AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (20.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Adjusting the interfacial adhesion via surface modification to prepare high-performance fibers

Ning HanaXiaolin Zhaob,c( )Vijay Kumar Thakurd
Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen, 518118, Guangdong, China
National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing, 100081, Beijing, China
Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Scotland, Edinburgh, EH9 3JG, UK
Show Author Information

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) fiber is a new kind of high-performance fiber. Due to its excellent physical and chemical characteristics, it is widely used in various fields. However, the surface UHMWPE fiber is smooth and demonstrates no-polar groups. The weak interfacial adhesion between fiber and resin seriously restricts the applications of UHMWPE fiber. Therefore, the surface modification treatments of UHMWPE fiber are used to improve the interfacial adhesion strength. The modified method by adding nanomaterials elucidates the easy fabrication, advanced equipment and proper technology. Thus, the progress of UHMWPE nanocomposite fibers prepared via adding various nanofillers are reviewed. Meanwhile, the effects of other various methods on surface modification are also reviewed. This work advances the various design strategies about nano technologies on improving interfacial adhesion performance via treatment methodologies.

References

[1]

X. Zhao, J. Du, H. Yang, C. Jia, Y. Wang, D. Wang, Y. Lv, Surface modification of ultra-high molecular weight polyethylene fiber by different kinds of SiO2 nanoparticles, Polym. Compos. E38 (2017) 1928–1936.

[2]

X. Zhao, J. Du, H. Yang, C. Jia, H. Gao, D. Wang, Y. Lü, Mechanical behavior and failure mechanism of 2.5D (shallow bend-joint, deep straight-joint) and 3D orthogonal UHWMPE fiber/epoxy composites by vacuum-assistant-resin-infused, J. Wuhan Univ. Technol. 31 (2016) 1240–1244.

[3]

J. Du, X. Zhao, H. Yang, C. Jia, H. Gao, D. Wang, Y. Lü, Effect of twisted fiber on flexural property and microstructure of woven fabric reinforced composite, J. Wuhan Univ. Technol. 32 (2017) 791–794.

[4]

C.-Y. Huang, J.-Y. Wu, C.-S. Tsai, K.-H. Hsieh, J.-T. Yeh, K.-N. Chen, Effects of argon plasma treatment on the adhesion property of ultra high molecular weight polyethylene (UHMWPE) textile, Surf. Coating. Technol. 231 (2013) 507–511.

[5]

A.L. Forster, Z. Tsinas, M. Al-Sheikhly, Effect of irradiation and detection of long-lived polyenyl radicals in highly crystalline ultra-high molar mass polyethylene (UHMMPE) fibers, Polym. Bull. 11 (2019) 924.

[6]

S. Chhetri, H. Bougherara, A comprehensive review on surface modification of UHMWPE fiber and interfacial properties, Compos. Part A-Appl. S. (2021) 140.

[7]

R. Sa, Z. Wei, Y. Yan, L. Wang, W. Wang, L. Zhang, N. Ning, M. Tian, Catechol and epoxy functionalized ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved surface activity and interfacial adhesion, Compos. Sci. Technol. 113 (2015) 54–62.

[8]

Y. Ren, Z. Ding, C. Wang, C. Zang, Y. Zhang, L. Xu, Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties, Appl. Surf. Sci. 396 (2017) 1571–1579.

[9]

Y. Zhang, J. Yu, L. Chen, J. Zhu, Z. Hu, Surface modification of ultrahigh-molecular-weight polyethylene fibers with coupling agent during extraction process, J. Macromol. Sci. 48 (2009) 391–404.

[10]

W. Li, M. Huang, R. Ma, Improved mechanical properties of epoxy composites reinforced with surface-treated UHMWPE fibers, Polym. Adv. Technol. 29 (2018) 1287–1293.

[11]

L. Meng, W. Li, R. Ma, M. Huang, Y. Cao, J. Wang, Mechanical properties of rigid polyurethane composites reinforced with surface treated ultrahigh molecular weight polyethylene fibers, Polym. Adv. Technol. 29 (2018) 843–851.

