AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: A state-of-the-art review

Tingting Yanga,bYubin NiuaQi Liub( )Maowen Xua( )
Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China
Department of Physics, City University of Hong Kong, Hong Kong, 999077, China
Show Author Information

Abstract

Sulfur and selenium have been paid more and more attention in energy storage systems because of their high theoretical specific gravimetric and volumetric capacities. With the increasing scarcity of lithium resources, secondary batteries made of sulfur and selenium coupled with other alkali metal/alkaline earth metals (e.g. Na, K, Mg) are expected to play a vital role in future production and human life. Due to the volume expansion, poor conductivity and shuttle effect, the structure design of cathode, as one of the important roles in metal-S/Se batteries, has always been a hot and difficult point. In the review, various host materials of S and Se are clarified and discussed. Typically, carbonaceous materials are the most widely used hosts, while polar materials are becoming more and more popular in metal-S/Se batteries. Through a comprehensive overview, it is hoped that previous research experiences can provide further reference and guidance for the sustainable development of metal-S/Se batteries.

References

[1]

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. -M. Tarascon, Nano-sizedtransition-metaloxidesas negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.

[2]

V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci. 4 (2011) 3243-3262.

[3]

K.J. Griffith, K.M. Wiaderek, G. Cibin, L.E. Marbella, C.P. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage, Nature 559 (2018) 556-567.

[4]

J. Lu, Z.W. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries, Electrochem. Energy Rev. 1 (2018) 35-53.

[5]

Y.C. Lyu, X. Wu, K. Wang, Z.J. Feng, T. Cheng, Y. Liu, M. Wang, R.M. Chen, L.M. Xu, J.J. Zhou, Y.H. Lu, B.K. Guo, An overview on the advances of LiCoO2 cathodes for lithium-ion batteries, Adv. Energy Mater. 11 (2021) 2000982.

[6]

L. Zhou, D.L. Danilov, R. -A. Eichel, P.L. Notten, Host materials anchoring polysulfides in Li-S batteries reviewed, Adv. Energy Mater. 11 (2020) 2001304.

[7]

J. Zhang, M.N. Li, H.A. Younus, B.S. Wang, Q.H. Weng, Y. Zhang, S.G. Zhang, An overview of the characteristics of advanced binders for high-performance Li-S batteries, Nano Mater. Sci. 3 (2021) 124-139.

[8]

J.T. Xu, J.M. Ma, Q.H. Fan, S.J. Guo, S.X. Dou, Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries, Adv. Mater. 29 (2017) 1606454.

[9]

X.N. Li, J.W. Liang, X. Li, C.H. Wang, J. Luo, R.Y. Li, X.L. Sun, High-performance all-solid-state Li-Se batteries induced by sulfide electrolytes, Energy Environ. Sci. 11 (2018) 2828-2832.

[10]

J. Jin, X.C. Tian, N. Srikanth, L.B. Kong, K. Zhou, Advances and challenges of nanostructured electrodes for Li-Se batteries, J. Mater. Chem. 5 (2017) 10110-10126.

[11]

Y. -X. Wang, W. -H. Lai, S. -L. Chou, H. -K. Liu, S. -X. Dou, Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries, Adv. Mater. 32 (2019) 1903952.

[12]

X.X. Gu, T.Y. Tang, X.T. Liu, Y.L. Hou, Rechargeable metal batteries based on selenium cathodes: progress, challenges and perspectives, J. Mater. Chem. 7 (2019) 11566-11583.

[13]

J. Ding, H. Zhou, H.L. Zhang, T. Stephenson, Z. Li, D. Karpuzov, D. Mitlin, Exceptional energy and new insight with a sodium-selenium battery based on a carbon nanosheet cathode and a pseudographite anode, Energy Environ. Sci. 10 (2017) 153-165.

[14]

X.D. Hong, J. Mei, L. Wen, Y.Y. Tong, A.J. Vasileff, L.Q. Wang, J. Liang, Z.Q. Sun, S.X. Dou, Nonlithium metal-sulfur batteries: steps toward a leap, Adv. Mater. 31 (2018) 1802822.

[15]

A. Singh, V. Kalra, Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries, J. Mater. Chem. 7 (2019) 11613-11650.

[16]

P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci. 9 (2016) 3221-3229.

[17]

Y. Zhao, K.R. Adair, X.L. Sun, Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries, Energy Environ. Sci. 11 (2018) 2673-2695.

