AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Developing high photocatalytic antibacterial Zn electrodeposited coatings through Schottky junction with Fe3+-doped alkalized g-C3N4 photocatalysts

Ying Gaoa,b,c,dXiaofan Zhaia,c,d( )Yuxin ZhangeFang Guana,c,dNazhen Liua,c,dXiutong Wanga,c,dJie Zhanga,c,dBaorong Houa,c,dJizhou Duana,c,d( )
Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
Show Author Information

Abstract

Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light. In this study, we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C3N4 (AKCN-Fe) into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light. We attribute this enhancement to the high photocatalytic performance, high loading content, and good dispersion of AKCN-Fe. In addition, the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance (EPR) measurements, suggesting that superoxide () and hydroxyl radical (·OH) play main and secondary roles, respectively.

References

[1]

Y. Salhi, S. Cherrouf, M. Cherkaoui, K. Abdelouahdi, Electrodeposition of nanostructured Sn–Zn coatings, Appl. Surf. Sci. 367 (2016) 64-69.

[2]

B. Bahadormanesh, M. Ghorbani, N.L. Kordkolaei, Electrodeposition of nanocrystalline Zn/Ni multilayer coatings from single bath: influences of deposition current densities and number of layers on characteristics of deposits, Appl. Surf. Sci. 404 (2017) 101-109.

[3]

V. Barranco, S. Feliu, S. Feliu, EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3% NaCl solution. Part 1: directly exposed coatings, Corrosion Sci. 46 (2004) 2203-2220.

[4]

X. Zhai, M. Myamina, J. Duan, B. Hou, Microbial corrosion resistance of galvanized coatings with 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one as a biocidal ingredient in electrolytes, Corrosion Sci. 72 (2013) 99-107.

[5]

K.R. Sriraman, S. Brahimi, J.A. Szpunar, J.H. Osborne, S. Yue, Characterization of corrosion resistance of electrodeposited Zn–Ni Zn and Cd coatings, Electrochim. Acta 105 (2013) 314-323.

[6]

X. Zhai, C. Sun, K. Li, F. Guan, X. Liu, J. Duan, B. Hou, Synthesis and characterization of chitosan–zinc composite electrodeposits with enhanced antibacterial properties, RSC Adv. 6 (2016) 46081-46088.

[7]

Q. Li, Z. Feng, L. Liu, J. Sun, Y. Qu, F. Li, M. An, Research on the tribological behavior of a nanocrystalline zinc coating prepared by pulse reverse electrodeposition, RSC Adv. 5 (2015) 12025-12033.

[8]

A. El Fazazi, M. Ouakki, M. Cherkaoui, Electrochemical deposition and spectroscopy investigation of Zn coatings on steel, J. Bio- Tribo-Corros. 7 (2021) 58.

[9]

K. Vathsala, T.V. Venkatesha, Zn–ZrO2 nanocomposite coatings: elecrodeposition and evaluation of corrosion resistance, Appl. Surf. Sci. 257 (2011) 8929-8936.

[10]

L.D. Chambers, K.R. Stokes, F.C. Walsh, R.J.K. Wood, Modern approaches to marine antifouling coatings, Surf. Coating. Technol. 201 (2006) 3642-3652.

[11]

X. Zhai, P. Ju, F. Guan, J. Duan, N. Wang, Y. Zhang, K. Li, B. Hou, Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria, J. Mater. Sci. Technol. 75 (2021) 86-95.

[12]

X. Zhai, P. Ju, F. Guan, Y. Ren, X. Liu, N. Wang, Y. Zhang, J. Duan, C. Wang, B. Hou, Electrodeposition of capsaicin-induced ZnO/Zn nanopillar films for marine antifouling and antimicrobial corrosion, Surf. Coating. Technol. 397 (2020) 125959.

[13]

P. Chen, Y. Zhang, Y. Zhou, F. Dong, Photoelectrocatalytic carbon dioxide reduction: fundamental, advances and challenges, Nano Mater. Sci. 3 (2021) 344-367.

[14]

S.N. a. Haji Yassin, A.S.L. Sim, J.R. Jennings, Photoelectrochemical evaluation of SILAR-deposited nanoporous BiVO4 photoanodes for solar-driven water splitting, Nano Mater. Sci. 2 (2020) 227-234.