[12]

L. Meng, W. Li, R. Ma, M. Huang, J. Wang, Y. Luo, J. Wang, K. Xia, Long UHMWPE fibers reinforced rigid polyurethane composites: an investigation in mechanical properties, Eur. Polym. J. 105 (2018) 55–60.

[13]

W. Li, R. Li, C. Li, Z.R. Chen, L. Zhang, Mechanical properties of surface-modified ultra-high molecular weight polyethylene fiber reinforced natural rubber composites, Polym. Compos. 38 (2015) 1215–1220.

[14]

X. Zhang, Y. Wang, S. Cheng, Properties of UHMWPE fiber-reinforced composites, Polym. Bull. 70 (2012) 821–835.

[15]

W. Liu, M. Wang, L. Xu, W. Zhang, Z. Xing, J. Hu, M. Yu, J. Li, G. Wu, Radiation technology application in high-performance fibers and functional textiles, Radiation Technology for Advanced Materials (2019) 13–73.

[16]

F. Yuan-fei, L. Yue, C. De-min, X. Kan, The effect of irradiation surface treatment of UHMWPE fibre on the interfacial properties of PVC composite, Plastics, Plast. Rubber. Compo. 46 (2017) 285–289.

[17]

Z. Zheng, X. Tang, M. Shi, G. Zhou, A study of the influence of controlled corona treatment on UHMWPE fibres in reinforced vinylester composites, Polym. Int. 52 (2003) 1833–1838.

[18]

L. Han, H. Cai, X. Chen, C. Zheng, W. Guo, Study of UHMWPE fiber surface modification and the properties of UHMWPE/epoxy composite, Polym. Bull. 12 (2020) 521.

[19]

M.H. Struszczyk, A.K. Puszkarz, B. Wilbik-Hałgas, M. Cichecka, P. Litwa, W. Urbaniak-Domagała, I. Krucinska, The surface modification of ballistic textiles using plasma-assisted chemical vapor deposition (PACVD), Textil. Res. J. 84 (2014) 2085–2093.

[20]

M. Struszczyk, A. Puszkarz, M. Miklas, M. Miklas, B. Wilbik-Hałgas, M. Cichecka, W. Urbaniak–Domagała, I. Krucińska, Effect of accelerated ageing on ballistic textiles modified by plasma-assisted chemical vapour deposition (PACVD), fibres, Textil. E Eur. 24 (2015) 83–88.

[21]

J. Zec, N.Z. Tomić, M. Zrilić, S. Lević, A. Marinković, R.J. Heinemann, Optimization of Al2O3 particle modification and UHMWPE fiber oxidation of EVA based hybrid composites: compatibility, morphological and mechanical properties, Compos. B Eng. 153 (2018) 36–48.

[22]

T. Ujvari, A. Toth, I. Bertoti, P.M. Nagy, A. Juhasz, Surface treatment of polyethylene by fast atom beams, Solid State Ionics 141–142 (2001) 225–229.

[23]

X. Jin, W. Wang, C. Xiao, T. Lin, L. Bian, P. Hauser, Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating, Compos. Sci. Technol. 128 (2016) 169–175.

[24]

J.-Y. Wu, S.-K. Lin, C.-S. Tsai, C.-Y. Huang, J.-T. Yeh, K.-N. Chen, Effects of surface modification by argon plasma on peel strength of woven-type ultrahigh-molecular-weight polyethylene, Jap. J. Appl. Phys. 49 (2010).

[25]

J.-T. Yeh, S.-C. Lin, K.-N. Chen, K.-S. Huang, Investigation of the ultradrawing properties of gel spun fibers of ultra-high molecular weight polyethylene/carbon nanotube blends, J. Appl. Polym. Sci. 110 (2008) 2538–2548.

[26]

Y. Zhang, J. Yu, C. Zhou, L. Chen, Z. Hu, Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/SiO2 nanocomposite fibers, Polym. Compos. 31 (2010) 684–690.

