AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface

Ye Zhaoa,1Taoyu Shena,1Minyue ZhangaRui Yina,bYanjun Zhenga( )Hu Liua( )Hongling SunaChuntai Liua( )Changyu Shena
Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan, 450002, China
China Astronaut Research and Training Center, Beijing, 100094, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Flexible pressure sensors have attracted wide attention due to their applications to electronic skin, health monitoring, and human-machine interaction. However, the tradeoff between their high sensitivity and wide response range remains a challenge. Inspired by human skin, we select commercial silicon carbide sandpaper as a template to fabricate carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite film with a hierarchical structured surface (h-CNT/PDMS) through solution blending and blade coating and then assemble the h-CNT/PDMS composite film with interdigitated electrodes and polyurethane (PU) scotch tape to obtain an h-CNT/PDMS-based flexible pressure sensor. Based on in-situ optical images and finite element analysis, the significant compressive contact effect between the hierarchical structured surface of h-CNT/PDMS and the interdigitated electrode leads to enhanced pressure sensitivity and a wider response range (0.1661 ​kPa−1, 0.4574 ​kPa−1 and 0.0989 ​kPa−1 in the pressure range of 0–18 ​kPa, 18–133 ​kPa and 133–300 ​kPa) compared with planar CNT/PDMS composite film (0.0066 ​kPa−1 in the pressure range of 0–240 ​kPa). The prepared pressure sensor displays rapid response/recovery time, excellent stability, durability, and stable response to different loading modes (bending and torsion). In addition, our pressure sensor can be utilized to accurately monitor and discriminate various stimuli ranging from human motions to pressure magnitude and spatial distribution. This study supplies important guidance for the fabrication of flexible pressure sensors with superior sensing performance in next-generation wearable electronic devices.

References

[1]

J.H. Pu, X.J. Zha, L.S. Tang, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics, ACS Appl. Mater. Interfaces 10 (47) (2018) 40880-40889.

[2]

Z. Gao, Z. Lou, W. Han, G. Shen, A self-healable bifunctional electronic skin, ACS Appl. Mater. Interfaces 12 (21) (2020) 24339-24347.

[3]

C.B. Huang, S. Witomska, A. Aliprandi, M.A. Stoeckel, M. Bonini, A. Ciesielski, P. Samori, Molecule-graphene hybrid materials with tunable mechano response: highly sensitive pressure sensors for health monitoring, Adv. Mater. 31 (1) (2019) 1804600.

[4]

N.P. Shetti, A. Mishra, S. Basu, R.J. Mascarenhas, R.R. Kakarla, T.M. Aminabhavi, Skin-patchable electrodes for biosensor applications: a review, ACS Biomater. Sci. Eng. 6 (4) (2020) 1823-1835.

[5]

J. Cao, C. Lu, J. Zhuang, M. Liu, X. Zhang, Y. Yu, Q. Tao, Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions, Angew. Chem. Int. Ed. 56 (30) (2017) 8795-8800.

[6]

X.F. Zhao, X.H. Wen, P. Sun, C. Zeng, M.Y. Liu, F. Yang, H. Bi, D. Li, R.G. Ma, J.C. Wang, X.B. Yu, D.W. Zhang, H.L. Lu, Spider web-like flexible tactile sensor for pressure-strain simultaneous detection, ACS Appl. Mater. Interfaces 13 (8) (2021) 10428-10436.

[7]

L. Tang, L. Wang, X. Yang, Y. Feng, Y. Li, W. Feng, Poly(n-isopropylacrylamide)-based smart hydrogels: design, properties and applications, Prog. Mater. Sci. 115 (2021) 100702.

[8]

W. Chen, X. Yan, Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review, J. Mater. Sci. Technol. 43 (2020) 175-188.

[9]

X. Chen, H. Liu, Y. Zheng, Y. Zhai, X. Liu, C. Liu, L. Mi, Z. Guo, C. Shen, Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor, ACS Appl. Mater. Interfaces 11 (45) (2019) 42594-42606.

[10]

H. Liu, X. Chen, Y. Zheng, D. Zhang, Y. Zhao, C. Wang, C. Pan, C. Liu, C. Shen, Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications, Adv. Funct. Mater. 31 (13) (2021) 2008006.

