AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (28.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges

Kai Guoa,1Nanyang Xiaob,1Yixuan Liuc,1Zhenming WangdJudit TótheJános GyenisfVijay Kumar Thakurh( )Ayako OyanegQuazi T.H. Shubhraa( )
Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510140, China
Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA
Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 21116, China
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, 1117, Budapest, Magyar Tudósok Körútja 2, Hungary
University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary
Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India

1 Both authors share the first authorship.

Show Author Information

Abstract

Nanotechnology has revolutionized cancer drug delivery, and recent research continues to focus on the development of "one-size- fits-all, " i.e., "all-in-one" delivery nanovehicles. Although nanomedicines can address significant shortcomings of conventional therapy, biological barriers remain a challenge in their delivery and accumulation at diseased sites. To achieve long circulation time, immune evasion, and targeted accumulation, conventional nanocarriers need modifications, e.g., PEGylation, peptide/aptamer attachment, etc. One such modification is a biomimetic coating using cell membrane (CM), which can offer long circulation or targeting, or both. This top-down CM coating process is facile and can provide some advantageous features over surface modification by synthetic polymers. Herein, an overview is provided on the engineering of CM camouflaged polymer nanoparticles. A short section on CM and the development of CM coating technology has been provided. Detailed description of the preparation and characterization of CM camouflaged polymer NPs and their applications in cancer treatment has been reported. A brief comparison between CM coating and PEGylation has been highlighted. Various targeting approaches to achieve tumor-specific delivery of CM coated NPs have been summarized here. Overall, this review will give the readers a nice picture of CM coated polymer NPs, along with their opportunities and challenges.

References

[1]

H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, Ca - Cancer J. Clin. 71 (3) (2021) 209–249.

[2]

M.L. Neuhouser, The importance of healthy dietary patterns in chronic disease prevention, Nutr. Res. 70 (2019) 3–6.

[3]

D. Yang, Y. Tu, X. Wang, C. Cao, Y. Hu, J. Shao, L. Weng, X. Mou, X. Dong, A photo-triggered antifungal nanoplatform with efflux pump and heat shock protein reversal activity for enhanced chemo-photothermal synergistic therapy, Biomater. Sci. 9 (9) (2021) 3293–3299.

[4]

H.J. Yu, B.G. De Geest, Nanomedicine and cancer immunotherapy, Acta Pharmacol. Sin. 41 (7) (2020) 879–880.

[5]

A.M. Thanekar, S.A. Sankaranarayanan, A.K. Rengan, Role of nano-sensitizers in radiation therapy of metastatic tumors, Cancer Treat. Res. Commun. 26 (2021) 100303.

[6]

C. Roma-Rodrigues, L. Rivas-Garcia, P.V. Baptista, A.R. Fernandes, Gene therapy in cancer treatment: why go nano? Pharmaceutics 12 (3) (2020).

[7]

B. Huang, Y. Huang, H. Han, Q. Ge, D. Yang, Y. Hu, M. Ding, Y. Su, Y. He, J. Shao, J. Chu, An NIR-Ⅱ responsive nanoplatform for cancer photothermal and oxidative stress therapy, Front. Bioeng. Biotechnol. 9 (2021) 751757.

[8]

S. Wang, Z. Wang, G. Yu, Z. Zhou, O. Jacobson, Y. Liu, Y. Ma, F. Zhang, Z.Y. Chen, X. Chen, Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy, Adv. Sci. 6 (5) (2019) 1801986.

[9]

P.A. Mayes, K.W. Hance, A. Hoos, The promise and challenges of immune agonist antibody development in cancer, Nat. Rev. Drug Discov. 17 (7) (2018) 509–527.

[10]

Y. Liu, H. Miyoshi, M. Nakamura, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles, Int. J. Cancer 120 (12) (2007) 2527–2537.

[11]

G. Lin, R.A. Revia, M. Zhang, Inorganic nanomaterial-mediated gene therapy in combination with other antitumor treatment modalities, Adv. Funct. Mater. 31 (5) (2021).

[12]

Y. Wang, A.V. Pisapati, X.F. Zhang, X. Cheng, Recent developments in nanomaterial-based shear-sensitive drug delivery systems, Adv. Healthc. Mater. 10 (13) (2021), e2002196.

[13]

D. Yang, S. Zhang, Y. Hu, J. Chen, B. Bao, L. Yuwen, L. Weng, Y. Cheng, L. Wang, AIE-active conjugated polymer nanoparticles with red-emission for in vitro and in vivo imaging, RSC Adv. 6 (115) (2016) 114580–114586.

[14]

M. Fecková, J. Tóth, P. Šálek, A. Španová, D. Horák, Q.T.H. Shubhra, A. Kovařík, J. Gyenis, B. Rittich, Capture of DNAs by magnetic hypercrosslinked poly(styreneco-divinylbenzene) microspheres, J. Mater. Sci. 56 (9) (2021) 5817–5829.

[15]

D. Yang, L. Sun, L. Xue, X. Wang, Y. Hu, J. Shao, L. Fu, X. Dong, Orthogonal AzaBODIPY–BODIPY dyad as heavy-atom free photosensitizer for photo-initiated antibacterial therapy, J. Innov. Opt. Health Sci. (2021) 2250004, 0(0).

[16]

M.R. Zocchi, F. Tosetti, R. Benelli, A. Poggi, Cancer nanomedicine special issue review anticancer drug delivery with nanoparticles: extracellular vesicles or synthetic nanobeads as therapeutic tools for conventional treatment or immunotherapy, Cancers 12 (7) (2020).

[17]

T. Feczko, A. Fodor-Kardos, M. Sivakumaran, Q.T. Haque Shubhra, In vitro IFNalpha release from IFN-alpha- and pegylated IFN-alpha-loaded poly(lactic-coglycolic acid) and pegylated poly(lactic-co-glycolic acid) nanoparticles, Nanomedicine 11 (16) (2016) 2029–2034.

[18]

Q.T.H. Shubhra, A. Oyane, H. Araki, M. Nakamura, H. Tsurushima, Calcium phosphate nanoparticles prepared from infusion fluids for stem cell transfection: process optimization and cytotoxicity analysis, Biomater. Sci. 5 (5) (2017) 972–981.

[19]

Q.T.H. Shubhra, A. Oyane, M. Nakamura, S. Puentes, A. Marushima, H. Tsurushima, Preliminary in vivo magnetofection data using magnetic calcium phosphate nanoparticles immobilizing DNA and iron oxide nanocrystals, Data Brief 18 (2018) 1696–1701.

[20]

K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res. 14 (5) (2008) 1310–1316.

[21]

H. Chen, Y. Ma, X. Wang, Z. Zha, Multifunctional phase-change hollow mesoporous Prussian blue nanoparticles as a NIR light responsive drug co-delivery system to overcome cancer therapeutic resistance, J. Mater. Chem. B 5 (34) (2017) 7051–7058.

[22]

R. Di Toro, V. Betti, S. Spampinato, Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers, Eur. J. Pharmaceut. Sci. 21 (2–3) (2004) 161–169.

[23]

A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B Biointerfaces 75 (1) (2010) 1–18.

[24]

J. Panyam, V. Labhasetwar, Dynamics of endocytosis and exocytosis of poly(D, L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells, Pharm. Res. (N. Y.) 20 (2) (2003) 212–220.

[25]

J.K. Vasir, V. Labhasetwar, Biodegradable nanoparticles for cytosolic delivery of therapeutics, Adv. Drug Deliv. Rev. 59 (8) (2007) 718–728.

[26]

J. Panyam, W.Z. Zhou, S. Prabha, S.K. Sahoo, V. Labhasetwar, Rapid endolysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery, Faseb. J. 16 (10) (2002) 1217–1226.

[27]

A. Feray, N. Szely, E. Guillet, M. Hullo, F.X. Legrand, E. Brun, M. Pallardy, A. Biola-Vidamment, How to address the adjuvant effects of nanoparticles on the immune system, Nanomaterials 10 (3) (2020).

[28]

B.S. Zolnik, A. Gonzalez-Fernandez, N. Sadrieh, M.A. Dobrovolskaia, Nanoparticles and the immune system, Endocrinology 151 (2) (2010) 458–465.

[29]

P.D. Dwivedi, A. Tripathi, K.M. Ansari, R. Shanker, M. Das, Impact of nanoparticles on the immune system, J. Biomed. Nanotechnol. 7 (1) (2011) 193–194.

[30]

Q. Yang, Y. Xiao, Y. Yin, G. Li, J. Peng, Correction to erythrocyte membranecamouflaged IR780 and DTX coloading polymeric nanoparticles for imagingguided cancer photo-chemo combination therapy, Mol. Pharm. 16 (9) (2019) 4086.

[31]

Q. Yang, Y. Xiao, Y. Yin, G. Li, J. Peng, Erythrocyte membrane-camouflaged IR780 and DTX coloading polymeric nanoparticles for imaging-guided cancer photochemo combination therapy, Mol. Pharm. 16 (7) (2019) 3208–3220.