[27]

O. Jacobs, N. Mentz, A. Poeppel, K. Schulte, Sliding wear performance of HD-PE reinforced by continuous UHMWPE fibres, Wear 244 (2000) 20–28.

[28]

W. Zhang, Z. Hu, Y. Zhang, C. Lu, Y. Deng, Gel-spun fibers from magnesium hydroxide nanoparticles and UHMWPE nanocomposite: the physical and flammability properties, Compos. B Eng. 51 (2013) 276–281.

[29]

T. Ma, T. Zhang, P. Gao, J. Zhang, Synthesis and properties of ultrahigh molecular weight polyethylene/WS2 nanoparticle fiber for bullet-proof materials, Chin. Sci. Bull. 58 (2012) 945–948.

[30]

B. Li, R. Li, Preparation and property of ultrahigh molecular weight polyethylene/halloysite nanotube fiber, Fiber, Polym 17 (2016) 1043–1047.

[31]

J.-T. Yeh, C.-K. Wang, A. Yeh, L.-K. Huang, W.-H. Wang, K.-H. Hsieh, C.-Y. Huang, K.-N. Chen, Preparation and characterization of novel ultra-high molecular weight polyethylene composite fibers filled with nanosilica particles, Polym. Int. 62 (2013) 591–600.

[32]

Xiangyang Hao, An-Ting Chien, Xiaoying Hua, Jian Lu, Yaodong Liu, Dispersion of pristine CNT in UHMWPE solution to prepare CNT/UHMWPE composite fiber, Polym. Polym. Compos. 22 (2014) 467–470.

[33]

M.R. Khan, H. Mahfuz, A. Adnan, I. Shabib, T. Leventouri, Elastic properties of UHMWPE-SWCNT nanocomposites' fiber: an experimental, theoretic, and molecular dynamics evaluation, J. Mater. Eng. Perform. 22 (2013) 1593–1600.

[34]

M.R. Khan, H. Mahfuz, A. Adnan, T. Leventouri, S. Absar, A study of mechanical behavior and morphology of carbon nanotube reinforced UHMWPE/Nylon 6 hybrid polymer nanocomposite fiber, Fiber, Polym 15 (2014) 1484–1492.

[35]

M. Ahmadi, O. Zabihi, M. Masoomi, M. Naebe, Synergistic effect of MWCNTs functionalization on interfacial and mechanical properties of multi-scale UHMWPE fibre reinforced epoxy composites, Compos. Sci. Technol. 134 (2016) 1–11.

[36]

M.-f. An, H.-j. Xu, Y. Lv, L. Zhang, Q. Gu, F. Tian, Z.-b. Wang, The influence of chitin nanocrystals on structural evolution of ultra-high molecular weight polyethylene/chitin nanocrystal fibers in hot-drawing process, Chin. J. Polym. Sci. 34 (2016) 1373–1385.

[37]

J.T. Yeh, C.C. Tsai, C.K. Wang, J.W. Shao, M.Z. Xiao, S.C. Chen, Ultradrawing novel ultra-high molecular weight polyethylene fibers filled with bacterial cellulose nanofibers, Carbohydr. Polym. 101 (2014) 1–10.

[38]

Y. Zhao, M. Wang, Z. Tang, G. Wu, ESR study of free radicals in UHMW-PE fiber irradiated by gamma rays, Radiat. Phys. Chem. 79 (2010) 429–433.

[39]

X. Wu, C. Wu, G. Wang, P. Jiang, J. Zhang, A crosslinking method of UHMWPE irradiated by electron beam using TMPTMA as radiosensitizer, J. Appl. Polym. Sci. 127 (2013) 111–119.

[40]

T. Amornsakchai, S. Wangsoub, S. Bualek-Limcharoen, Irradiation of highly oriented polyethylene fibers in the atmosphere of some vinyl monomers: effect on compressive strength, J. Appl. Polym. Sci. 79 (2001) 2494–2502.

[41]

J. Wang, G. Liang, W. Zhao, S. Lü, Z. Zhang, Studies on surface modification of UHMWPE fibers via UV initiated grafting, Appl. Surf. Sci. 253 (2006) 668–673.