[18]

X. Tang, D. Zhou, P. Li, X. Guo, B. Sun, H. Liu, K. Yan, Y. Gogotsi, G.X. Wang, MXene-based dendrite-free potassium metal batteries, Adv. Mater. 32 (2020) 1906739.

[19]

P.C. Liu, Y.X. Wang, Q.L. Gu, J. Nanda, J. Watt, D. Mitlin, Dendrite-free potassium metal anodes in a carbonate electrolyte, Adv. Mater. 32 (2020) 1906735.

[20]

R.N. Li, Y.Q. Li, R.P. Zhang, M.X. He, Y.L. Ma, H. Huo, P.J. Zuo, G.P. Yin, Voltage hysteresis of magnesium anode: taking magnesium-sulfur battery as an example, Electrochim. Acta 369 (2021) 137685.

[21]

L. Kong, C. Yan, J. -Q. Huang, M. -Q. Zhao, M. -M. Titirici, R. Xiang, Q. Zhang, A review of advanced energy materials for magnesium-sulfur batteries, Energy Environ, Materials 1 (2018) 100-112.

[22]

J.M. Sun, Z.Z. Du, Y.H. Liu, W. Ai, K. Wang, T. Wang, H.F. Du, L. Liu, W. Huang, State-of-the-Art and future challenges in high energy lithium-selenium batteries, Adv. Mater. 33 (2021) 2003845.

[23]

W. Chen, T.Y. Lei, C.Y. Wu, M. Deng, C.H. Gong, K. Hu, Y.C. Ma, L.P. Dai, W.Q. Lv, W.D. He, X.J. Liu, J. Xiong, C.L. Yan, Designing safe electrolyte systems for a high-stability lithium-sulfur battery, Adv. Energy Mater. 8 (2018) 1702348.

[24]

X.C. Lu, B.W. Kirby, W. Xu, G.S. Li, J.Y. Kim, J.P. Lemmon, V.L. Sprenkle, Z.G. Yang, Advanced intermediate-temperature Na-S battery, Energy Environ. Sci. 6 (2013) 299-306.

[25]

A. Manthiram, X.W. Yu, Ambient temperature sodium-sulfur batteries, Small 11 (2015) 2108-2114.

[26]

Y. -X. Wang, B.W. Zhang, W.H. Lai, Y.F. Xu, S. -L. Chou, H. -K. Liu, S. -X. Dou, Room-temperature sodium-sulfur batteries: a comprehensive review on research progress and cell chemistry, Adv, Energy Mater 7 (2017) 1602829.

[27]

S. Xin, Y. -X. Yin, Y. -G. Guo, L. -J. Wan, A High-energy room-temperature sodium-sulfur battery, Adv, Materials 26 (2014) 1261-1265.

[28]

M.K. Aslam, I.D. Seymour, N. Katyal, S. Li, T.T. Yang, S. -J. Bao, G. Henkelman, M.W. Xu, Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries, Nat. Commun. 11 (2020) 5242.

[29]

S.Y. Lee, J. Lee, J.K. Kim, M. Agostini, S.Z. Xiong, A. Matic, J.Y. Hwang, Recent developments and future challenges in designing rechargeable potassium-sulfur and potassium-selenium batteries, Energies 13 (2020) 2791.

[30]

J. Ding, H. Zhang, W.J. Fan, C. Zhong, W.B. Hu, D. Mitlin, Review of emerging potassium-sulfur batteries, Adv. Mater. 32 (2020) 1908007.

[31]

J. -Y. Hwang, H.M. Kim, Y. -K. Sun, High performance potassium-sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder, J. Mater. Chem. 6 (2018) 14587-14593.

[32]

S.C. Gu, N. Xiao, F. Wu, Y. Bai, C. Wu, Y.Y. Wu, Chemical synthesis of K2S2 and K2S3 for probing electrochemical mechanisms in K-S batteries, ACS Energy Lett. 3 (2018) 2858-2864.

[33]

M. Rashad, M. Asif, Z. Ali, Quest for magnesium-sulfur batteries: current challenges in electrolytes and cathode materials developments, Coord. Chem. Rev. 415 (2020) 213312.

[34]

J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G.D. Allred, J. Zajicek, Y. Kotani, Electrolyte roadblocks to a magnesium rechargeable battery, Energy Environ. Sci. 5 (2012) 5941-5950.

[35]

T. Gao, X. Ji, S. Hou, X.L. Fan, X.G. Li, C.Y. Yang, F.D. Han, F. Wang, J.J. Jiang, K. Xu, C.S. Wang, Thermodynamics and kinetics of sulfur cathode during discharge in MgTFSI2-DME electrolyte, Adv. Mater. 30 (2018) 1704313.