[32]

C.M. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang, L. Zhang, Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform, Proc. Natl. Acad. Sci. U. S. A. 108 (27) (2011) 10980–10985.

[33]

C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen, A.V. Kroll, C. Carpenter, M. Ramesh, V. Qu, S.H. Patel, J. Zhu, W. Shi, F.M. Hofman, T.C. Chen, W. Gao, K. Zhang, S. Chien, L. Zhang, Nanoparticle biointerfacing by platelet membrane cloaking, Nature 526 (7571) (2015) 118–121.

[34]

J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics, ACS Nano 12 (8) (2018) 8520–8530.

[35]

Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian, P. Gong, G. Gao, H. Pan, L. Liu, A. Ma, H. Cui, Y. Ma, L. Cai, Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy, ACS Nano 10 (11) (2016) 10049–10057.

[36]

X. Chen, B. Liu, R. Tong, L. Zhan, X. Yin, X. Luo, Y. Huang, J. Zhang, W. He, Y. Wang, Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy, Biomater. Sci. 9 (3) (2021) 590–625.

[37]

Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications, Nano-Micro Lett. 11 (1) (2019) 100.

[38]

C.M. Hu, R.H. Fang, J. Copp, B.T. Luk, L. Zhang, A biomimetic nanosponge that absorbs pore-forming toxins, Nat. Nanotechnol. 8 (5) (2013) 336–340.

[39]

C. Sevencan, R.S.A. McCoy, P. Ravisankar, M. Liu, S. Govindarajan, J. Zhu, B.H. Bay, D.T. Leong, Cell membrane nanotherapeutics: from synthesis to applications emerging tools for personalized cancer therapy, Adv. Therapeut. 3 (3) (2020) 1900201.

[40]

G. Varady, J. Cserepes, A. Nemeth, E. Szabo, B. Sarkadi, Cell surface membrane proteins as personalized biomarkers: where we stand and where we are headed, Biomarkers Med. 7 (5) (2013) 803–819.

[41]

M.S. Balda, K. Matter, Epithelial cell adhesion and the regulation of gene expression, Trends Cell Biol. 13 (6) (2003) 310–318.

[42]

D. De Pasquale, A. Marino, C. Tapeinos, C. Pucci, S. Rocchiccioli, E. Michelucci, F. Finamore, L. McDonnell, A. Scarpellini, S. Lauciello, M. Prato, A. Larranaga, F. Drago, G. Ciofani, Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes, Mater. Des. 192 (2020) 108742.

[43]

M. Wu, W. Le, T. Mei, Y. Wang, B. Chen, Z. Liu, C. Xue, Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy, Int. J. Nanomed. 14 (2019) 4431–4448.

[44]

S.J. Guo, D.M. Lin, J. Li, R.Z. Liu, C.X. Zhou, D.M. Wang, W.B. Ma, Y.H. Zhang, S.R. Zhang, Tumor-associated macrophages and CD3-zeta expression of tumorinfiltrating lymphocytes in human esophageal squamous-cell carcinoma, Dis. Esophagus 20 (2) (2007) 107–116.

[45]

A.S. MacDonald, A.D. Straw, B. Bauman, E.J. Pearce, CD8- dendritic cell activation status plays an integral role in influencing Th2 response development, J. Immunol. 167 (4) (2001) 1982–1988.

[46]

J. Wahlstrom, M. Berlin, C.M. Skold, H. Wigzell, A. Eklund, J. Grunewald, Phenotypic analysis of lymphocytes and monocytes/macrophages in peripheral blood and bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis, Thorax 54 (4) (1999) 339–346.

[47]

R.C. Schugar, S.M. Chirieleison, K.E. Wescoe, B.T. Schmidt, Y. Askew, J.J. Nance, J.M. Evron, B. Peault, B.M. Deasy, High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue, J. Biomed. Biotechnol. (2009) 789526, 2009.

[48]

C.M. Schurch, S. Forster, F. Bruhl, S.H. Yang, E. Felley-Bosco, E. Hewer, The "don't eat me" signal CD47 is a novel diagnostic biomarker and potential therapeutic target for diffuse malignant mesothelioma, OncoImmunology 7 (1) (2017), e1373235.

[49]

P. Burger, P. Hilarius-Stokman, D. de Korte, T.K. van den Berg, R. van Bruggen, CD47 functions as a molecular switch for erythrocyte phagocytosis, Blood 119 (23) (2012) 5512–5521.

[50]

H. Furthmayr, V.T. Marchesi, Subunit structure of human erythrocyte glycophorin A, Biochemistry 15 (5) (1976) 1137–1144.

[51]

J. Macdonald, J. Henri, K. Roy, E. Hays, M. Bauer, R.N. Veedu, N. Pouliot, S. Shigdar, EpCAM immunotherapy versus specific targeted delivery of drugs, Cancers 10 (1) (2018).

[52]

P.E.J. van der Meijden, J.W.M. Heemskerk, Platelet biology and functions: new concepts and clinical perspectives, Nat. Rev. Cardiol. 16 (3) (2019) 166–179.

[53]

S.H. Yun, E.H. Sim, R.Y. Goh, J.I. Park, J.Y. Han, Platelet activation: the mechanisms and potential biomarkers, BioMed Res. Int. (2016) 9060143, 2016.

[54]

R. Dong, M. Zhang, Q. Hu, S. Zheng, A. Soh, Y. Zheng, H. Yuan, Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review), Int. J. Mol. Med. 41 (2) (2018) 599–614.

[55]

F. Cognasse, H. Hamzeh, P. Chavarin, S. Acquart, C. Genin, O. Garraud, Evidence of Toll-like receptor molecules on human platelets, Immunol. Cell Biol. 83 (2) (2005) 196–198.

[56]

T. Liang, R. Zhang, X. Liu, Q. Ding, S. Wu, C. Li, Y. Lin, Y. Ye, Z. Zhong, M. Zhou, Recent advances in macrophage-mediated drug delivery systems, Int. J. Nanomed. 16 (2021) 2703–2714.

[57]

H.H. Wu, Y. Zhou, Y. Tabata, J.Q. Gao, Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic, J. Contr. Release 294 (2019) 102–113.

[58]

M.L. Steer, C. Baldwin, A. Levitzki, Preparation and characterization of hormonesensitive, resealed erythrocyte ghosts, J. Biol. Chem. 251 (16) (1976) 4930–4935.

[59]

R.H. Fang, C.M. Hu, B.T. Luk, W. Gao, J.A. Copp, Y. Tai, D.E. O'Connor, L. Zhang, Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery, Nano Lett. 14 (4) (2014) 2181–2188.

[60]

A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos, J.O. Martinez, B.S. Brown, S.Z. Khaled, I.K. Yazdi, M.V. Enzo, L. Isenhart, M. Ferrari, E. Tasciotti, Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions, Nat. Nanotechnol. 8 (1) (2013) 61–68.

[61]

C. Gao, Z. Lin, B. Jurado-Sanchez, X. Lin, Z. Wu, Q. He, Stem cell membranecoated nanogels for highly efficient in vivo tumor targeted drug delivery, Small 12 (30) (2016) 4056–4062.

[62]

X. Wei, J. Gao, R.H. Fang, B.T. Luk, A.V. Kroll, D. Dehaini, J. Zhou, H.W. Kim, W. Gao, W. Lu, L. Zhang, Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia, Biomaterials 111 (2016) 116–123.

[63]

T. Kang, Q. Zhu, D. Wei, J. Feng, J. Yao, T. Jiang, Q. Song, X. Wei, H. Chen, X. Gao, J. Chen, Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis, ACS Nano 11 (2) (2017) 1397–1411.

[64]

A. Pitchaimani, T.D.T. Nguyen, S. Aryal, Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy, Biomaterials 160 (2018) 124–137.

[65]

L. Rao, Q. -F. Meng, Q. Huang, Z. Wang, G. -T. Yu, A. Li, W. Ma, N. Zhang, S. -S. Guo, X. -Z. Zhao, K. Liu, Y. Yuan, W. Liu, Platelet–leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells, Adv. Funct. Mater. 28 (34) (2018) 1803531.

[66]

L. -L. Bu, L. Rao, G. -T. Yu, L. Chen, W. -W. Deng, J. -F. Liu, H. Wu, Q. -F. Meng, S. - S. Guo, X. -Z. Zhao, W. -F. Zhang, G. Chen, Z. Gu, W. Liu, Z. -J. Sun, Cancer stem cell-platelet hybrid membrane-coated magnetic nanoparticles for enhanced photothermal therapy of head and neck squamous cell carcinoma, Adv. Funct. Mater. 29 (10) (2019) 1807733.

[67]

K. Guo, Y. Liu, L. Tang, Q.T.H. Shubhra, Homotypic biomimetic coating synergizes chemo-photothermal combination therapy to treat breast cancer overcoming drug resistance, Chem. Eng. J. 428 (2022) 131120.