[15]

S. Li, S. Hu, W. Jiang, Y. Liu, Y. Zhou, J. Liu, Z. Wang, Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation, J. Colloid Interface Sci. 530 (2018) 171-178.

[16]

G. Li, X. Nie, J. Chen, Q. Jiang, T. An, P.K. Wong, H. Zhang, H. Zhao, H. Yamashita, Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach, Water Res. 86 (2015) 17-24.

[17]

J. Xu, Z. Wang, Y. Zhu, Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets, ACS Appl. Mater. Interfaces 9 (2017) 27727-27735.

[18]

W. Bing, Z. Chen, H. Sun, P. Shi, N. Gao, J. Ren, X. Qu, Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles, Nano Res. 8 (2015) 1648-1658.

[19]

X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc. 131 (2009) 1680-1681.

[20]

Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed. 51 (2012) 68-89.

[21]

J. Huang, W. Ho, X. Wang, Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination, Chem. Commun. 50 (2014) 4338-4340.

[22]

L. Cai, X. Wei, H. Feng, G. Fan, C. Gao, H. Chen, X. Sun, Antimicrobial mechanisms of g-C3N4 nanosheets against the oomycetes Phytophthora capsici: disrupting metabolism and membrane structures and inhibiting vegetative and reproductive growth, J. Hazard Mater. 417 (2021) 126121.

[23]

J.H. Thurston, N.M. Hunter, L.J. Wayment, K.A. Cornell, Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity, J. Colloid Interface Sci. 505 (2017) 910-918.

[24]

W. -J. Ong, L. -L. Tan, Y.H. Ng, S. -T. Yong, S. -P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116 (2016) 7159-7329.

[25]

S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25 (2009) 10397-10401.

[26]

H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L. -Z. Wu, C. -H. Tung, T. Zhang, Photocatalysis: alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution, Adv. Mater. 29 (2017).

[27]

N. Jiang, L. Lyu, G. Yu, L. Zhang, C. Hu, A dual-reaction-center Fenton-like process on –CN–Cu linkage between copper oxides and defect-containing g-C3N4 for efficient removal of organic pollutants, J. Mater. Chem. 6 (2018) 17819-17828.

[28]

P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee, J. Lee, J.W. Han, D. -P. Kim, W. Choi, Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis, Nat. Commun. 10 (2019) 940.

[29]

H. Zhang, L. Jia, P. Wu, R. Xu, J. He, W. Jiang, Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification, Appl. Surf. Sci. 527 (2020) 146584.

[30]

Y. Gao, J. Duan, X. Zhai, F. Guan, X. Wang, J. Zhang, B. Hou, Photocatalytic degradation and antibacterial properties of Fe3+-doped alkalized carbon nitride, Nanomaterials (2020) 10.

[31]

A.U. Khan, Q. Yuan, Y. Wei, G.M. Khan, Z.U.H. Khan, S. Khan, F. Ali, K. Tahir, A. Ahmad, F.U. Khan, Photocatalytic and antibacterial response of biosynthesized gold nanoparticles, J. Photochem. Photobiol., B 162 (2016) 273-277.

[32]

Z. Xiang, Y. Wang, D. Zhang, P. Ju, BiOI/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation, J. Ind. Eng. Chem. 40 (2016) 83-92.

[33]

O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D.Y. Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal. B Environ. 98 (2010) 27-38.

[34]

Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res. 42 (2008) 4591-4602.

[35]

J. Kim, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol. 44 (2010) 6849-6854.

[36]

Y. Zhang, N. Zhang, Z. -R. Tang, Y. -J. Xu, Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water, Chem. Sci. 4 (2013) 1820-1824.

[37]

V. Rodríguez-González, S. Obregón, O.A. Patrón-Soberano, C. Terashima, A. Fujishima, An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes, Appl. Catal. B Environ. 270 (2020) 118853.

[38]

M. Chen, Z. Li, L. Chen, Highly antibacterial rGO/Cu2O nanocomposite from a biomass precursor: synthesis, performance, and mechanism, Nano Mater. Sci. 2 (2020) 172-179.

[39]

P. Ju, Y. Wang, Y. Sun, D. Zhang, Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation, Dalton Trans. 45 (2016) 4588-4602.

[40]

X. Lin, X. Guo, W. Shi, L. Zhao, Y. Yan, Q. Wang, Ternary heterostructured Ag–BiVO4/InVO4 composites: synthesis and enhanced visible-light-driven photocatalytic activity, J. Alloys Compd. 635 (2015) 256-264.