[36]

A. Robba, A. Vizintin, J. Bitenc, G. Mali, I. Arčon, M. Kavčič, M. Žitnik, K. Bučar, G. Aquilanti, C. Martineau-Corcos, A. Randon-Vitanova, R. Dominko, Mechanistic study of magnesium-sulfur batteries, Chem. Mater. 29 (2017) 9555-9564.

[37]

Q.Q. Li, H.G. Liu, Z.P. Yao, J.P. Cheng, T.H. Li, Y. Li, C. Wolverton, J.S. Wu, V.P. Dravid, Electrochemistry of selenium with sodium and lithium: kinetics and reaction mechanism, ACS Nano 10 (2016) 8788-8795.

[38]

F.A. Perras, S. Hwang, Y.X. Wang, E.C. Self, P.C. Liu, R. Biswas, S. Nagarajan, V.H. Pham, Y.X. Xu, J.A. Boscoboinik, D. Su, J. Nanda, M. Pruski, D. Mitlin, Site-specific sodiation mechanisms of selenium in microporous carbon host, Nano Lett. 20 (2020) 918-928.

[39]

Y.J. Liu, Z.X. Tai, Q. Zhang, H.Q. Wang, W.K. Pang, H.K. Liu, K. Konstantinov, Z.P. Guo, A new energy storage system: rechargeable potassium-selenium battery, , Nano Energy 35 (2017) 36-43.

[40]

R. Xu, Y. Yao, H.Y. Wang, Y.F. Yuan, J.W. Wang, H. Yang, Y. Jiang, P.C. Shi, X.J. Wu, Z.Q. Peng, Z.S. Wu, J. Lu, Y. Yu, Unraveling the nature of excellent potassium storage in small-molecule Se@peapod-like N-doped carbon nanofibers, Adv. Mater. 32 (2020) 2003879.

[41]

Z. Zhao-Karger, X. -M. Lin, C.B. Minella, D. Wang, T. Diemant, R.J. Behm, M. Fichtner, Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries, J. Power Sources 323 (2016) 213-219.

[42]

C. Luo, Y.J. Zhu, O. Borodin, T. Gao, X.L. Fan, Y.H. Xu, K. Xu, C.S. Wang, Activation of oxygen-stabilized sulfur for Li and Na batteries, Adv. Funct. Mater. 26 (2016) 745-752.

[43]

R.P. Rao, X. Zhang, K.C. Phuah, S. Adams, Mechanochemical synthesis of fast sodium ion conductor Na11Sn2PSe12 enables first sodium-selenium all-solid-state battery, J. Mater. Chem. 7 (2019) 20790-20798.

[44]

Y. -M. Chen, W.F. Liang, S. Li, F. Zou, S.M. Bhaway, Z. Qiang, M. Gao, B.D. Vogt, Y. Zhu, A nitrogen doped carbonized metal-organic framework for high stability room temperature sodium-sulfur batteries, J. Mater. Chem. 4 (2016) 12471-12478.

[45]

W.Y. Du, Q.J. Xu, R.M. Zhan, Y.Q. Zhang, Y.S. Luo, M.W. Xu, Synthesis of hollow porous carbon microspheres and their application to room-temperature Na-S batteries, Mater. Lett. 221 (2018) 66-69.

[46]

Y. -X. Wang, J.P. Yang, W.H. Lai, S. -L. Chou, Q. -F. Gu, H.K. Liu, D.Y. Zhao, S.X. Dou, Achieving high-performance room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres, J. Am. Chem. Soc. 138 (2016) 16576-16579.

[47]

Y.X. Ren, H.R. Jiang, T.S. Zhao, L. Zeng, C. Xiong, Remedies of capacity fading in room-temperature sodium-sulfur batteries, J. Power Sources 396 (2018) 304-313.

[48]

S. Xin, L. Yu, Y. You, H. -P. Cong, Y. -X. Yin, X. -L. Du, Y. -G. Guo, S. -H. Yu, Y. Cui, J.B. Goodenough, The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon, , Nano Lett. 16 (2016) 4560-4568.

[49]

T.T. Yang, B.S. Guo, W.Y. Du, M.K. Aslam, M.L. Tao, W. Zhong, Y.M. Chen, S. -J. Bao, X. Zhang, M.W. Xu, Design and construction of sodium polysulfides defense system for room-temperature Na-S battery, Adv. Sci. 6 (2019) 1901557.

[50]

X.W. Yu, A. Manthiram, Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries, Chem. Eur J. 21 (2015) 4233-4237.