[68]

J.T. MacGregor, J.A. Heddle, M. Hite, B.H. Margolin, C. Ramel, M.F. Salamone, R.R. Tice, D. Wild, Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes, Mutat. Res. Genet. Toxicol. 189 (2) (1987) 103–112.

[69]

M. Podsiedlik, M. Markowicz-Piasecka, J. Sikora, Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery, Chem. Biol. Interact. 332 (2020) 109305.

[70]

C.M. Hu, R.H. Fang, L. Zhang, Erythrocyte-inspired delivery systems, Adv. Healthc. Mater. 1 (5) (2012) 537–547.

[71]

R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology, Adv. Mater. 30 (23) (2018), e1706759.

[72]

B.T. Luk, R.H. Fang, C.M. Hu, J.A. Copp, S. Thamphiwatana, D. Dehaini, W. Gao, K. Zhang, S. Li, L. Zhang, Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors, Theranostics 6 (7) (2016) 1004–1011.

[73]

B. Liu, W. Wang, J. Fan, Y. Long, F. Xiao, M. Daniyal, C. Tong, Q. Xie, Y. Jian, B. Li, X. Ma, W. Wang, RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer, Biomaterials 217 (2019) 119301.

[74]

L. Luo, F. Zeng, J. Xie, J. Fan, S. Xiao, Z. Wang, H. Xie, B. Liu, A RBC membranecamouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer, J. Mater. Chem. B 8 (18) (2020) 4080–4092.

[75]

J.E. Brittain, J. Han, K.I. Ataga, E.P. Orringer, L.V. Parise, Mechanism of CD47- induced alpha4beta1 integrin activation and adhesion in sickle reticulocytes, J. Biol. Chem. 279 (41) (2004) 42393–42402.

[76]

P.A. Oldenborg, A. Zheleznyak, Y.F. Fang, C.F. Lagenaur, H.D. Gresham, F.P. Lindberg, Role of CD47 as a marker of self on red blood cells, Science 288 (5473) (2000) 2051–2054.

[77]

P. Hermand, P. Gane, M. Huet, V. Jallu, C. Kaplan, H.H. Sonneborn, J.P. Cartron, P. Bailly, Red cell ICAM-4 is a novel ligand for platelet-activated alpha Ⅱbbeta 3 integrin, J. Biol. Chem. 278 (7) (2003) 4892–4898.

[78]
D. Naor, R.V. Sionov, D. Ish-Shalom, CD44: structure, function and association with the malignant process, in: G.F. Vande Woude, G. Klein (Eds.), Advances in Cancer Research, Academic Press, 1997, pp. 241–319.
[79]

R.J. Peach, D. Hollenbaugh, I. Stamenkovic, A. Aruffo, Identification of hyaluronic acid binding sites in the extracellular domain of CD44, J. Cell Biol. 122 (1) (1993) 257–264.

[80]

E. Vachon, R. Martin, J. Plumb, V. Kwok, R.W. Vandivier, M. Glogauer, A. Kapus, X. Wang, C.W. Chow, S. Grinstein, G.P. Downey, CD44 is a phagocytic receptor, Blood 107 (10) (2006) 4149–4158.

[81]

E.J. Brown, W.A. Frazier, Integrin-associated protein (CD47) and its ligands, Trends Cell Biol. 11 (3) (2001) 130–135.

[82]

P.A. Oldenborg, Role of CD47 in erythroid cells and in autoimmunity, Leuk. Lymphoma 45 (7) (2004) 1319–1327.

[83]

S. de Oliveira, C. Saldanha, An overview about erythrocyte membrane, Clin. Hemorheol. Microcirc. 44 (1) (2010) 63–74.

[84]

E. Ihanus, L.M. Uotila, A. Toivanen, M. Varis, C.G. Gahmberg, Red-cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding sites on ICAM-4, Blood 109 (2) (2007) 802–810.

[85]

A.I. Tauber, Metchnikoff and the phagocytosis theory, Nat. Rev. Mol. Cell Biol. 4 (11) (2003) 897–901.

[86]

T.A. Wynn, A. Chawla, J.W. Pollard, Macrophage biology in development, homeostasis and disease, Nature 496 (7446) (2013) 445–455.

[87]

P.J. Murray, Macrophage polarization, Annu. Rev. Physiol. 79 (2017) 541–566.

[88]

S. Gordon, A. Pluddemann, F. Martinez Estrada, Macrophage heterogeneity in tissues: phenotypic diversity and functions, Immunol. Rev. 262 (1) (2014) 36–55.

[89]

D.M. Mosser, The many faces of macrophage activation, J. Leukoc. Biol. 73 (2) (2003) 209–212.

[90]

F.O. Martinez, A. Sica, A. Mantovani, M. Locati, Macrophage activation and polarization, Front. Biosci. 13 (2008) 453–461.

[91]

B.Z. Qian, J.W. Pollard, Macrophage diversity enhances tumor progression and metastasis, Cell 141 (1) (2010) 39–51.

[92]

C.E. Green, T. Liu, V. Montel, G. Hsiao, R.D. Lester, S. Subramaniam, S.L. Gonias, R.L. Klemke, Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization, PLoS One 4 (8) (2009), e6713.

[93]

J. Wyckoff, W. Wang, E.Y. Lin, Y. Wang, F. Pixley, E.R. Stanley, T. Graf, J.W. Pollard, J. Segall, J. Condeelis, A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors, Cancer Res. 64 (19) (2004) 7022–7029.

[94]

J. Condeelis, J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis, Cell 124 (2) (2006) 263–266.

[95]

A.L. Corbi, T.K. Kishimoto, L.J. Miller, T.A. Springer, The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD11b) alpha subunit. Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B, J. Biol. Chem. 263 (25) (1988) 12403–12411.

[96]

C. Han, J. Jin, S. Xu, H. Liu, N. Li, X. Cao, Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b, Nat. Immunol. 11 (8) (2010) 734–742.

[97]

W.A. Lynn, C.R. Raetz, N. Qureshi, D.T. Golenbock, Lipopolysaccharide-induced stimulation of CD11b/CD18 expression on neutrophils. Evidence of specific receptor-based response and inhibition by lipid A-based antagonists, J. Immunol. 147 (9) (1991) 3072.

[98]

C. Easley-Neal, O. Foreman, N. Sharma, A.A. Zarrin, R.M. Weimer, CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions, Front. Immunol. 10 (2019) 2199.

[99]

Y. Zhu, B.L. Knolhoff, M.A. Meyer, T.M. Nywening, B.L. West, J. Luo, A. WangGillam, S.P. Goedegebuure, D.C. Linehan, D.G. DeNardo, CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models, Cancer Res. 74 (18) (2014) 5057–5069.

[100]

M. Baghdadi, H. Endo, A. Takano, K. Ishikawa, Y. Kameda, H. Wada, Y. Miyagi, T. Yokose, H. Ito, H. Nakayama, Y. Daigo, N. Suzuki, K. -i. Seino, High coexpression of IL-34 and M-CSF correlates with tumor progression and poor survival in lung cancers, Sci. Rep. 8 (1) (2018) 418.

[101]

M.A. Cannarile, M. Weisser, W. Jacob, A. -M. Jegg, C.H. Ries, D. Rüttinger, Colonystimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy, J. ImmunoTherapy Cancer 5 (1) (2017) 53.

[102]

A.J. McKnight, A.J. Macfarlane, P. Dri, L. Turley, A.C. Willis, S. Gordon, Molecular cloning of F4/80, a murine macrophage-restricted cell surface glycoprotein with homology to the G-protein-linked transmembrane 7 hormone receptor family, J. Biol. Chem. 271 (1) (1996) 486–489.

[103]

S. Gordon, J. Hamann, H.H. Lin, M. Stacey, F4/80 and the related adhesionGPCRs, Eur. J. Immunol. 41 (9) (2011) 2472–2476.

[104]

A.J. McKnight, S. Gordon, The EGF-TM7 family: unusual structures at the leukocyte surface, J. Leukoc. Biol. 63 (3) (1998) 271–280.

[105]

V. Cerundolo, I.F. Hermans, M. Salio, Dendritic cells: a journey from laboratory to clinic, Nat. Immunol. 5 (1) (2004) 7–10.

[106]

F. Geissmann, M.G. Manz, S. Jung, M.H. Sieweke, M. Merad, K. Ley, Development of monocytes, macrophages, and dendritic cells, Science 327 (5966) (2010) 656–661.

[107]

F. Geissmann, C. Auffray, R. Palframan, C. Wirrig, A. Ciocca, L. Campisi, E. NarniMancinelli, G. Lauvau, Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses, Immunol. Cell Biol. 86 (5) (2008) 398–408.

[108]

M. O'Keeffe, H. Hochrein, D. Vremec, I. Caminschi, J.L. Miller, E.M. Anders, L. Wu, M.H. Lahoud, S. Henri, B. Scott, P. Hertzog, L. Tatarczuch, K. Shortman, Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus, J. Exp. Med. 196 (10) (2002) 1307–1319.