[11]

X. Liu, G. Su, Q. Guo, C. Lu, T. Zhou, C. Zhou, X. Zhang, Hierarchically structured self-healing sensors with tunable positive/negative piezoresistivity, Adv. Funct. Mater. 28 (15) (2018) 1706658.

[12]

Q. Guo, B. Huang, C. Lu, T. Zhou, G. Su, L. Jia, X. Zhang, A cephalopod-inspired mechanoluminescence material with skin-like self-healing and sensing properties, Mater, Horizons 6 (5) (2019) 996-1004.

[13]

J.C. Yang, J.O. Kim, J. Oh, S.Y. Kwon, J.Y. Sim, D.W. Kim, H.B. Choi, S. Park, Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature, ACS Appl. Mater. Interfaces 11 (21) (2019) 19472-19480.

[14]

H.B. Choi, J. Oh, Y. Kim, M. Pyatykh, J. Chang Yang, S. Ryu, S. Park, Transparent pressure sensor with high linearity over a wide pressure range for 3D touch screen applications, ACS Appl. Mater. Interfaces 12 (14) (2020) 16691-16699.

[15]

Z. Zhang, L. Wang, H. Yu, F. Zhang, L. Tang, Y. Feng, W. Feng, Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins, ACS Appl. Mater. Interfaces 12 (13) (2020) 15657-15666.

[16]

E.S. Hosseini, L. Manjakkal, D. Shakthivel, R. Dahiya, Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor, ACS Appl. Mater. Interfaces 12 (8) (2020) 9008-9016.

[17]

X. Hu, Y. Jiang, Z. Ma, Q. He, Y. He, T. Zhou, D. Zhang, Highly sensitive P(VDF-TrFE)/BTO nanofiber-based pressure sensor with dense stress concentration microstructures, ACS Appl. Polym. Mater. 2 (11) (2020) 4399-4404.

[18]

M. Lou, I. Abdalla, M. Zhu, J. Yu, Z. Li, B. Ding, Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring, ACS Appl. Mater. Interfaces 12 (1) (2020) 1597-1605.

[19]

Z. Li, B. Zhang, K. Li, T. Zhang, X. Yang, A wide linearity range and high sensitivity flexible pressure sensor with hierarchical microstructures via laser marking, J. Mater. Chem. C 8 (9) (2020) 3088-3096.

[20]

T. Zhao, T. Li, L. Chen, L. Yuan, X. Li, J. Zhang, Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials, ACS Appl. Mater. Interfaces 11 (32) (2019) 29466-29473.

[21]

H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang, W. Feng, Self-healing high strength and thermal conductivity of 3d graphene/pdms composites by the optimization of multiple molecular interactions, Macromolecules 53 (16) (2020) 7161-7170.

[22]

Y.M. Yin, H.Y. Li, J. Xu, C. Zhang, F. Liang, X. Li, Y. Jiang, J.W. Cao, H.F. Feng, J.N. Mao, L. Qin, Y.F. Kang, G. Zhu, Facile fabrication of flexible pressure sensor with programmable lattice structure, ACS Appl. Mater. Interfaces 13 (8) (2021) 10388-10396.

[23]

W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma, Y. Zhu, Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes, ACS Nano 14 (5) (2020) 5798-5805.

[24]

Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz, X. Li, Y. Fu, Y. Wei, G. Deng, Y. Yang, X. Wu, T.L. Ren, Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring, ACS Nano 14 (8) (2020) 10104-10114.

[25]

Y. Zheng, Y. Li, Z. Li, Y. Wang, K. Dai, G. Zheng, C. Liu, C. Shen, The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors, Compos. Sci. Technol. 139 (2017) 64-73.

[26]

W. Zhai, Q. Xia, K. Zhou, X. Yue, M. Ren, G. Zheng, K. Dai, C. Liu, C. Shen, Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability, Chem. Eng. J. 372 (2019) 373-382.

[27]

K. Bae, J. Jeong, J. Choi, S. Pyo, J. Kim, Large-area, crosstalk-free, flexible tactile sensor matrix pixelated by mesh layers, ACS Appl. Mater. Interfaces 13 (10) (2021) 12259-12267.

[28]

B.N. Sahoo, J. Woo, H. Algadi, J. Lee, T. Lee, Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications, Adv. Mater. Technol. 4 (10) (2019) 1900230.