[41]

S. Li, S. Hu, W. Jiang, J. Zhang, K. Xu, Z. Wang, In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants, J. Colloid Interface Sci. 556 (2019) 335-344.

[42]

N.A. Polyakov, I.G. Botryakova, V.G. Glukhov, G.V. Red'kina, Y.I. Kuznetsov, Formation and anticorrosion properties of superhydrophobic zinc coatings on steel, Chem. Eng. J. 421 (2021) 127775.

[43]

K.O. Nayana, T.V. Venkatesha, Synergistic effects of additives on morphology, texture and discharge mechanism of zinc during electrodeposition, J. Electroanal. Chem. 663 (2011) 98-107.

[44]

T. Foroozan, V. Yurkiv, S. Sharifi-Asl, R. Rojaee, F. Mashayek, R. Shahbazian-Yassar, Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates, ACS Appl. Mater. Interfaces 11 (2019) 44077-44089.

[45]

M. Sajjadnejad, A. Mozafari, H. Omidvar, M. Javanbakht, Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings, Appl. Surf. Sci. 300 (2014) 1-7.

[46]

G. Meng, L. Zhang, Y. Shao, T. Zhang, F. Wang, Study of the electrochemical behaviour of nanocrystalline zinc by statistical methods, Corrosion Sci. 51 (2009) 1685-1689.

[47]

H. Cai, P. Wang, D. Zhang, Y. Wang, E. Li, An intelligent self-defensive coating based on sulfide ion responsive nanocontainers for suppression of microbiologically influenced corrosion induced by sulfate reducing bacteria, Corrosion Sci. 188 (2021) 109543.

[48]

G. Tian, M. Zhang, Y. Zhao, J. Li, H. Wang, X. Zhang, H. Yan, High corrosion protection performance of a novel nonfluorinated biomimetic superhydrophobic Zn–Fe coating with echinopsis multiplex-like structure, ACS Appl. Mater. Interfaces 11 (2019) 38205-38217.

[49]

M. Wang, C. Jin, J. Kang, J. Liu, Y. Tang, Z. Li, S. Li, CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: characterization, efficiency and mechanism, Chem. Eng. J. 416 (2021) 128118.

[50]

K. Saravanakumar, C.M. Park, Rational design of a novel LaFeO3/g-C3N4/BiFeO3 double Z-scheme structure: photocatalytic performance for antibiotic degradation and mechanistic insight, Chem. Eng. J. 423 (2021) 130076.

[51]

Y. Gao, J. Duan, X. Zhai, F. Guan, X. Wang, J. Zhang, B. Hou, Extraordinary photodegradation performance of graphitic carbon nitride derived from tin foil–wrapped urea, J. Nanoparticle Res. 23 (2021) 44.

[52]

D. Zhu, Q. Zhou, Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light, Appl. Catal. B Environ. 281 (2021) 119474.

[53]

W. Liu, C. Song, M. Kou, Y. Wang, Y. Deng, T. Shimada, L. Ye, Fabrication of ultra-thin g-C3N4 nanoplates for efficient visible-light photocatalytic H2O2 production via two-electron oxygen reduction, Chem. Eng. J. 425 (2021) 130615.

[54]

G. Gunawardena, G. Hills, I. Montenegro, Electrochemical nucleation: Part II. The electrodeposition of silver on vitreous carbon, J. Electroanal. Chem. Interfacial Electrochem. 138 (1982) 241-254.

[55]

N. Loukil, M. Feki, Zn–Mn alloy coatings from acidic chloride bath: effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization, Appl. Surf. Sci. 410 (2017) 574-584.

[56]

X. Zhai, C. Sun, K. Li, M. Agievich, J. Duan, B. Hou, Composite deposition mechanism of 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one in zinc films for enhanced corrosion resistant properties, J. Ind. Eng. Chem. 36 (2016) 147-153.

[57]

R. Wiart, Elementary steps of electrodeposition analysed by means of impedance spectroscopy, Electrochim. Acta 35 (1990) 1587-1593.

[58]

W. Fei, J. Cui, Y. Sun, J. Yang, S. Gao, J. Li, Anti-corrosion and electrically conductive inorganic conversion coatings based on aligned graphene derivatives by electrodeposition, Nano Mater. Sci. (2021) In press.