[109]

L. Wu, Y.J. Liu, Development of dendritic-cell lineages, Immunity 26 (6) (2007) 741–750.

[110]

A.M. Oliver, A.W. Thomson, H.F. Sewell, D.R. Abramovich, Major histocompatibility complex (MHC) class Ⅱ antigen (HLA-DR, DQ, and DP) expression in human fetal endocrine organs and gut, Scand. J. Immunol. 27 (6) (1988) 731–737.

[111]

S.A. Erokhina, M.A. Streltsova, L.M. Kanevskiy, M.V. Grechikhina, A.M. Sapozhnikov, E.I. Kovalenko, HLA-DR-expressing NK cells: effective killers suspected for antigen presentation, J. Leukoc. Biol. 109 (2) (2021) 327–337.

[112]

M.L. Golinski, M. Demeules, C. Derambure, G. Riou, M. Maho-Vaillant, O. Boyer, P. Joly, S. Calbo, CD11c(+) B cells are mainly memory cells, precursors of antibody secreting cells in healthy donors, Front. Immunol. 11 (2020) 32.

[113]

T. Vorup-Jensen, R.K. Jensen, Structural immunology of complement receptors 3 and 4, Front. Immunol. 9 (2018) 2716.

[114]

B.M. Burt, G. Plitas, J.A. Stableford, H.M. Nguyen, Z.M. Bamboat, V.G. Pillarisetty, R.P. DeMatteo, CD11c identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis, J. Leukoc. Biol. 84 (4) (2008) 1039–1046.

[115]

M. Collin, V. Bigley, Human dendritic cell subsets: an update, Immunology 154 (1) (2018) 3–20.

[116]

M. Lebois, E.C. Josefsson, Regulation of platelet lifespan by apoptosis, Platelets 27 (6) (2016) 497–504.

[117]

V.C. Ballegeer, B. Spitz, L.A. De Baene, A.F. Van Assche, M. Hidajat, A.M. Criel, Platelet activation and vascular damage in gestational hypertension, Am. J. Obstet. Gynecol. 166 (2) (1992) 629–633.

[118]

V. Mollace, C. Muscoli, E. Masini, S. Cuzzocrea, D. Salvemini, Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors, Pharmacol. Rev. 57 (2) (2005) 217–252.

[119]

I.T. Cameron, S. Campbell, Nitric oxide in the endometrium, Hum. Reprod. Update 4 (5) (1998) 565–569.

[120]

K. Suzuki-Inoue, G.L. Fuller, A. Garcia, J.A. Eble, S. Pohlmann, O. Inoue, T.K. Gartner, S.C. Hughan, A.C. Pearce, G.D. Laing, R.D. Theakston, E. Schweighoffer, N. Zitzmann, T. Morita, V.L. Tybulewicz, Y. Ozaki, S.P. Watson, A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2, Blood 107 (2) (2006) 542–549.

[121]

E. Gitz, A.Y. Pollitt, J.J. Gitz-Francois, O. Alshehri, J. Mori, S. Montague, G.B. Nash, M.R. Douglas, E.E. Gardiner, R.K. Andrews, C.D. Buckley, P. Harrison, S.P. Watson, CLEC-2 expression is maintained on activated platelets and on platelet microparticles, Blood 124 (14) (2014) 2262–2270.

[122]

L. Navarro-Nunez, S.A. Langan, G.B. Nash, S.P. Watson, The physiological and pathophysiological roles of platelet CLEC-2, Thromb. Haemostasis 109 (6) (2013) 991–998.

[123]

M. Schaff, C. Tang, E. Maurer, C. Bourdon, N. Receveur, A. Eckly, B. Hechler, C. Arnold, A. de Arcangelis, B. Nieswandt, C.V. Denis, O. Lefebvre, E. GeorgesLabouesse, C. Gachet, F. Lanza, P.H. Mangin, Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis, Circulation 128 (5) (2013) 541–552.

[124]

J.C. Chang, H.H. Chang, C.T. Lin, S.J. Lo, The integrin alpha6beta1 modulation of PI3K and Cdc42 activities induces dynamic filopodium formation in human platelets, J. Biomed. Sci. 12 (6) (2005) 881–898.

[125]

B. Nieswandt, C. Brakebusch, W. Bergmeier, V. Schulte, D. Bouvard, R. MokhtariNejad, T. Lindhout, J.W. Heemskerk, H. Zirngibl, R. Fassler, Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen, EMBO J. 20 (9) (2001) 2120–2130.

[126]

D.J. Onley, C.G. Knight, D.S. Tuckwell, M.J. Barnes, R.W. Farndale, Micromolar Ca2+ concentrations are essential for Mg2+-dependent binding of collagen by the integrin alpha 2beta 1 in human platelets, J. Biol. Chem. 275 (32) (2000) 24560–24564.

[127]

M. Saboor, Q. Ayub, S. Ilyas, Moinuddin, Platelet receptors; an instrumental of platelet physiology, Pak. J. Med. Sci. 29 (3) (2013) 891–896.

[128]

R. Hass, C. Kasper, S. Bohm, R. Jacobs, Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissuederived MSC, Cell Commun. Signal. 9 (2011) 12.

[129]

M.C. Ciuffreda, G. Malpasso, P. Musaro, V. Turco, M. Gnecchi, Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages, Methods Mol. Biol. 1416 (2016) 149–158.

[130]

A. Uccelli, L. Moretta, V. Pistoia, Mesenchymal stem cells in health and disease, Nat. Rev. Immunol. 8 (9) (2008) 726–736.

[131]

L.R. T, L.I. Sanchez-Abarca, S. Muntion, S. Preciado, N. Puig, G. Lopez-Ruano, A. Hernandez-Hernandez, A. Redondo, R. Ortega, C. Rodriguez, F. Sanchez-Guijo, C. del Canizo, MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry, Cell Commun. Signal. 14 (2016) 2.

[132]

P. Mafi, S. Hindocha, R. Mafi, M. Griffin, W.S. Khan, Adult mesenchymal stem cells and cell surface characterization - a systematic review of the literature, Open Orthop. J. 5 (Suppl 2) (2011) 253–260.

[133]

F.J. Lv, R.S. Tuan, K.M. Cheung, V.Y. Leung, Concise review: the surface markers and identity of human mesenchymal stem cells, Stem Cell. 32 (6) (2014) 1408–1419.

[134]

A. Kumar, A. Bhanja, J. Bhattacharyya, B.G. Jaganathan, Multiple roles of CD90 in cancer, Tumour Biol. 37 (9) (2016) 11611–11622.

[135]

C. Sauzay, K. Voutetakis, A. Chatziioannou, E. Chevet, T. Avril, CD90/Thy-1, a cancer-associated cell surface signaling molecule, Front. Cell Dev. Biol. 7 (2019) 66.

[136]

K. Zhang, S. Che, Z. Su, S. Zheng, H. Zhang, S. Yang, W. Li, J. Liu, CD90 promotes cell migration, viability and sphereforming ability of hepatocellular carcinoma cells, Int. J. Mol. Med. 41 (2) (2018) 946–954.

[137]

T. Avril, A. Etcheverry, R. Pineau, J. Obacz, G. Jegou, F. Jouan, P.J. Le Reste, M. Hatami, R.R. Colen, B.L. Carlson, P.A. Decker, J.N. Sarkaria, E. Vauleon, D.C. Chiforeanu, A. Clavreul, J. Mosser, E. Chevet, V. Quillien, CD90 expression controls migration and predicts dasatinib response in glioblastoma, Clin. Cancer Res. 23 (23) (2017) 7360–7374.

[138]

S.E. Duff, C. Li, J.M. Garland, S. Kumar, CD105 is important for angiogenesis: evidence and potential applications, Faseb. J. 17 (9) (2003) 984–992.

[139]

E. Fonsatti, M. Altomonte, M.R. Nicotra, P.G. Natali, M. Maio, Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels, Oncogene 22 (42) (2003) 6557–6563.

[140]

C. Li, R. Issa, P. Kumar, I.N. Hampson, J.M. Lopez-Novoa, C. Bernabeu, S. Kumar, CD105 prevents apoptosis in hypoxic endothelial cells, J. Cell Sci. 116 (Pt 13) (2003) 2677–2685.

[141]

Z. Wang, X. Yan, CD146, a multi-functional molecule beyond adhesion, Cancer Lett. 330 (2) (2013) 150–162.

[142]

D. Baksh, R. Yao, R.S. Tuan, Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow, Stem Cell. 25 (6) (2007) 1384–1392.

[143]

G. Kristiansen, Y. Yu, K. Schluns, C. Sers, M. Dietel, I. Petersen, Expression of the cell adhesion molecule CD146/MCAM in non-small cell lung cancer, Anal. Cell Pathol. 25 (2) (2003) 77–81.

