,1Hengxi Chena,1Qihui ChenbCong LiuaKwanghae NohaHaiqing YaoaMasaya KotakicHung-Jue Suea( )
Department of Materials Science and Engineering, Texas A & M University, College Station, TX, 77843-3003, USA
School of Materials Science and Engineering, North University of China, Taiyuan, 030051, PR China
Kaneka US Materials Research Center, Fremont, CA, 94555, USA

1 Authors acknowledge equal contribution.

Show Author Information

Abstract

The dispersion of nanoparticles plays a key role in enhancing the mechanical performance of polymer nanocomposites. In this work, one hybrid epoxy nanocomposite reinforced by a well dispersed, zinc oxide functionalized, multi-wall carbon nanotube (ZnO-MWCNT) and core-shell rubber (CSR) was prepared, which possesses both high modulus and fracture toughness while maintaining relatively high glass transition temperature (Tg). The improved fracture toughness from 0.82 ​MPa ​m1/2 for neat epoxy to 1.46 ​MPa ​m1/2 for the ternary epoxy nanocomposites is resulted from a series of synergistic toughening mechanisms, including cavitation of CSR-induced matrix shear banding, along with the fracture of MWCNTs and crack deflection. The implication of the present study for the preparation of high-performance polymer nanocomposites is discussed.

References

[1]

R. Auvergne, S. Caillol, G. David, B. Boutevin, J. -P. Pascault, Biobased thermosetting epoxy: present and future, Chem. Rev. 114 (2) (2014) 1082–1115.

[2]
U.P. Breuer, Commercial Aircraft Composite Technology, Springer, 2016.
[3]

H.J. Sue, K.T. Gam, N. Bestaoui, A. Clearfield, M. Miyamoto, N. Miyatake, Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites, Acta Mater. 52 (8) (2004) 2239–2250.

[4]

J. Liu, Z.J. Thompson, H. -J. Sue, F.S. Bates, M.A. Hillmyer, M. Dettloff, G. Jacob, N. Verghese, H. Pham, Toughening of epoxies with block copolymer micelles of wormlike morphology, Macromolecules 43 (17) (2010) 7238–7243.

[5]

C. Liu, Z. Zhu, G. Molero, Q. Chen, M. Kotaki, M. Mullins, H. -J. Sue, Mechanical behavior of self-curing epoxy nanocomposites, Polymer 179 (2019).

[6]

R.A. Pearson, A.F. Yee, Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly (phenylene oxide), Polymer 34 (17) (1993) 3658–3670.

[7]
A. Haghi, O.S. Oluwafemi, J.P. Jose, H.J. Maria, Composites and Nanocomposites, CRC Press, 2013.
[8]

P. Vijayan P, D. Puglia, M.A.S.A. Al-Maadeed, J.M. Kenny, S. Thomas, Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of 'micro' and 'nano' scale, Mater. Sci. Eng. R Rep. 116 (2017) 1–29.

[9]

H. -J. Sue, J. Bertram, E. Garcia-Meitin, J. Wilchester, L. Walker, Fracture behavior of core-shell rubber-modified crosslinkable epoxy thermoplastics, Colloid Polym. Sci. 272 (4) (1994) 456–466.

[10]

B. Johnsen, A. Kinloch, R. Mohammed, A. Taylor, S. Sprenger, Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer 48 (2) (2007) 530–541.

[11]

Y. Liang, R. Pearson, The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs), Polymer 51 (21) (2010) 4880–4890.

[12]

S. Sprenger, Epoxy resins modified with elastomers and surface-modified silica nanoparticles, Polymer 54 (18) (2013) 4790–4797.

[13]

K. Gam, M. Miyamoto, R. Nishimura, H. Sue, Fracture behavior of core-shell rubber–modified clay-epoxy nanocomposites, Polym. Eng. Sci. 43 (10) (2003) 1635–1645.

[14]

W. Liu, S.V. Hoa, M. Pugh, Morphology and performance of epoxy nanocomposites modified with organoclay and rubber, Polym. Eng. Sci. 44 (6) (2004) 1178–1186.

[15]

T. Li, S. He, A. Stein, L.F. Francis, F.S. Bates, Synergistic toughening of epoxy modified by graphene and block copolymer micelles, Macromolecules 49 (24) (2016) 9507–9520.

[16]

L. Yang, C. Zhang, S. Pilla, S. Gong, Polybenzoxazine-core shell rubber–carbon nanotube nanocomposites, Compos. Appl. Sci. Manuf. 39 (10) (2008) 1653–1659.

[17]

L. -C. Tang, Y. -J. Wan, K. Peng, Y. -B. Pei, L. -B. Wu, L. -M. Chen, L. -J. Shu, J. -X. Jiang, G. -Q. Lai, Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles, Compos. Appl. Sci. Manuf. 45 (2013) 95–101.