[29]

X.F. Zhao, C.Z. Hang, X.H. Wen, M.Y. Liu, H. Zhang, F. Yang, R.G. Ma, J.C. Wang, D.W. Zhang, H.L. Lu, Ultrahigh-sensitive finlike double-sided e-skin for force direction detection, ACS Appl. Mater. Interfaces 12 (12) (2020) 14136-14144.

[30]

Y. Lu, G. Yu, X. Wei, C. Zhan, J.-W. Jeon, X. Wang, C. Jeffryes, Z. Guo, S. Wei, E.K. Wujcik, Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water, Adv. Compos. Hybrid. Mater. 2 (4) (2019) 711-719.

[31]

H. Guan, J. Meng, Z. Cheng, X. Wang, Processing natural wood into a high-performance flexible pressure sensor, ACS Appl. Mater. Interfaces 12 (41) (2020) 46357-46365.

[32]

X. Tang, W. Yang, S. Yin, G. Tai, M. Su, J. Yang, H. Shi, D. Wei, J. Yang, Controllable graphene wrinkle for a high-performance flexible pressure sensor, ACS Appl. Mater. Interfaces 13 (17) (2021) 20448-20458.

[33]

H.G. Wei, A. Li, D.S. Kong, Z.Z. Li, D.P. Cui, T. Li, B.B. Dong, Z.H. Guo, Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances, Adv. Compos. Hybrid. Mater. 4 (1) (2021) 86-95.

[34]

Z. Zhang, L. Tang, C. Chen, H. Yu, H. Bai, L. Wang, M. Qin, Y. Feng, W. Feng, Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors, J. Mater. Chem. A 9 (2) (2021) 875-883.

[35]

X. Li, Y.J. Fan, H.Y. Li, J.W. Cao, Y.C. Xiao, Y. Wang, F. Liang, H.L. Wang, Y. Jiang, Z.L. Wang, G. Zhu, Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor, ACS Nano 14 (8) (2020) 9605-9612.

[36]

B. Zhu, Y. Ling, L.W. Yap, M. Yang, F. Lin, S. Gong, Y. Wang, T. An, Y. Zhao, W. Cheng, Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring, ACS Appl. Mater. Interfaces 11 (32) (2019) 29014-29021.

[37]

X. Liao, Z. Zhang, Q. Liang, Q. Liao, Y. Zhang, Flexible, cuttable, and self-waterproof bending strain sensors using microcracked gold nanofilms@paper substrate, ACS Appl. Mater. Interfaces 9 (4) (2017) 4151-4158.

[38]

J. Wang, C. Zhang, D. Chen, M. Sun, N. Liang, Q. Cheng, Y. Ji, H. Gao, Z. Guo, Y. Li, D. Sun, Q. Li, H. Liu, Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS, ACS Appl. Mater. Interfaces 12 (46) (2020) 51854-51863.

[39]

H. Li, K. Wu, Z. Xu, Z. Wang, Y. Meng, L. Li, Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure, ACS Appl. Mater. Interfaces 10 (24) (2018) 20826-20834.

[40]

H. Yao, P. Li, W. Cheng, W. Yang, Z. Yang, H.P.A. Ali, H. Guo, B.C.K. Tee, Environment-resilient graphene vibrotactile sensitive sensors for machine intelligence, ACS Mater. Lett. 2 (8) (2020) 986-992.

[41]

L. Yuan, Z. Wang, H. Li, Y. Huang, S. Wang, X. Gong, Z. Tan, Y. Hu, X. Chen, J. Li, H. Lin, L. Li, W. Hu, Synergistic resistance modulation toward ultrahighly sensitive piezoresistive pressure sensors, Adv. Mater. Technol. 5 (4) (2020) 1901084.

[42]

D. Chen, Z. Liu, Y. Li, D. Sun, X. Liu, J. Pang, H. Liu, W. Zhou, Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive e-skin with four-dimensional resolution and application for detecting motion direction and airflow rate, ACS Appl. Mater. Interfaces 12 (27) (2020) 30896-30904.

[43]

C. Jeong, H. Ko, H.T. Kim, K. Sun, T.H. Kwon, H.E. Jeong, Y.B. Park, Bioinspired, high-sensitivity mechanical sensors realized with hexagonal microcolumnar arrays coated with ultrasonic-sprayed single-walled carbon nanotubes, ACS Appl. Mater. Interfaces 12 (16) (2020) 18813-18822.