[144]

Q. Zeng, W. Li, D. Lu, Z. Wu, H. Duan, Y. Luo, J. Feng, D. Yang, L. Fu, X. Yan, CD146, an epithelial-mesenchymal transition inducer, is associated with triplenegative breast cancer, Proc. Natl. Acad. Sci. U. S. A. 109 (4) (2012) 1127–1132.

[145]

S. Suresh, Biomechanics and biophysics of cancer cells, Acta Mater. 55 (12) (2007) 3989–4014.

[146]

F. van Zijl, G. Krupitza, W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration, Mutat. Res. 728 (1–2) (2011) 23–34.

[147]

D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144 (5) (2011) 646–674.

[148]

A.G. Bader, D. Brown, J. Stoudemire, P. Lammers, Developing therapeutic microRNAs for cancer, Gene Ther. 18 (12) (2011) 1121–1126.

[149]

N. Makrilia, A. Kollias, L. Manolopoulos, K. Syrigos, Cell adhesion molecules: role and clinical significance in cancer, Cancer Invest. 27 (10) (2009) 1023–1037.

[150]

D.E. Dolan, S. Gupta, PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy, Cancer Control 21 (3) (2014) 231–237.

[151]

J.R. Brahmer, S.S. Tykodi, L.Q. Chow, W.J. Hwu, S.L. Topalian, P. Hwu, C.G. Drake, L.H. Camacho, J. Kauh, K. Odunsi, H.C. Pitot, O. Hamid, S. Bhatia, R. Martins, K. Eaton, S. Chen, T.M. Salay, S. Alaparthy, J.F. Grosso, A.J. Korman, S.M. Parker, S. Agrawal, S.M. Goldberg, D.M. Pardoll, A. Gupta, J.M. Wigginton, Safety and activity of anti-PD-L1 antibody in patients with advanced cancer, N. Engl. J. Med. 366 (26) (2012) 2455–2465.

[152]

E.J. Lipson, P.M. Forde, H.J. Hammers, L.A. Emens, J.M. Taube, S.L. Topalian, Antagonists of PD-1 and PD-L1 in cancer treatment, Semin. Oncol. 42 (4) (2015) 587–600.

[153]

P.A. Baeuerle, O. Gires, EpCAM (CD326) finding its role in cancer, Br. J. Cancer 96 (3) (2007) 417–423.

[154]

H.O. Alsaab, S. Sau, R. Alzhrani, K. Tatiparti, K. Bhise, S.K. Kashaw, A.K. Iyer, PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome, Front. Pharmacol. 8 (2017) 561.

[155]

Y. Ishida, Y. Agata, K. Shibahara, T. Honjo, Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death, EMBO J. 11 (11) (1992) 3887–3895.

[156]

K. Rajani, C. Parrish, T. Kottke, J. Thompson, S. Zaidi, L. Ilett, K.G. Shim, R.M. Diaz, H. Pandha, K. Harrington, M. Coffey, A. Melcher, R. Vile, Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses, Mol. Ther. 24 (1) (2016) 166–174.

[157]

Y. Dong, Q. Sun, X. Zhang, PD-1 and its ligands are important immune checkpoints in cancer, Oncotarget 8 (2) (2017) 2171–2186.

[158]

X. Jiang, J. Wang, X. Deng, F. Xiong, J. Ge, B. Xiang, X. Wu, J. Ma, M. Zhou, X. Li, Y. Li, G. Li, W. Xiong, C. Guo, Z. Zeng, Role of the tumor microenvironment in PDL1/PD-1-mediated tumor immune escape, Mol. Cancer 18 (1) (2019) 10.

[159]

S. Simon, N. Labarriere, PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy? OncoImmunology 7 (1) (2017), e1364828.

[160]

L.M. Francisco, P.T. Sage, A.H. Sharpe, The PD-1 pathway in tolerance and autoimmunity, Immunol. Rev. 236 (2010) 219–242.

[161]

K.M. Zak, R. Kitel, S. Przetocka, P. Golik, K. Guzik, B. Musielak, A. Domling, G. Dubin, T.A. Holak, Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1, Structure 23 (12) (2015) 2341–2348.

[162]

K.M. Zak, P. Grudnik, K. Magiera, A. Domling, G. Dubin, T.A. Holak, Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2, Structure 25 (8) (2017) 1163–1174.

[163]

Y. Han, D. Liu, L. Li, PD-1/PD-L1 pathway: current researches in cancer, Am. J. Cancer Res. 10 (3) (2020) 727–742.

[164]

A.V. Balar, J.S. Weber, PD-1 and PD-L1 antibodies in cancer: current status and future directions, Cancer Immunol. Immunother. 66 (5) (2017) 551–564.

[165]

J.M. Kim, D.S. Chen, Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure), Ann. Oncol. 27 (8) (2016) 1492–1504.

[166]

U. Schnell, V. Cirulli, B.N. Giepmans, EpCAM: structure and function in health and disease, Biochim. Biophys. Acta 1828 (8) (2013) 1989–2001.

[167]

M.A. Mohtar, S.E. Syafruddin, S.N. Nasir, T.Y. Low, Revisiting the roles of prometastatic EpCAM in cancer, Biomolecules 10 (2) (2020).

[168]

C. Alix-Panabieres, S. Mader, K. Pantel, Epithelial-mesenchymal plasticity in circulating tumor cells, J. Mol. Med. (Berl.) 95 (2) (2017) 133–142.

[169]

J.P. Rao, K.E. Geckeler, Polymer nanoparticles: preparation techniques and sizecontrol parameters, Prog. Polym. Sci. 36 (7) (2011) 887–913.

[170]

T.H.S. Quazi, M. Hana, H. Daniel, F. -K. Andrea, T. Judit, G. János, F. Tivadar, Encapsulation of human serum albumin in submicrometer magnetic poly(lactideco-glycolide) particles as a model system for targeted drug delivery, E-Polymers 1 (2013) 310–318, 2013.

[171]

C. Vauthier, K. Bouchemal, Methods for the preparation and manufacture of polymeric nanoparticles, Pharm. Res. (N. Y.) 26 (5) (2009) 1025–1058.

[172]

N. Kamaly, B. Yameen, J. Wu, O.C. Farokhzad, Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release, Chem. Rev. 116 (4) (2016) 2602–2663.

[173]

Q.T.H. Shubhra, J. Tóth, J. Gyenis, T. Feczkó, Poloxamers for surface modi fication of hydrophobic drug carriers and their effects on drug delivery, Polym. Rev. 54 (1) (2014) 112–138.

[174]

P. Dash, A.M. Piras, M. Dash, Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy, J. Contr. Release 327 (2020) 546–570.

[175]

V. Vijayan, S. Uthaman, I.K. Park, Cell membrane-camouflaged nanoparticles: a promising biomimetic strategy for cancer theragnostics, Polymers 10 (9) (2018).

[176]

Q.T. Shubhra, T. Feczko, A.F. Kardos, J. Toth, H. Mackova, D. Horak, G. Dosa, J. Gyenis, Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: part Ⅱ. Effect of process variables on protein model drug encapsulation efficiency, J. Microencapsul. 31 (2) (2014) 156–165.

[177]

Z. Zhao, M. Ji, Q. Wang, N. He, Y. Li, Ca(2+) signaling modulation using cancer cell membrane coated chitosan nanoparticles to combat multidrug resistance of cancer, Carbohydr. Polym. 238 (2020) 116073.

[178]

J.E. Kyle, X. Zhang, K.K. Weitz, M.E. Monroe, Y.M. Ibrahim, R.J. Moore, J. Cha, X. Sun, E.S. Lovelace, J. Wagoner, S.J. Polyak, T.O. Metz, S.K. Dey, R.D. Smith, K.E. Burnum-Johnson, E.S. Baker, Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry, Analyst 141 (5) (2016) 1649–1659.

[179]

Q. Feng, X. Yang, Y. Hao, N. Wang, X. Feng, L. Hou, Z. Zhang, Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy, ACS Appl. Mater. Interfaces 11 (36) (2019) 32729–32738.

[180]

H. Hu, C. Yang, F. Zhang, M. Li, Z. Tu, L. Mu, J. Dawulieti, Y.H. Lao, Z. Xiao, H. Yan, W. Sun, D. Shao, K.W. Leong, A versatile and robust platform for the scalable manufacture of biomimetic nanovaccines, Adv. Sci. 8 (15) (2021) 2002020.

[181]

L. Rao, L.L. Bu, B. Cai, J.H. Xu, A. Li, W.F. Zhang, Z.J. Sun, S.S. Guo, W. Liu, T.H. Wang, X.Z. Zhao, Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging, Adv. Mater. 28 (18) (2016) 3460–3466.

[182]

I. Shair Mohammad, B. Chaurasiya, X. Yang, C. Lin, H. Rong, W. He, Homotypetargeted biogenic nanoparticles to kill multidrug-resistant cancer cells, Pharmaceutics 12 (10) (2020).