[51]

C.L. Wang, H. Wang, X.F. Hu, E. Matios, J.M. Luo, Y.W. Zhang, X. Lu, W.Y. Li, Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries, Adv. Energy Mater. 9 (2018) 1803251.

[52]

L.M. Bloi, J. Pampel, S. Dörfler, H. Althues, S. Kaskel, Sodium sulfide cathodes superseding hard carbon pre-sodiation for the production and operation of sodium-sulfur batteries at room temperature, Adv. Energy Mater. 10 (2020) 1903245.

[53]

X.W. Yu, A. Manthiram, Room-temperature sodium-sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes, J. Phys. Chem. C 118 (2014) 22952-22959.

[54]

T.H. Hwang, D.S. Jung, J. -S. Kim, B.G. Kim, J.W. Choi, One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature, Nano Lett. 13 (2013) 4532-4538.

[55]

T.J. Wu, M.J. Jing, L. Yang, G.Q. Zou, H.S. Hou, Y. Zhang, Y. Zhang, X.Y. Cao, X.B. Ji, Controllable chain-length for covalent sulfur-carbon materials enabling stable and high-capacity sodium storage, Adv. Energy Mater. 9 (2019) 1803478.

[56]

M.M. Gross, A. Manthiram, Development of low-cost sodium-aqueous polysulfide hybrid batteries, Energy Storage Mater. 19 (2019) 346-351.

[57]

F. Léonard, A.A. Talin, Electrical contacts to one- and two-dimensional nanomaterials, Nat. Nanotechnol. 6 (2011) 773-783.

[58]

B. Su, Y.C. Wu, L. Jiang, The art of aligning one-dimensional (1D) nanostructures, , Chem. Soc. Rev. 41 (2012) 7832-7856.

[59]

Z.C. Yan, J. Xiao, W.H. Lai, L. Wang, F. Gebert, Y.X. Wang, Q.F. Gu, H. Liu, S. -L. Chou, H.K. Liu, S. -X. Dou, Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries, Nat. Commun. 10 (2019) 4793.

[60]

B.S. Guo, W.Y. Du, T.T. Yang, J.H. Deng, D.Y. Liu, Y.R. Qi, J. Jiang, S. -J. Bao, M.W. Xu, Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries, Adv. Sci. 7 (2020) 1902617.

[61]

W.Y. Du, W. Gao, T.T. Yang, B.S. Guo, L.Z. Zhang, S. -J. Bao, Y.M. Chen, M.W. Xu, Cobalt nanoparticles embedded into free-standing carbon nanofibers as catalyst for room-temperature sodium-sulfur batteries, J. Colloid Interface Sci. 565 (2020) 63-69.

[62]

R.K. Joshi, J.J. Schneider, Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality, Chem. Soc. Rev. 41 (2012) 5285-5312.

[63]

L.L. Peng, Y. Zhu, D.H. Chen, R.S. Ruoff, G.H. Yu, Two-dimensional materials for beyond-lithium-ion batteries, Adv. Energy Mater. 6 (2016) 1600025.

[64]

Y.H. Xue, Q. Zhang, W.J. Wang, H. Cao, Q.H. Yang, L. Fu, Opening two-dimensional materials for energy conversion and storage: a concept, Adv. Energy Mater. 7 (2017) 1602684.

[65]

W.Y. Du, Y.K. Wu, T.T. Yang, B.S. Guo, D.Y. Liu, S. -J. Bao, M.W. Xu, Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries, Chem. Eng. J. 379 (2020) 122359.

[66]

X.G. Huo, Y.Y. Liu, R.R. Li, J.L. Li, Two-dimensional Ti3C2Tx@S as cathode for room temperature sodium-sulfur batteries, Ionics 25 (2019) 5373-5382.

[67]

C. Ye, Y. Jiao, D.L. Chao, T. Ling, J.Q. Shan, B.W. Zhang, Q.F. Gu, K. Davey, H.H. Wang, S. -Z. Qiao, Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries, Adv. Mater. 32 (2020) 1907557.

[68]

A. Ghosh, S. Shukla, M. Monisha, A. Kumar, B. Lochab, S. Mitra, Sulfur copolymer: a new cathode structure for room-temperature sodium-sulfur batteries, ACS Energy Lett. 2 (2017) 2478-2485.

[69]

W.Z. Bao, C.E. Shuck, W.X. Zhang, X. Guo, Y. Gogotsi, G.X. Wang, Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides, ACS Nano 13 (2019) 11500-11509.