[18]

A. Bajpai, R. Martin, H. Faria, E. Ibarboure, S. Carlotti, Epoxy based hybrid nanocomposites: fracture mechanisms, tensile properties and electrical properties, Mater. Today: Proceedings 34 (2021) 210–216.

[19]

N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury, G.H. Liaghat, S. Vahid, Improving the fracture toughness and the strength of epoxy using nanomaterials–a review of the current status, Nanoscale 7 (23) (2015) 10294–10329.

[20]

C. Liu, S. Feng, Z. Zhu, Q. Chen, K. Noh, M. Kotaki, H.J. Sue, Manipulation of fracture behavior of poly(methyl methacrylate) nanocomposites by interfacial design of a metal-organic-framework nanoparticle toughener, Langmuir 36 (40) (2020) 11938–11947.

[21]

S. -Y. Fu, X. -Q. Feng, B. Lauke, Y. -W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Compos. B Eng. 39 (6) (2008) 933–961.

[22]

D. Maxwell, R. Young, A. Kinloch, Hybrid particulate-filled epoxy-polymers, J. Mater. Sci. Lett. 3 (1) (1984) 9–12.

[23]

J. Fröhlich, R. Thomann, O. Gryshchuk, J. Karger-Kocsis, R. Mülhaupt, High-performance epoxy hybrid nanocomposites containing organophilic layered silicates and compatibilized liquid rubber, J. Appl. Polym. Sci. 92 (5) (2004) 3088–3096.

[24]

B. Marouf, R. Pearson, R. Bagheri, Anomalous fracture behavior in an epoxy-based hybrid composite, Mater. Sci. Eng., A 515 (1–2) (2009) 49–58.

[25]
H. -J. Sue, E. Garcia-Meitin, D. Pickelman, P. Yang, Optimization of Mode-I Fracture Toughness of High-Performance Epoxies by Using Designed Core-Shell Rubber Particles, 1993.
[26]

L. Sun, G.L. Warren, H. -J. Sue, Partially cured epoxy/SWCNT thin films for the reinforcement of vacuum-assisted resin-transfer-molded composites, Carbon 48 (8) (2010) 2364–2367.

[27]

S.A. Hawkins, H. Yao, H. Wang, H. -J. Sue, Tensile properties and electrical conductivity of epoxy composite thin films containing zinc oxide quantum dots and multi-walled carbon nanotubes, Carbon 115 (2017) 18–27.

[28]

F.H. Gojny, J. Nastalczyk, Z. Roslaniec, K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chem. Phys. Lett. 370 (5–6) (2003) 820–824.

[29]

Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35 (3) (2010) 357–401.

[30]

A. Kausar, I. Rafique, B. Muhammad, Review of applications of polymer/carbon nanotubes and epoxy/CNT composites, Polym. Plast. Technol. Eng. 55 (11) (2016) 1167–1191.

[31]

M. Quaresimin, K. Schulte, M. Zappalorto, S. Chandrasekaran, Toughening mechanisms in polymer nanocomposites: from experiments to modelling, Compos. Sci. Technol. 123 (2016) 187–204.

[32]

J. Cha, J. Kim, S. Ryu, S.H. Hong, Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets, Compos. B Eng. 162 (2019) 283–288.

[33]

F. Gojny, M. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study, Compos. Sci. Technol. 65 (15–16) (2005) 2300–2313.

[34]

B. Fiedler, F.H. Gojny, M.H.G. Wichmann, M.C.M. Nolte, K. Schulte, Fundamental aspects of nano-reinforced composites, Compos. Sci. Technol. 66 (16) (2006) 3115–3125.

[35]

M.H.G. Wichmann, K. Schulte, H.D. Wagner, On nanocomposite toughness, Compos. Sci. Technol. 68 (1) (2008) 329–331.

[36]

K.P. Unnikrishnan, E.T. Thachil, Toughening of epoxy resins, Des. Monomers Polym. 9 (2) (2012) 129–152.

[37]

M. Shtein, R. Nadiv, N. Lachman, H. Daniel Wagner, O. Regev, Fracture behavior of nanotube–polymer composites: insights on surface roughness and failure mechanism, Compos. Sci. Technol. 87 (2013) 157–163.

[38]

H. Li, L. Yang, G. Weng, W. Xing, J. Wu, G. Huang, Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes, J. Mater. Chem. 3 (44) (2015) 22385–22392.

[39]

A.J. Kessman, J. Zhang, S. Vasudevan, J. Lou, B.W. Sheldon, Carbon nanotube pullout, interfacial properties, and toughening in ceramic nanocomposites: mechanistic insights from single fiber pullout analysis, Advanced Materials Interfaces 2 (2) (2015).

[40]

H. Gu, H. Zhang, C. Ma, X. Xu, Y. Wang, Z. Wang, R. Wei, H. Liu, C. Liu, Q. Shao, X. Mai, Z. Guo, Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy, Carbon 142 (2019) 131–140.