[183]

P. Zhao, L. Qiu, S. Zhou, L. Li, Z. Qian, H. Zhang, Cancer cell membrane camouflaged mesoporous silica nanoparticles combined with immune checkpoint blockade for regulating tumor microenvironment and enhancing antitumor therapy, Int. J. Nanomed. 16 (2021) 2107–2121.

[184]

Q.T. Shubhra, A.F. Kardos, T. Feczko, H. Mackova, D. Horak, J. Toth, G. Dosa, J. Gyenis, Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: part I. Effect of process variables on the mean size, J. Microencapsul. 31 (2) (2014) 147–155.

[185]

Q.T.H. Shubhra, A. Oyane, M. Nakamura, S. Puentes, A. Marushima, H. Tsurushima, Rapid one-pot fabrication of magnetic calcium phosphate nanoparticles immobilizing DNA and iron oxide nanocrystals using injection solutions for magnetofection and magnetic targeting, Mater. Today Chem. 6 (2017) 51–61.

[186]

F. Oroojalian, M. Beygi, B. Baradaran, A. Mokhtarzadeh, M.A. Shahbazi, Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy, Small 17 (12) (2021), e2006484.

[187]

Y. Yu, Y. Gao, Y. Yu, Waltz" of cell membrane-coated nanoparticles on lipid bilayers: tracking single particle rotation in ligand-receptor binding, ACS Nano 12 (12) (2018) 11871–11880.

[188]

H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen, W. Gu, Z. Zhang, H. Yu, P. Zhang, S. Wang, Y. Li, Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer, Adv. Funct. Mater. 27 (3) (2017) 1604300.

[189]

D. Cai, L. Liu, C. Han, X. Ma, J. Qian, J. Zhou, W. Zhu, Cancer cell membranecoated mesoporous silica loaded with superparamagnetic ferroferric oxide and Paclitaxel for the combination of Chemo/Magnetocaloric therapy on MDA-MB- 231 cells, Sci. Rep. 9 (1) (2019) 14475.

[190]

C. Gong, X. Yu, W. Zhang, L. Han, R. Wang, Y. Wang, S. Gao, Y. Yuan, Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles, J. Nanobiotechnol. 19 (1) (2021) 58.

[191]

J.A. Copp, R.H. Fang, B.T. Luk, C.M. Hu, W. Gao, K. Zhang, L. Zhang, Clearance of pathological antibodies using biomimetic nanoparticles, Proc. Natl. Acad. Sci. U. S. A. 111 (37) (2014) 13481–13486.

[192]

A. Jha, A.N. Nikam, S. Kulkarni, S.P. Mutalik, A. Pandey, M. Hegde, B.S.S. Rao, S. Mutalik, Biomimetic nanoarchitecturing: a disguised attack on cancer cells, J. Contr. Release 329 (2021) 413–433.

[193]

M.M. Lapinski, A. Castro-Forero, A.J. Greiner, R.Y. Ofoli, G.J. Blanchard, Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore, Langmuir 23 (23) (2007) 11677–11683.

[194]

S.G. Ong, M. Chitneni, K.S. Lee, L.C. Ming, K.H. Yuen, Evaluation of extrusion technique for nanosizing liposomes, Pharmaceutics 8 (4) (2016).

[195]

M. Shi, K. Shen, B. Yang, P. Zhang, K. Lv, H. Qi, Y. Wang, M. Li, Q. Yuan, Y. Zhang, An electroporation strategy to synthesize the membrane-coated nanoparticles for enhanced anti-inflammation therapy in bone infection, Theranostics 11 (5) (2021) 2349–2363.

[196]

P. Guo, J. Huang, Y. Zhao, C.R. Martin, R.N. Zare, M.A. Moses, Nanomaterial preparation by extrusion through nanoporous membranes, Small 14 (18) (2018), e1703493.

[197]

Y. Shi, H. Qian, P. Rao, D. Mu, Y. Liu, G. Liu, Z. Lin, Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases, Acta Pharm. Sin. B (2021), https://doi.org/10.1016/j.apsb.2021.09.025. In press.

[198]

Y. -C. Lin, C. -M. Jen, M. -Y. Huang, C. -Y. Wu, X. -Z. Lin, Electroporation microchips for continuous gene transfection, Sensor. Actuator. B Chem. 79 (2) (2001) 137–143.

[199]

M.L. Yarmush, A. Golberg, G. Sersa, T. Kotnik, D. Miklavcic, Electroporation-based technologies for medicine: principles, applications, and challenges, Annu. Rev. Biomed. Eng. 16 (2014) 295–320.

[200]

L. Rao, B. Cai, L.L. Bu, Q.Q. Liao, S.S. Guo, X.Z. Zhao, W.F. Dong, W. Liu, Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy, ACS Nano 11 (4) (2017) 3496–3505.

[201]

S. Tan, T. Wu, D. Zhang, Z. Zhang, Cell or cell membrane-based drug delivery systems, Theranostics 5 (8) (2015) 863–881.

[202]

Y. Zhai, J. Su, W. Ran, P. Zhang, Q. Yin, Z. Zhang, H. Yu, Y. Li, Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy, Theranostics 7 (10) (2017) 2575–2592.

[203]

H. Yan, D. Shao, Y.H. Lao, M. Li, H. Hu, K.W. Leong, Engineering cell membranebased nanotherapeutics to target inflammation, Adv. Sci. 6 (15) (2019) 1900605.

[204]

Q.T.H. Shubhra, J. Toth, J. Gyenis, T. Feczko, Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption, Colloids Surf. B Biointerfaces 122 (2014) 529–536.

[205]

S. Han, W. Wang, S. Wang, S. Wang, R. Ju, Z. Pan, T. Yang, G. Zhang, H. Wang, L. Wang, Multifunctional biomimetic nanoparticles loading baicalin for polarizing tumor-associated macrophages, Nanoscale 11 (42) (2019) 20206–20220.

[206]

K. Sun, W. Yu, B. Ji, C. Chen, H. Yang, Y. Du, M. Song, H. Cai, F. Yan, R. Su, Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy, Appl. Mater. Today 18 (2020) 100505.

[207]

J. Li, X. Wang, D. Zheng, X. Lin, Z. Wei, D. Zhang, Z. Li, Y. Zhang, M. Wu, X. Liu, Cancer cell membrane-coated magnetic nanoparticles for MR/NIR fluorescence dual-modal imaging and photodynamic therapy, Biomater. Sci. 6 (7) (2018) 1834–1845.

[208]

L. Wang, S. Chen, W. Pei, B. Huang, C. Niu, Magnetically targeted erythrocyte membrane coated nanosystem for synergistic photothermal/chemotherapy of cancer, J. Mater. Chem. B 8 (18) (2020) 4132–4142.

[209]

A.K.M.M. Alam, M.D.H. Beg, R.M. Yunus, M.R. Islam, Q.T.H. Shubhra, Tailoring the dispersibility of non-covalent functionalized multi-walled carbon nanotube (MWCNT) nanosuspension using shellac (SL) bio-resin: structure-property relationship and cytotoxicity of shellac coated carbon nanotubes (SLCNTs), Colloid Interface Sci. Commun. 42 (2021) 100395.

[210]

X. Ren, R. Zheng, X. Fang, X. Wang, X. Zhang, W. Yang, X. Sha, Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy, Biomaterials 92 (2016) 13–24.

[211]

J.Y. Lee, C.K. Vyas, G.G. Kim, P.S. Choi, M.G. Hur, S.D. Yang, Y.B. Kong, E.J. Lee, J.H. Park, Red blood cell membrane bioengineered Zr-89 labelled hollow mesoporous silica nanosphere for overcoming phagocytosis, Sci. Rep. 9 (1) (2019) 7419.

[212]

E. Ben-Akiva, R.A. Meyer, H. Yu, J.T. Smith, D.M. Pardoll, J.J. Green, Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal, Sci. Adv. 6 (16) (2020), eaay9035.

[213]

Y. Wang, K. Zhang, T. Li, A. Maruf, X. Qin, L. Luo, Y. Zhong, J. Qiu, S. McGinty, G. Pontrelli, X. Liao, W. Wu, G. Wang, Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications, Theranostics 11 (1) (2021) 164–180.

[214]

P. Mishra, B. Nayak, R.K. Dey, PEGylation in anti-cancer therapy: an overview, Asian J. Pharm. Sci. 11 (3) (2016) 337–348.

[215]

A. Alam, Q.T.H. Shubhra, Surface modified thin film from silk and gelatin for sustained drug release to heal wound, J. Mater. Chem. B 3 (31) (2015) 6473–6479.

[216]

B. Kaupbayeva, A.J. Russell, Polymer-enhanced biomacromolecules, Prog. Polym. Sci. 101 (2020) 101194.

[217]

A.S. Hoffman, The early days of PEG and PEGylation (1970s-1990s), Acta Biomater. 40 (2016) 1–5.