[70]

S.Y. Zheng, P. Han, Z. Han, P. Li, H.J. Zhang, J.H. Yang, Nano-copper-assisted immobilization of sulfur in high-surface-area mesoporous carbon cathodes for room temperature Na-S batteries, Adv. Energy Mater. 4 (2014) 1400226.

[71]

B. -W. Zhang, T. Sheng, Y. -D. Liu, Y. -X. Wang, L. Zhang, W. -H. Lai, L. Wang, J. -P. Yang, Q. -F. Gu, S. -L. Chou, H. -K. Liu, S. -X. Dou, Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries, Nat. Commun. 9 (2018) 4793.

[72]

J.H. Zhu, A. Abdelkader, D. Demko, L.B. Deng, P.X. Zhang, T.S. He, Y.Y. Wang, L.C. Huang, Electrocatalytic assisted performance enhancement for the Na-S battery in nitrogen-doped carbon nanospheres loaded with Fe, Molecules 25 (2020) 1585.

[73]

N.N. Wang, Y.X. Wang, Z.C. Bai, Z.W. Fang, X. Zhang, Z.F. Xu, Y. Ding, X. Xu, Y. Du, S.X. Dou, G.H. Yu, High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion, Energy Environ. Sci. 13 (2020) 562-570.

[74]

T.T. Yang, W. Gao, B.S. Guo, R.M. Zhan, Q.J. Xu, H. He, S. -J. Bao, X.Y. Li, Y.M. Chen, M.W. Xu, A railway-like network electrode design for room temperature Na-S battery, J. Mater. Chem. 7 (2019) 150-156.

[75]

Z.C. Yan, Y.R. Liang, J. Xiao, W.H. Lai, W.L. Wang, Q.B. Xia, Y.X. Wang, Q.F. Gu, H.M. Lu, S. -L. Chou, Y. Liu, H.K. Liu, S. -X. Dou, A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries, Adv, Materials 32 (2020) 1906700.

[76]

A. Kumar, A. Ghosh, A. Roy, M.R. Panda, M. Forsyth, D.R. MacFarlane, S. Mitra, High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays, Energy Storage Mater. 20 (2019) 196-202.

[77]

Y. Liu, W.G. Wang, J. Wang, Y. Zhang, Y.S. Zhu, Y.H. Chen, L.J. Fu, Y.P. Wu, Sulfur nanocomposites as positive electrode materials for rechargeable potassium-sulfur batteries, Chem. Commun. 54 (2018) 2288-2291.

[78]

S.B. Ma, P.J. Zuo, H. Zhang, Z.J. Yu, C. Cui, M.X. He, G.P. Yin, Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for room-temperature sodium/potassium sulfur batteries, Chem. Commun. 55 (2019) 5267-5270.

[79]

P.X. Xiong, X.P. Han, X.X. Zhao, P.X. Bai, Y. Liu, J. Sun, Y.H. Xu, Room-temperature potassium-sulfur batteries enabled by microporous carbon stabilized small-molecule sulfur cathodes, ACS Nano 13 (2019) 2536-2543.

[80]

N.C. Lai, G.T. Cong, Y. -C. Lu, A high-energy potassium-sulfur battery enabled by facile and effective imidazole-solvated copper catalysts, J. Mater. Chem. 7 (2019) 20584-20589.

[81]

X.X. Zhao, Y.R. Hong, M.R. Cheng, S.W. Wang, L. Zheng, J.W. Wang, Y.H. Xu, High performance potassium-sulfur batteries and their reaction mechanism, J. Mater. Chem. 8 (2020) 10875-10884.

[82]

X.M. Yuan, B. Zhu, J.K. Feng, C.G. Wang, X. Cai, R.M. Qin, Free-standing, flexible and stable potassium-sulfur battery enabled by controllable porous carbon cloth, J. Power Sources 480 (2020) 228874.

[83]

P.W. Wang, J. Trück, S. Niesen, J. Kappler, K. Küster, U. Starke, F. Ziegler, A. Hintennach, M.R. Buchmeiser, High-performance magnesium-sulfur batteries based on a sulfurated poly(acrylonitrile) cathode, a borohydride electrolyte, and a high-surface area magnesium anode, Batteries & Supercaps 3 (2020) 1239-1247.

[84]

S.X. Zhang, Y. Huang, Y.N. NuLi, B.F. Wang, J. Yang, J.L. Wang, Sodium polyacrylate as a promising aqueous binder of S@pPAN Cathodes for magnesium-sulfur batteries, J. Phys. Chem. C 124 (2020) 20712-20721.