[41]

M.M. Modena, B. Ruhle, T.P. Burg, S. Wuttke, Nanoparticle Characterization: what to Measure? Advanced Materials, 2019, e1901556.

[42]

M. Frigione, M. Lettieri, Recent advances and trends of nanofilled/nanostructured epoxies, Materials 13 (15) (2020).

[43]

M.S.Z. Mat Desa, A. Hassan, A. Arsad, R. Arjmandi, Effect of core–shell rubber toughening on mechanical, thermal, and morphological properties of poly(lactic acid)/multiwalled carbon nanotubes nanocomposites, J. Appl. Polym. Sci. 136 (28) (2019).

[44]

S.K. Peddini, C.P. Bosnyak, N.M. Henderson, C.J. Ellison, D.R. Paul, Nanocomposites from styrene-butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 1: morphology and rheology, Polymer 55 (1) (2014) 258–270.

[45]

P. Bernal-Ortega, M.M. Bernal, A. Gonz alez-Jim enez, P. Posadas, R. Navarro, J.L. Valentín, New insight into structure-property relationships of natural rubber and styrene-butadiene rubber nanocomposites filled with MWCNT, Polymer (2020) 201.

[46]

A. Kausar, Rubber toughened epoxy-based nanocomposite: a promising pathway toward advanced materials, J. Macromol. Sci., Part A 57 (7) (2020) 499–511.

[47]

D. Quan, D. Carolan, C. Rouge, N. Murphy, A. Ivankovic, Carbon nanotubes and core–shell rubber nanoparticles modified structural epoxy adhesives, J. Mater. Sci. 52 (8) (2016) 4493–4508.

[48]

D. Sun, C. -C. Chu, H. -J. Sue, Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay, Chem. Mater. 22 (12) (2010) 3773–3778.

[49]

B.T. Marouf, Y. -W. Mai, R. Bagheri, R.A. Pearson, Toughening of epoxy nanocomposites: nano and hybrid effects, Polym. Rev. 56 (1) (2016) 70–112.

[50]

H.J. Sue, Study of rubber-modified brittle epoxy systems. Part Ⅱ: toughening mechanisms under mode-I fracture, Polym. Eng. Sci. 31 (4) (1991) 275–288.

[51]

T. Hirata, P. Li, F. Lei, S. Hawkins, M.J. Mullins, H.J. Sue, Epoxy nanocomposites with reduced coefficient of thermal expansion, J. Appl. Polym. Sci. 136 (26) (2019).

[52]

C. Liu, T. Zhang, F. Daneshvar, S. Feng, Z. Zhu, M. Kotaki, M. Mullins, H. -J. Sue, High dielectric constant epoxy nanocomposites based on metal organic frameworks decorated multi-walled carbon nanotubes, Polymer (2020) 207.

[53]

Z. Zhu, J. Baker, C. Liu, M. Zhao, M. Kotaki, H. -J. Sue, High performance epoxy nanocomposites based on dual epoxide modified α-Zirconium phosphate nanoplatelets, Polymer (2021) 212.

[54]

H. Yao, S.A. Hawkins, H. -J. Sue, Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets, Compos. Sci. Technol. 146 (2017) 161–168.

[55]

K.L. White, H. Yao, X. Zhang, H. -J. Sue, Rheology of electrostatically tethered nanoplatelets and multi-walled carbon nanotubes in epoxy, Polymer 84 (2016) 223–233.

[56]

T. Gomez-del Río, A. Salazar, R.A. Pearson, J. Rodríguez, Fracture behaviour of epoxy nanocomposites modified with triblock copolymers and carbon nanotubes, Compos. B Eng. 87 (2016) 343–349.

[57]

T.H. Hsieh, A.J. Kinloch, A.C. Taylor, I.A. Kinloch, The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer, J. Mater. Sci. 46 (23) (2011) 7525–7535.

[58]

J. Cha, G.H. Jun, J.K. Park, J.C. Kim, H.J. Ryu, S.H. Hong, Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes, Compos. B Eng. 129 (2017) 169–179.

[59]

J. Liu, H. -J. Sue, Z.J. Thompson, F.S. Bates, M. Dettloff, G. Jacob, N. Verghese, H. Pham, Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy, Macromolecules 41 (20) (2008) 7616–7624.

Nano Materials Science
Pages 251-258
Cite this article:
Zhu Z, Chen H, Chen Q, et al. Fracture behavior of hybrid epoxy nanocomposites based on multi-walled carbon nanotube and core-shell rubber. Nano Materials Science, 2022, 4(3): 251-258. https://doi.org/10.1016/j.nanoms.2021.07.006

277

Views

5

Downloads

15

Crossref

13

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 07 May 2021
Accepted: 05 July 2021
Published: 22 July 2021
© 2021 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return