[218]

A. Abuchowski, T. van Es, N.C. Palczuk, F.F. Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, J. Biol. Chem. 252 (11) (1977) 3578–3581.

[219]

M. Swierczewska, K.C. Lee, S. Lee, What is the future of PEGylated therapies? Expet Opin. Emerg. Drugs 20 (4) (2015) 531–536.

[220]
Y. Ikeda, Y. Nagasaki, PEGylation technology in nanomedicine, in: S. Kunugi, T. Yamaoka (Eds.), Polymers in Nanomedicine, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 115–140.
[221]

J.M. Rabanel, P. Hildgen, X. Banquy, Assessment of PEG on polymeric particles surface, a key step in drug carrier translation, J. Contr. Release 185 (2014) 71–87.

[222]

Z. Fan, H. Zhou, P.Y. Li, J.E. Speer, H. Cheng, Structural elucidation of cell membrane-derived nanoparticles using molecular probes, J. Mater. Chem. B 2 (46) (2014) 8231–8238.

[223]

J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, PEGylation as a strategy for improving nanoparticle-based drug and gene delivery, Adv. Drug Deliv. Rev. 99 (Pt A) (2016) 28–51.

[224]

A.S. Karakoti, S. Das, S. Thevuthasan, S. Seal, PEGylated inorganic nanoparticles, Angew Chem. Int. Ed. Engl. 50 (9) (2011) 1980–1994.

[225]

J.D. Friedl, V. Nele, G. De Rosa, A. Bernkop-Schnürch, Bioinert, stealth or interactive: how surface Chemistry of nanocarriers determines their fate in vivo, Adv. Funct. Mater. 31 (34) (2021) 2103347.

[226]

Q. Xia, Y. Zhang, Z. Li, X. Hou, N. Feng, Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application, Acta Pharm. Sin. B 9 (4) (2019) 675–689.

[227]

J.V. Jokerst, T. Lobovkina, R.N. Zare, S.S. Gambhir, Nanoparticle PEGylation for imaging and therapy, Nanomedicine 6 (4) (2011) 715–728.

[228]

Q.T.H. Shubhra, K. Guo, Y. Liu, M. Razzak, M. Serajum Manir, A.K.M. Moshiul Alam, Dual targeting smart drug delivery system for multimodal synergistic combination cancer therapy with reduced cardiotoxicity, Acta Biomater. 131 (2021) 493–507.

[229]

M.A. Aboudzadeh, J. Kruse, M. Sanroman Iglesias, D. Cangialosi, A. Alegria, M. Grzelczak, F. Barroso-Bujans, Gold nanoparticles endowed with lowtemperature colloidal stability by cyclic polyethylene glycol in ethanol, Soft Matter 17 (33) (2021) 7792–7801.

[230]

J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnol. 16 (1) (2018) 71.

[231]
D.H. Alshora, M.A. Ibrahim, F.K. Alanazi, Chapter 6 - nanotechnology from particle size reduction to enhancing aqueous solubility, in: A.M. Grumezescu (Ed.), Surface Chemistry of Nanobiomaterials, William Andrew Publishing, 2016, pp. 163–191.
[232]

A. Gabizon, F. Martin, Polyethylene glycol-coated (pegylated) liposomal doxorubicin, Rationale for use in solid tumours, Drugs 54 (Suppl 4) (1997) 15–21.

[233]

H. Chen, H. Sha, L. Zhang, H. Qian, F. Chen, N. Ding, L. Ji, A. Zhu, Q. Xu, F. Meng, L. Yu, Y. Zhou, B. Liu, Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein, Int. J. Nanomed. 13 (2018) 5347–5359.

[234]

D. Yang, Y. Liu, C. Bai, X. Wang, C.A. Powell, Epidemiology of lung cancer and lung cancer screening programs in China and the United States, Cancer Lett. 468 (2020) 82–87.

[235]

C. Zappa, S.A. Mousa, Non-small cell lung cancer: current treatment and future advances, Transl. Lung Cancer Res. 5 (3) (2016) 288–300.

[236]

P. Wu, D. Yin, J. Liu, H. Zhou, M. Guo, J. Liu, Y. Liu, X. Wang, Y. Liu, C. Chen, Cell membrane based biomimetic nanocomposites for targeted therapy of drug resistant EGFR-mutated lung cancer, Nanoscale 11 (41) (2019) 19520–19528.

[237]

C. Chi, F. Li, H. Liu, S. Feng, Y. Zhang, D. Zhou, R. Zhang, Docetaxel-loaded biomimetic nanoparticles for targeted lung cancer therapy in vivo, J. Nanoparticle Res. 21 (7) (2019) 144.

[238]

L. Gao, H. Wang, L. Nan, T. Peng, L. Sun, J. Zhou, Y. Xiao, J. Wang, J. Sun, W. Lu, L. Zhang, Z. Yan, L. Yu, Y. Wang, Erythrocyte membrane-wrapped pH sensitive polymeric nanoparticles for non-small cell lung cancer therapy, Bioconjugate Chem. 28 (10) (2017) 2591–2598.

[239]

L. Wu, W. Xie, H.M. Zan, Z. Liu, G. Wang, Y. Wang, W. Liu, W. Dong, Platelet membrane-coated nanoparticles for targeted drug delivery and local chemophotothermal therapy of orthotopic hepatocellular carcinoma, J. Mater. Chem. B 8 (21) (2020) 4648–4659.

[240]

G. Wang, Q. Wang, N. Liang, H. Xue, T. Yang, X. Chen, Z. Qiu, C. Zeng, T. Sun, W. Yuan, C. Liu, Z. Chen, X. He, Oncogenic driver genes and tumor microenvironment determine the type of liver cancer, Cell Death Dis. 11 (5) (2020) 313.

[241]

S. Nuciforo, I. Fofana, M.S. Matter, T. Blumer, D. Calabrese, T. Boldanova, S. Piscuoglio, S. Wieland, F. Ringnalda, G. Schwank, L.M. Terracciano, C.K.Y. Ng, M.H. Heim, Organoid models of human liver cancers derived from tumor needle biopsies, Cell Rep. 24 (5) (2018) 1363–1376.

[242]

X. Liu, Y. Sun, S. Xu, X. Gao, F. Kong, K. Xu, B. Tang, Homotypic cell membranecloaked biomimetic nanocarrier for the targeted chemotherapy of hepatocellular carcinoma, Theranostics 9 (20) (2019) 5828–5838.

[243]

L. Xu, S. Wu, J. Wang, Cancer cell membrane–coated nanocarriers for homologous target inhibiting the growth of hepatocellular carcinoma, J. Bioact. Compat Polym. 34 (1) (2018) 58–71.

[244]

H. Wang, J. Wu, G.R. Williams, Q. Fan, S. Niu, J. Wu, X. Xie, L.M. Zhu, Plateletmembrane-biomimetic nanoparticles for targeted antitumor drug delivery, J. Nanobiotechnol. 17 (1) (2019) 60.

[245]

M. Akram, M. Iqbal, M. Daniyal, A.U. Khan, Awareness and current knowledge of breast cancer, Biol. Res. 50 (1) (2017) 33.

[246]

Y. Gao, Y. Zhu, X. Xu, F. Wang, W. Shen, X. Leng, J. Zhao, B. Liu, Y. Wang, P. Liu, Surface PEGylated cancer cell membrane-coated nanoparticles for codelivery of curcumin and doxorubicin for the treatment of multidrug resistant esophageal carcinoma, Front. Cell Dev. Biol. 9 (2021) 688070.

[247]

J. Feng, S. Wang, Y. Wang, L. Wang, Stem cell membrane–camouflaged bioinspired nanoparticles for targeted photodynamic therapy of lung cancer, J. Nanoparticle Res. 22 (7) (2020) 176.

[248]

L. Zhang, S. Deng, Y. Zhang, Q. Peng, H. Li, P. Wang, X. Fu, X. Lei, A. Qin, X. Yu, Homotypic targeting delivery of siRNA with artificial cancer cells, Adv. Healthc. Mater. 9 (9) (2020), e1900772.

[249]

Z. Zhang, D. Li, Y. Cao, Y. Wang, F. Wang, F. Zhang, S. Zheng, Biodegradable Hypocrellin B nanoparticles coated with neutrophil membranes for hepatocellular carcinoma photodynamics therapy effectively via JUNB/ROS signaling, Int. Immunopharm. 99 (2021) 107624.

[250]

Y. Zhang, Z. He, Y. Li, Q. Xia, Z. Li, X. Hou, N. Feng, Tumor cell membrane-derived nano-Trojan horses encapsulating phototherapy and chemotherapy are accepted by homologous tumor cells, Mater. Sci. Eng. C Mater. Biol. Appl. 120 (2021) 111670.

[251]

W. Pan, X. Zhang, P. Gao, N. Li, B. Tang, An anti-inflammatory nanoagent for tumor-targeted photothermal therapy, Chem. Commun. 55 (65) (2019) 9645–9648.