[85]

P.W. Wang, J.L. Kappler, B. Sievert, J. Häcker, K. Küster, U. Starke, F. Ziegler, M.R. Buchmeiser, Characteristics of magnesium-sulfur batteries based on a sulfurized poly(acrylonitrile) composite and a fluorinated electrolyte, Electrochim. Acta 361 (2020) 137024.

[86]

B.P. Vinayan, Z. Zhao-Karger, T. Diemant, V.S.K. Chakravadhanula, N.I. Schwarzburger, M.A. Cambaz, R.J. Behm, C. Kübel, M. Fichtner, Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte, Nanoscale 8 (2016) 3296-3306.

[87]

H.P. Du, Z.H. Zhang, J.J. He, Z.L. Cui, J.C. Chai, J. Ma, Z. Yang, C.S. Huang, G.L. Cui, A delicately designed sulfide graphdiyne compatible cathode for high-performance lithium/magnesium-sulfur batteries, , Small 13 (2017) 1702277.

[88]

X.J. Zhou, J. Tian, J.L. Hu, C.L. Li, High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host, Adv. Mater. 30 (2018) 1704166.

[89]

J. Sun, C. Deng, Y.J. Bi, K. -H. Wu, S.M. Zhu, Z.R. Xie, C.L. Li, R. Amal, J. Luo, T.B. Liu, D. -W. Wang, In situ sulfurized carbon-confined cobalt for long-life Mg/S batteries, ACS Appl. Energy Mater. 3 (2020) 2516-2525.

[90]

H.Q. Wang, S. Li, Z.X. Chen, H.K. Liu, Z.P. Guo, A novel type of one-dimensional organic selenium containing fiber with superior performance for lithium-selenium and sodium-selenium batteries, , RSC Adv. 4 (2014) 61673-61678.

[91]

D.T. Ma, Y.L. Li, J.B. Yang, H.W. Mi, S. Luo, L.B. Deng, C.Y. Yan, P.X. Zhang, Z.Q. Lin, X.Z. Ren, J.Q. Li, H. Zhang, Atomic layer deposition-enabled ultrastable freestanding carbon-selenium cathodes with high mass loading for sodium-selenium battery, Nano Energy 43 (2018) 317-325.

[92]

M.H.A. Shiraz, H.Z. Zhu, J. Liu, Nanoscale Al2O3 coating to stabilize selenium cathode for sodium-selenium batteries, J. Mater. Res. 35 (2020) 747-755.

[93]

X.M. Yang, H.K. Wang, D. Yu, A.L. Rogach, Vacuum calcination induced conversion of selenium/carbon wires to tubes for high-performance sodium-selenium batteries, Adv. Funct. Mater. 28 (2018) 1706609.

[94]

X.M. Yang, J.K. Wang, S. Wang, H.K. Wang, O. Tomanec, C.Y. Zhi, R. Zboril, D. Yu, A. Rogach, Vapor-infiltration approach toward selenium/reduced graphene oxide composites enabling stable and high-capacity sodium storage, ACS Nano 12 (2018) 7397-7405.

[95]

B.B. Yuan, X.Z. Sun, L.C. Zeng, Y. Yu, Q.S. Wang, A freestanding and long-life sodium-selenium cathode by encapsulation of selenium into microporous multichannel carbon nanofibers, , Small 14 (2018) 1703252.

[96]

Q.J. Xu, T. Liu, Y. Li, L.Y. Hu, C.L. Dai, Y.Q. Zhang, Y. Li, D.Y. Liu, M.W. Xu, Selenium encapsulated into metal-organic frameworks derived N-doped porous carbon polyhedrons as cathode for Na-Se batteries, ACS Appl. Mater. Interfaces 9 (2017) 41339-41346.

[97]

S.Q. Li, H. Yang, R. Xu, Y. Jiang, Y. Gong, L. Gu, Y. Yu, Selenium embedded in MOF-derived N-doped microporous carbon polyhedrons as a high performance cathode for sodium-selenium batteries, Mater. Chem. Front. 2 (2018) 1574-1582.

[98]

W.D. Dong, H. Chen, F.J. Xia, W.B. Yu, J.P. Song, S.J. Wu, Z. Deng, Z. -Y. Hu, T. Hasan, Y. Li, H.E. Wang, L.H. Chen, B. -L. Su, Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na-Se batteries, J. Mater. Chem. 6 (2018) 22790-22797.