[42]

Y. Kondo, K. Miyazaki, Y. Yamaguchi, T. Sasaki, S. Irie, K. Sakurai, Mechanical properties of fiber reinforced styrene–butadiene rubbers using surface-modified UHMWPE fibers under EB irradiation, Eur. Polym. J. 42 (2006) 1008–1014.

[43]

A.M. Abdul-Kader, A. Turos, R.M. Radwan, A.M. Kelany, Surface free energy of ultra-high molecular weight polyethylene modified by electron and gamma irradiation, Appl. Surf. Sci. 255 (2009) 7786–7790.

[44]

Z. Xing, M. Wang, W. liu, J. Hu, G. Wu, Crystal structure and mechanical properties of UHMWPE-g-PMA fiber prepared by radiation grafting, Radiat, Phys. Chem. 86 (2013) 84–89.

[45]

K. Sakurai, Y. Kondo, K. Miyazaki, T. Okamoto, S. Irie, T. Sasaki, Ultrahigh-molecular-weight-polyethylene-fiber surface treatment by electron-beam-irradiation-induced graft polymerization and its effect on adhesion in a styrene-butadiene rubber matrix, J. Polym. Sci., Polym. Phys. Ed. 42 (2004) 2595–2603.

[46]

C. Gao, S. Li, H. Song, L. Xie, Radiation-induced crosslinking of ultra high molecular weight polyethylene fibers by means of electron beams, J. Appl. Polym. Sci. 98 (2005) 1761–1764.

[47]

I. Enomoto, Y. Katsumura, H. Kudo, S. Soeda, Graft polymerization using radiation-induced peroxides and application to textile dyeing, Radiat. Phys. Chem. 80 (2011) 169–174.

[48]

L. Wang, S. Gao, J. Wang, W. Wang, L. Zhang, M. Tian, Surface modification of UHMWPE fibers by ozone treatment and UV grafting for adhesion improvement, J. Adhes. 94 (2016) 30–45.

[49]

Z. Li, W. Zhang, X. Wang, Y. Mai, Y. Zhang, Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization, Appl. Surf. Sci. 257 (2011) 7600–7608.

[50]

M.S. Broujerdi, M. Masoomi, M. Asgari, Interfacial improvement and mechanical properties of epoxy resin/ultra-high molecular weight polyethylene fibre composites compatibilized with glycidyl methacrylate, J. Reinforc. Plast. Compos. 32 (2013) 1675–1684.

[51]

N. Bahramian, M. Atai, M.R. Naimi-Jamal, Ultra-high-molecular-weight polyethylene fiber reinforced dental composites: effect of fiber surface treatment on mechanical properties of the composites, Dent. Mater. 31 (2015) 1022–1029.

[52]

A.G. Andreopoulos, K. Liolios, A. Patrikis, Treated polyethylene fibres as reinforcement for epoxy resins, J. Mater. Sci. 28 (1993) 5002–5006.

[53]

T. Ogawa, H. Mukai, S. Osawa, Improvement of the mechanical properties of an ultrahigh molecular weight polyethylene fiber/epoxy composite by corona-discharge treatment, J. Appl. Polym. Sci. 79 (2001) 1162–1168.

[54]

Z. Zheng, X. Tang, M. Shi, G. Zhou, Surface modification of ultrahigh-molecular-weight polyethylene fibers, J. Polym. Sci., Polym. Phys. Ed. 42 (2004) 463–472.

[55]

R. Sa, Y. Yan, Z. Wei, L. Zhang, W. Wang, M. Tian, Surface modification of aramid fibers by bio-inspired poly (dopamine) and epoxy functionalized silane grafting, ACS Appl. Mater. Interfaces 6 (2014) 21730–21738.

[56]

W. Hu, Z. Zeng, Z. Wang, C. Liu, X. Wu, Q. Gu, Facile fabrication of conductive ultrahigh molecular weight polyethylene fibers via mussel-inspired deposition, J. Appl. Polym. Sci. 128 (2013) 1030–1035.