[44]

M.S. Kim, K. Kim, D. Kwon, S. Kim, J. Gu, Y.S. Oh, I. Park, Microdome-induced strain localization for biaxial strain decoupling toward stretchable and wearable human motion detection, Langmuir 36 (30) (2020) 8939-8946.

[45]

S. Wang, G. Chen, S. Niu, K. Chen, T. Gan, Z. Wang, H. Wang, P. Du, C.W. Leung, S. Qu, Magnetic-assisted transparent and flexible percolative composite for highly sensitive piezoresistive sensor via hot embossing technology, ACS Appl. Mater. Interfaces 11 (51) (2019) 48331-48340.

[46]

Y. Zhang, F. Han, Y. Hu, Y. Xiong, H. Gu, G. Zhang, P. Zhu, R. Sun, C.P. Wong, Flexible and highly sensitive pressure sensors with surface discrete microdomes made from self-assembled polymer microspheres array, Macromol. Chem. Phys. 221 (11) (2020) 2000073.

[47]

G.J. Zhu, P.G. Ren, J. Wang, Q. Duan, F. Ren, W.M. Xia, D.X. Yan, A highly sensitive and broad-range pressure sensor based on polyurethane mesodome arrays embedded with silver nanowires, ACS Appl. Mater. Interfaces 12 (17) (2020) 19988-19999.

[48]

B. Zhu, Z. Niu, H. Wang, W.R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Microstructured graphene arrays for highly sensitive flexible tactile sensors, Small 10 (18) (2014) 3625-3631.

[49]

G.Y. Bae, S.W. Pak, D. Kim, G. Lee, H. Kim do, Y. Chung, K. Cho, Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array, Adv. Mater. 28 (26) (2016) 5300-5306.

[50]

Y. Bu, T. Shen, W. Yang, S. Yang, Y. Zhao, H. Liu, Y. Zheng, C. Liu, C. Shen, Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin, Sci. Bull. (2021), https://doi.org/10.1016/j.scib.2021.04.041.

[51]

Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang, X. Shi, B. Zhang, C. Liu, C. Shen, Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin, Chem. Eng. J. 420 (2) (2021) 127720.

[52]

Q. Li, R. Yin, D. Zhang, H. Liu, X. Chen, Y. Zheng, Z. Guo, C. Liu, C. Shen, Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors, J. Mater. Chem. A 8 (40) (2020) 21131-21141.

[53]

J. Yan, B. Kim, Y.G. Jeong, Thermomechanical and electrical properties of PDMS/MWCNT composite films crosslinked by electron beam irradiation, J. Mater. Sci. 50 (16) (2015) 5599-5608.

[54]

Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, T.L. Ren, Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity, ACS Nano 12 (3) (2018) 2346-2354.

[55]

S. Han, C. Liu, Z. Huang, J. Zheng, H. Xu, S. Chu, J. Wu, C. Liu, High-performance pressure sensors based on 3D microstructure fabricated by a facile transfer technology, Adv. Mater. Technol. 4 (5) (2019) 1800640.

[56]

H. Kong, Z. Song, J. Xu, D. Qu, Y. Bao, W. Wang, Z. Wang, Y. Zhang, Y. Ma, D. Han, L. Niu, Untraditional deformation-driven pressure sensor with high sensitivity and ultra-large sensing range up to MPa enables versatile applications, Adv. Mater. Technol. 5 (11) (2020) 2000677.

[57]

X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou, J. Huang, H. Wang, C. Xie, D. Zeng, Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins, Small 15 (10) (2019) 1804559.

[58]

H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai, M. Qin, W. Feng, Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material, Carbon 179 (2021) 348-357.

[59]

Z. Yue, Y. Zhu, J. Xia, Y. Wang, X. Ye, H. Jiang, H. Jia, Y. Lin, C. Jia, Sponge graphene aerogel pressure sensors with an extremely wide operation range for human recognition and motion detection, ACS Appl. Electron. Mater. 3 (3) (2021) 1301-1310.

Nano Materials Science
Pages 343-350
Cite this article:
Zhao Y, Shen T, Zhang M, et al. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface. Nano Materials Science, 2023, 5(4): 343-350. https://doi.org/10.1016/j.nanoms.2021.10.002

298

Views

22

Downloads

27

Crossref

19

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 01 August 2021
Accepted: 01 October 2021
Published: 04 January 2022
© 2021 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return