[252]

Q. Hu, W. Sun, C. Qian, H.N. Bomba, H. Xin, Z. Gu, Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy, Adv. Mater. 29 (13) (2017).

[253]

J. Su, H. Sun, Q. Meng, Q. Yin, S. Tang, P. Zhang, Y. Chen, Z. Zhang, H. Yu, Y. Li, Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer, Adv. Funct. Mater. 26 (8) (2016) 1243–1252.

[254]

H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen, W. Gu, P. Zhang, Z. Zhang, H. Yu, S. Wang, Y. Li, Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors, Adv. Mater. 28 (43) (2016) 9581–9588.

[255]

X. Pei, X. Pan, X. Xu, X. Xu, H. Huang, Z. Wu, X. Qi, 4T1 cell membrane fragment reunited PAMAM polymer units disguised as tumor cell clusters for tumor homotypic targeting and anti-metastasis treatment, Biomater. Sci. 9 (4) (2021) 1325–1333.

[256]

Y. Zhang, K. Cai, C. Li, Q. Guo, Q. Chen, X. He, L. Liu, Y. Zhang, Y. Lu, X. Chen, T. Sun, Y. Huang, J. Cheng, C. Jiang, Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy, Nano Lett. 18 (3) (2018) 1908–1915.

[257]

R. Yang, J. Xu, L. Xu, X. Sun, Q. Chen, Y. Zhao, R. Peng, Z. Liu, Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination, ACS Nano 12 (6) (2018) 5121–5129.

[258]

S. Yaman, H. Ramachandramoorthy, G. Oter, D. Zhukova, T. Nguyen, M.K. Sabnani, J.A. Weidanz, K.T. Nguyen, Melanoma peptide MHC specific TCR expressing T-cell membrane camouflaged PLGA nanoparticles for treatment of melanoma skin cancer, Front. Bioeng. Biotechnol. 8 (2020) 943.

[259]

Z. Chai, X. Hu, X. Wei, C. Zhan, L. Lu, K. Jiang, B. Su, H. Ruan, D. Ran, R.H. Fang, L. Zhang, W. Lu, A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery, J. Contr. Release 264 (2017) 102–111.

[260]

S. Han, Y. Lee, M. Lee, Biomimetic cell membrane-coated DNA nanoparticles for gene delivery to glioblastoma, J. Contr. Release 338 (2021) 22–32.

[261]

C. Xu, W. Liu, Y. Hu, W. Li, W. Di, Bioinspired tumor-homing nanoplatform for codelivery of paclitaxel and siRNA-E7 to HPV-related cervical malignancies for synergistic therapy, Theranostics 10 (7) (2020) 3325–3339.

[262]

H. Cai, R. Wang, X. Guo, M. Song, F. Yan, B. Ji, Y. Liu, Combining gemcitabineloaded macrophage-like nanoparticles and erlotinib for pancreatic cancer therapy, Mol. Pharm. 18 (7) (2021) 2495–2506.

[263]

L. Zhang, R. Li, H. Chen, J. Wei, H. Qian, S. Su, J. Shao, L. Wang, X. Qian, B. Liu, Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer, Int. J. Nanomed. 12 (2017) 2129–2142.

[264]

B. Salehi, A.P. Mishra, M. Nigam, F. Kobarfard, Z. Javed, S. Rajabi, K. Khan, H.A. Ashfaq, T. Ahmad, R. Pezzani, K. Ramirez-Alarcon, M. Martorell, W.C. Cho, S.A. Ayatollahi, J. Sharifi-Rad, Multivesicular liposome (depofoam) in human diseases, Iran. J. Pharm. Res. (IJPR) 19 (2) (2020) 9–21.

[265]

A. Oyane, H. Araki, M. Nakamura, Y. Shimizu, Q.T.H. Shubhra, A. Ito, H. Tsurushima, Controlled superficial assembly of DNA-amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery, Colloids Surf. B Biointerfaces 141 (2016) 519–527.

[266]

E. Chatelut, P. Suh, S. Kim, Sustained-release methotrexate for intracavitary chemotherapy, J. Pharmacol. Sci. 83 (3) (1994) 429–432.

[267]

B. Haley, E. Frenkel, Nanoparticles for drug delivery in cancer treatment, Urol. Oncol. 26 (1) (2008) 57–64.

[268]

T. Lammers, F. Kiessling, W.E. Hennink, G. Storm, Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress, J. Contr. Release 161 (2) (2012) 175–187.

[269]

L. Zhu, Y. Guo, Q. Qian, D. Yan, Y. Li, X. Zhu, C. Zhang, Carrier-free delivery of precise drug-chemogene conjugates for synergistic treatment of drug-resistant cancer, Angew Chem. Int. Ed. Engl. 59 (41) (2020) 17944–17950.

[270]

W. Li, Y. Yang, C. Wang, Z. Liu, X. Zhang, F. An, X. Diao, X. Hao, X. Zhang, Carrierfree, functionalized drug nanoparticles for targeted drug delivery, Chem. Commun. 48 (65) (2012) 8120–8122.

[271]

S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude, F. Kiessling, T. Lammers, Tumor targeting via EPR: strategies to enhance patient responses, Adv. Drug Deliv. Rev. 130 (2018) 17–38.

[272]

D. Rosenblum, N. Joshi, W. Tao, J.M. Karp, D. Peer, Progress and challenges towards targeted delivery of cancer therapeutics, Nat. Commun. 9 (1) (2018) 1410.

[273]

G. Sanita, B. Carrese, A. Lamberti, Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization, Front. Mol. Biosci. 7 (2020) 587012.

[274]

S.K. Srivastava, G. Clergeaud, T.L. Andresen, A. Boisen, Micromotors for drug delivery in vivo: the road ahead, Adv. Drug Deliv. Rev. 138 (2019) 41–55.

[275]

Z. Zhao, A. Ukidve, J. Kim, S. Mitragotri, Targeting strategies for tissue-specific drug delivery, Cell 181 (1) (2020) 151–167.

[276]

M.F. Attia, N. Anton, J. Wallyn, Z. Omran, T.F. Vandamme, An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites, J. Pharm. Pharmacol. 71 (8) (2019) 1185–1198.

[277]

J.Y. Zhu, D.W. Zheng, M.K. Zhang, W.Y. Yu, W.X. Qiu, J.J. Hu, J. Feng, X.Z. Zhang, Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes, Nano Lett. 16 (9) (2016) 5895–5901.

[278]

J. Zhu, C. Sevencan, M. Zhang, R.S.A. McCoy, X. Ding, J. Ye, J. Xie, K. Ariga, J. Feng, B.H. Bay, D.T. Leong, Increasing the potential interacting area of nanomedicine enhances its homotypic cancer targeting efficacy, ACS Nano 14 (3) (2020) 3259–3271.

[279]

X. Ren, S. Yang, N. Yu, A. Sharjeel, Q. Jiang, D.K. Macharia, H. Yan, C. Lu, P. Geng, Z. Chen, Cell membrane camouflaged bismuth nanoparticles for targeted photothermal therapy of homotypic tumors, J. Colloid Interface Sci. 591 (2021) 229–238.

[280]

H. Chen, D. Zheng, W. Pan, X. Li, B. Lv, W. Gu, J.O. Machuki, J. Chen, W. Liang, K. Qin, J. Greven, F. Hildebrand, Z. Yu, X. Zhang, K. Guo, Biomimetic nanotheranostics camouflaged with cancer cell membranes integrating persistent oxygen supply and homotypic targeting for hypoxic tumor elimination, ACS Appl. Mater. Interfaces 13 (17) (2021) 19710–19725.

[281]

W.J. Jeong, J. Bu, L.J. Kubiatowicz, S.S. Chen, Y. Kim, S. Hong, Peptidenanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg 5 (1) (2018) 38.

[282]

C. Tapeinos, F. Tomatis, M. Battaglini, A. Larranaga, A. Marino, I.A. Telleria, M. Angelakeris, D. Debellis, F. Drago, F. Brero, P. Arosio, A. Lascialfari, A. Petretto, E. Sinibaldi, G. Ciofani, Cell membrane-coated magnetic nanocubes with a homotypic targeting ability increase intracellular temperature due to ROS scavenging and act as a versatile theranostic system for glioblastoma multiforme, Adv. Healthc. Mater. 8 (18) (2019), e1900612.

[283]

R. Zhang, S. Wu, Q. Ding, Q. Fan, Y. Dai, S. Guo, Y. Ye, C. Li, M. Zhou, Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy, Drug Deliv. 28 (1) (2021) 1109–1119.

Nano Materials Science
Pages 295-321
Cite this article:
Guo K, Xiao N, Liu Y, et al. Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges. Nano Materials Science, 2022, 4(4): 295-321. https://doi.org/10.1016/j.nanoms.2021.12.001

558

Views

25

Downloads

36

Crossref

34

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 01 October 2021
Accepted: 26 November 2021
Published: 20 December 2021
© 2021 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return