[57]

S.-H. Lu, G.-Z. Liang, J.-L. Wang, H.-J. Ren, Synthesis and performance characteristics of a water-based polyacrylate microemulsion for UHMWPE fiber adhesive coating, J. Appl. Polym. Sci. 99 (2006) 3195–3202.

[58]

D. Firouzi, A. Youssef, M. Amer, R. Srouji, A. Amleh, D.A. Foucher, H. Bougherara, A new technique to improve the mechanical and biological performance of ultra high molecular weight polyethylene using a nylon coating, J. Mech. Behav. Biomed. Mater. 32 (2014) 198–209.

[59]

D. Firouzi, D.A. Foucher, H. Bougherara, Nylon-coated ultra high molecular weight polyethylene fabric for enhanced penetration resistance, J. Appl. Polym. Sci. 131 (2014) 169–172.

[60]

X. Jin, W. Wang, L. Bian, C. Xiao, G. Zheng, C. Zhou, The effect of polypyrrole coatings on the adhesion and structure properties of UHMWPE fiber, Synthetic Met 161 (2011) 984–989.

[61]

W. Li, L. Meng, L. Wang, J. Mu, Q. Pan, Surface modification of ultra-high molecular weight polyethylene fibers by chromic acid, Surf. Interface Anal. 48 (2016) 1316–1319.

[62]

R. He, Q. Chang, X. Huang, J. Li, The interfacial adhesion of wood fiber-reinforced UHMWPE composite filled with acid-treated clay, Surf. Interface Anal. 50 (2018) 106–110.

[63]

H.G. Kalteh, M. Rezaei, F. Abbasi, N. Sheikh, Radiation-induced graft copolymerization of MMA monomer onto UHMWPE: adhesion improvement, J. Appl. Polym. Sci. 108 (2008) 1086–1092.

[64]

Y.C. Zhang, F.J. Shi, J.X. He, H.Y. Wu, Y.P. Qiu, Surface characterization of oxygen plasma treated Nano-SiO2 Sol-Gel coating UHMWPE filaments, Mater. Sci. Forum 658 (2010) 117–120.

[65]

H. Liu, D. Xie, L. Qian, X. Deng, Y.X. Leng, N. Huang, The mechanical properties of the ultrahigh molecular weight polyethylene (UHMWPE) modified by oxygen plasma, Surf. Coating. Technol. 205 (2011) 2697–2701.

[66]

J.L. Holloway, A.M. Lowman, M.R. VanLandingham, G.R. Palmese, Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements, Compos. Sci. Technol. 85 (2013) 118–125.

[67]
G. Han, B. Tan, F. Cheng, B. Wang, Y.-K. Leong, X. Hu, CNT toughened aluminium and CFRP interface for strong adhesive bonding, Nano mater. sci., https://doi.org/10.1016/j.nanoms.2021.09.003.
[68]
W. Xing, Y. Tang, On mechanical properties of nanocomposite hydrogels: searching for superior properties, Nano mater. sci., https://doi.org/10.1016/j.nanoms.2021.07.004.
[69]

S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: a critical review, Nano mater. sci. 1 (2019) 2–30.

[70]
Z. Zhu, H. Chen, Q. Chen, C. Liu, K. Noh, H. Yao, M. Kotaki, H.-J. Sue, Fracture behavior of hybrid epoxy nanocomposites based on multi-walled carbon nanotube and core-shell rubber, Nano mater. sci., https://doi.org/10.1016/j.nanoms.2021.07.006.
Nano Materials Science
Pages 1-14
Cite this article:
Han N, Zhao X, Thakur VK. Adjusting the interfacial adhesion via surface modification to prepare high-performance fibers. Nano Materials Science, 2023, 5(1): 1-14. https://doi.org/10.1016/j.nanoms.2021.11.004

211

Views

3

Downloads

12

Crossref

17

Web of Science

18

Scopus

0

CSCD

Altmetrics

Revised: 21 September 2021
Accepted: 16 November 2021
Published: 09 December 2021
© 2021 Chongqing University.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return