[99]

Q.J. Xu, T.T. Yang, W. Gao, R.M. Zhan, Y.Q. Zhang, S.J. Bao, X.Y. Li, Y.M. Chen, M.W. Xu, Jackfruit-like electrode design for advanced Na-Se batteries, J. Power Sources, (2019) 227245.

[100]

Y.R. Deng, L.L. Gong, Y.L. Pan, X.D. Cheng, H.P. Zhang, A long life sodium-selenium cathode by encapsulating selenium into N-doped interconnected carbon aerogels, , Nanoscale 11 (2019) 11671-11678.

[101]

X. Hu, J.W. Li, G.B. Zhong, Y.J. Liu, J. Yuan, S. Lei, H.B. Zhan, Z.H. Wen, Hierarchical multicavity nitrogen-doped carbon nanospheres as efficient polyselenide reservoir for fast and long-life sodium-selenium batteries, Small 16 (2020) 2005534.

[102]

X.S. Zhao, L.C. Yin, T. Zhang, M. Zhang, Z.B. Fang, C.Z. Wang, Y.J. Wei, G. Chen, D. Zhang, Z.H. Sun, F. Li, Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries, Nano Energy 49 (2018) 137-146.

[103]

F. Zhang, P. Xiong, X. Guo, J.Q. Zhang, W. Yang, W.J. Wu, H. Liu, G.X. Wang, A nitrogen, sulphur dual-doped hierarchical porous carbon with interconnected conductive polyaniline coating for high-performance sodium-selenium batteries, , Energy Storage Mater. 19 (2019) 251-260.

[104]

H. Wang, Y. Jiang, A. Manthirama, N-doped Fe3C@C as an efficient polyselenide reservoir for high performance sodium-selenium batteries, Energy Storage Mater. 16 (2019) 374-382.

[105]

X.L. Huang, W. Wang, J.H. Deng, W. Gao, D.Y. Liu, Q.R. Ma, M. W, A. Xu, Se-hollow porous carbon composite for high performance rechargeable K-Se batteries, Inorg. Chem. Front. 6 (2019) 2118-2125.

[106]

X.L. Huang, Q.J. Xu, W. Gao, T.T. Yang, R.M. Zhan, J.H. Deng, B.S. Guo, M.L. Tao, H.D. Liu, M.W. Xu, Rechargeable K-Se batteries based on metal-organic-frameworks derived porous carbon matrix confined selenium as cathode materials, J. Colloid Interface Sci. 539 (2019) 326-331.

[107]

X.F. Zhou, L.F. Wang, Y. Yao, Y. Jiang, R. Xu, H.Y. Wang, X.J. Wu, Y. Yu, Integrating conductivity, captivity, and immobility ability into N/O dual-doped porous carbon nanocage anchored with CNT as an effective Se host for advanced K-Se battery, Adv. Funct. Mater. 30 (2020) 2003871.

[108]

J.K. Kim, Y.C. Kang, Encapsulation of Se into hierarchically porous carbon microspheres with optimized pore structure for advanced Na-Se and K-Se batteries, ACS Nano 14 (2020) 13203-13216.

[109]

Q. Liu, W.Z. Deng, Y.L. Pan, C. -F. Sun, Approaching the voltage and energy density limits of potassium-selenium battery chemistry in a concentrated ether-based electrolyte, Chem. Sci. 11 (2020) 6045-6052.

[110]

R.Y. Qiu, R.X. Fei, T.Q. Zhang, X.L. Liu, J. Jin, H. Fan, R. Wang, B.B. He, Y.S. Gong, H.W. Wang, Biomass-derived, 3D interconnected N-doped carbon foam as a host matrix for Li/Na/K-selenium batteries, Electrochim. Acta 356 (2020) 136832.

[111]

R.Z. Cai, X.X. Chen, P.G. Liu, T. Chen, W.F. Liu, X.W. Fan, B.X. Ouyang, K.Y. Liu, A novel cathode based on selenium confined in biomass carbon and graphene oxide for potassium-selenium battery, , Chemelectrochem 7 (2020) 4477-4483.

[112]

Z.H. Zhang, B.B. Chen, H.M. Xu, Z.L. Cui, S.M. Dong, A.B. Du, J. Ma, Q.F. Wang, X.H. Zhou, G.L. Cui, Self-established rapid magnesiation/de-magnesiation pathways in binary selenium-copper mixtures with significantly enhanced Mg-ion storage reversibility, Adv. Funct. Mater. 28 (2018) 1701718.