[59]

A.M. Alotaibi, B.A.D. Williamson, S. Sathasivam, A. Kafizas, M. Alqahtani, C. Sotelo-Vazquez, J. Buckeridge, J. Wu, S.P. Nair, D.O. Scanlon, I.P. Parkin, Enhanced photocatalytic and antibacterial ability of Cu-doped anatase TiO2 thin films: theory and experiment, ACS Appl. Mater. Interfaces 12 (2020) 15348-15361.

[60]

X. Xiong, Z. Wang, Y. Zhang, Z. Li, R. Shi, T. Zhang, Wettability controlled photocatalytic reactive oxygen generation and Klebsiella pneumoniae inactivation over triphase systems, Appl. Catal. B Environ. 264 (2020) 118518.

[61]

S. Li, J. Chen, S. Hu, H. Wang, W. Jiang, X. Chen, Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants, Chem. Eng. J. 402 (2020) 126165.

[62]

S. Li, C. Wang, Y. Liu, B. Xue, W. Jiang, Y. Liu, L. Mo, X. Chen, Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: mineralization activity, degradation pathways and boosted charge separation mechanism, Chem. Eng. J. 415 (2021) 128991.

[63]

S. Li, X. Shen, J. Liu, L. Zhang, Synthesis of Ta3N5/Bi2MoO6 core–shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts, Environ. Sci. -Nano 4 (2017) 1155-1167.

[64]

S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction, Chem. Eng. J. 428 (2022) 131158.

[65]

S. Li, C. Wang, Y. Liu, M. Cai, Y. Wang, H. Zhang, Y. Guo, W. Zhao, Z. Wang, X. Chen, Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: performance, mechanism insight and toxicity assessment, Chem. Eng. J. 429 (2022) 132519.

[66]

C. Wang, M. Cai, Y. Liu, F. Yang, H. Zhang, J. Liu, S. Li, Facile construction of novel organic–inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: performance, degradation pathways, intermediate toxicity analysis and mechanism insight, J. Colloid Interface Sci. 605 (2022) 727-740.

[67]

H.R. Liu, G.X. Shao, J.F. Zhao, Z.X. Zhang, Y. Zhang, J. Liang, X.G. Liu, H.S. Jia, B.S. Xu, Worm-like Ag/ZnO core–shell heterostructural composites: fabrication, characterization, and photocatalysis, J. Phys. Chem. C 116 (2012) 16182-16190.

[68]

Y.M. Huang, Q. -L. Ma, B. -G. Zhai, Core-shell Zn/ZnO structures with improved photocatalytic properties synthesized by aqueous solution method, Func. Mater. Lett. 6 (2013) 1350058.

[69]

X. Hu, P. Hou, C. Liu, H. Cheng, Carbon nanotube/silicon heterojunctions for photovoltaic applications, Nano Mater. Sci. 1 (2019) 156-172.

[70]

X. Zhang, J. Zhang, J. Yu, Y. Zhang, Z. Cui, Y. Sun, B. Hou, Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light, Appl. Catal. B Environ. 220 (2018) 57-66.

[71]

X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M. -T.F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P.M. Ajayan, High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-Scheme catalysts, Adv. Energy Mater. 7 (2017) 1700025.

[72]

Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu, C. Wang, D. Wang, G. Wang, Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water, Inside Chem. 5 (2019) 664-680.

[73]

B. Pant, M. Park, J.H. Lee, H. -Y. Kim, S. -J. Park, Novel magnetically separable silver-iron oxide nanoparticles decorated graphitic carbon nitride nano-sheets: a multifunctional photocatalyst via one-step hydrothermal process, J. Colloid Interface Sci. 496 (2017) 343-352.

[74]

N. Thomas, D.D. Dionysiou, S.C. Pillai, Heterogeneous Fenton catalysts: a review of recent advances, J. Hazard Mater. 404 (2021) 124082.

Nano Materials Science
Pages 177-188
Cite this article:
Gao Y, Zhai X, Zhang Y, et al. Developing high photocatalytic antibacterial Zn electrodeposited coatings through Schottky junction with Fe3+-doped alkalized g-C3N4 photocatalysts. Nano Materials Science, 2023, 5(2): 177-188. https://doi.org/10.1016/j.nanoms.2022.01.004

289

Views

4

Downloads

10

Crossref

7

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 12 November 2021
Accepted: 31 December 2021
Published: 14 February 2022
© 2023 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return