[113]

D. Wu, W.Q. Wang, Y.N. NuLi, J. Yang, J.L. Wang, Effect of copper to Selenium@microporous carbon cathode for Mg-Se batteries with nucleophilic electrolyte, Electrochim. Acta 330 (2020) 135354.

[114]

H.C. Yuan, Y.Y. Yang, Y.N. NuLi, J. Yang, J.L. Wang, A conductive selenized polyacrylonitrile cathode in nucleophilic Mg2+/Li+ hybrid electrolytes for magnesium-selenium batteries, J. Mater. Chem. 6 (2018) 17075-17085.

[115]

A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, K. Amine, A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode, , J. Am. Chem. Soc. 134 (2012) 4505-4508.

[116]

Y.J. Cui, A. Abouimrane, J. Lu, T. Bolin, Y. Ren, W. Weng, C.J. Sun, V.A. Maroni, S.M. Heald, K. Amine, (De)lithiation mechanism of Li/SeSx (x=0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy, J. Am. Chem. Soc. 135 (2013) 8047-8056.

[117]

J.T. Zhang, Z. Li, X.W. Lou, A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance, Angew. Chem. Int. 56 (2017) 14107-14112.

[118]

J.R. He, W.Q. Lv, Y.F. Chen, J. Xiong, K.C. Wen, C. Xu, W.L. Zhang, Y.R. Li, W. Qin, W.D. He, Direct impregnation of SeS2 into a MOF-derived 3D nanoporous Co-N-C architecture towards superior rechargeable lithium batteries, J. Mater. Chem. 6 (2018) 10466-10473.

[119]

Y. Yao, L.C. Zeng, S.H. Hu, Y. Jiang, B.B. Yuan, Y. Yu, Binding S0.6Se0.4 in 1D carbon nanofiber with C-S bonding for high-performance flexible Li-S batteries and Na-S batteries, Small 13 (2017) 1603513.

[120]

L.H. Wang, X. Chen, S.P. Li, J.Q. Yang, Y.L. Sun, L.F. Peng, B. Shan, J. Xie, Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium-sulfur batteries, J. Mater. Chem. 7 (2019) 12732-12739.

[121]

Z. Li, J.T. Zhang, Y. Lu, X.W. Lou, A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances, , Sci. Adv. 4 (2018) eaat1687.

[122]

S.P. Li, Z.Q. Zeng, J.Q. Yang, Z.L. Han, W. Hu, L.H. Wang, J.Q. Ma, B. Shan, J. Xie, High performance room temperature sodium-sulfur battery by eutectic acceleration in tellurium-doped sulfurized polyacrylonitrile, ACS Appl. Energy Mater. 2 (2019) 2956-2964.

[123]

W.C. Zhang, H.Q. Wang, N. Zhang, H.G. Liu, Z. Chen, L.J. Zhang, S.P. Guo, D. Li, J.Z. Xu, One-step in situ preparation of polymeric selenium sulfide composite as a cathode material for enhanced sodium/potassium storage, ACS Appl. Mater. Interfaces 11 (2019) 29807-29813.

[124]

Y. Liu, D.Z. Yang, W.G. Wang, K. Hu, Q.H. Huang, Y. Zhang, Y.C. Miao, L.J. Fu, M. Wu, Y.P. Wu, Toward heat-tolerant potassium batteries based on pyrolyzed selenium disulfide/polyacrylonitrile positive electrode and gel polymer electrolyte, J. Mater. Chem. 8 (2020) 4544-4551.

[125]

Y. Yao, R. Xu, M.L. Chen, X.L. Cheng, S.F. Zeng, D.J. Li, X.F. Zhou, X.J. Wu, Y. Yu, Toward heat-tolerant potassium batteries based on pyrolyzed selenium disulfide/polyacrylonitrile positive electrode and gel polymer electrolyte, ACS Nano 13 (2019) 4695-4704.

[126]

A.B. Du, Y.M. Zhao, Z.H. Zhang, S.M. Dong, Z.L. Cui, K. Tang, C.L. Lu, P.X. Han, X.H. Zhou, G.L. Cui, Selenium sulfide cathode with copper foam interlayer for promising magnesium electrochemistry, Energy Storage Mater. 26 (2020) 23-31.

Nano Materials Science
Pages 119-140
Cite this article:
Yang T, Niu Y, Liu Q, et al. Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: A state-of-the-art review. Nano Materials Science, 2023, 5(2): 119-140. https://doi.org/10.1016/j.nanoms.2022.01.001

282

Views

5

Downloads

20

Crossref

19

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 24 November 2021
Accepted: 16 January 2022
Published: 18 February 2022
© 2022 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return