AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (28.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design

Rongrong DengaMengwei GuoaChaowu WangaQibo Zhanga,b( )
Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China
State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming, 650093, PR China
Show Author Information

Abstract

Electrochemical water splitting has long been considered an effective energy conversion technology for transferring intermittent renewable electricity into hydrogen fuel, and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable. Cobalt phosphide (Co-P) has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting. This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting. The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined. Then, versatile synthesis techniques for Co-P electrocatalysts are summarized, followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials, including heteroatom doping, composite construction, integration with well-conductive substrates, and structure control from the viewpoint of experiment. Along with these optimization strategies, the understanding of the inherent mechanism of enhanced catalytic performance is also discussed. Finally, some existing challenges in the development of highly active and stable Co-P-based materials are clarified, and prospective directions for prompting the wide commercialization of water electrolysis technology are proposed.

References

[1]

K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progr. Energy Combust. Sci. 36 (2010) 307-326.

[2]

L. Carrette, K.A. Friedrich, U. Stimming, Fuel cells-fundamentals and applications, Fuel Cell. 1 (2001) 5-39.

[3]

A.S. Arico, S. Srinivasan, V. Antonucci, DMFCs: from fundamental aspects to technology development, Fuel Cell. 1 (2001) 133-161.

[4]

J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries, Nat. Chem. 3 (2011) 546-550.

[5]

F. Cheng, J. Chen, Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts, Chem. Soc. Rev. 41 (2012) 2172-2192.

[6]

Y. Hames, K. Kaya, E. Baltacioglu, A. Turksoy, Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles, Int. J. Hydrogen Energy 43 (2018) 10810-10821.

[7]

Y. Manoharan, S.E. Hosseini, B. Butler, H. Alzhahrani, B.T.F. Senior, T. Ashuri, J. Krohn, Hydrogen fuel cell vehicles; current status and future prospect, Appl. Sci. 9 (2019) 2296.

[8]

B. Tanç, H.T. Arat, E. Baltacıoğlu, K. Aydın, Overview of the next quarter century vision of hydrogen fuel cell electric vehicles, Int. J. Hydrogen Energy 44 (2019) 10120-10128.

[9]

R.-A. Felseghi, E. Carcadea, M.S. Raboaca, C.N. Trufin, C. Filote, Hydrogen fuel cell technology for the sustainable future of stationary applications, Energies 12 (2019) 4593.

[10]

N.N. Deshavath, M. Mohan, V.D. Veeranki, V.V. Goud, S.R. Pinnamaneni, T. Benarjee, Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production, 3 Biotech 7 (2017) 1-12.

[11]

L. Peng, Z. Wei, Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell, Engineering 6 (2020) 653-679.

[12]

Q. Wang, M. Xue, B.-L. Lin, Z. Lei, Z. Zhang, Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China, J. Clean. Prod. 275 (2020), 123061.

[13]

Q. Lu, M. Qiu, M. Zhao, Z. Li, Y. Li, Modification of NFA-conjugated bridges with symmetric structures for high-efficiency non-fullerene PSCs, Polymers 11 (2019) 958.

[14]

S.S. Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis–A review, Mater. Sci. Energy Technol. 2 (2019) 442-454.

[15]

Z. Chen, L. Guo, L. Pan, T. Yan, Z. He, Y. Li, C. Shi, Z.F. Huang, X. Zhang, J.J. Zou, Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers, Adv. Energy Mater. (2022), 2103670.

[16]

N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions, Adv. Sci. 5 (2018), 1700464.

[17]

J.A. Turner, A realizable renewable energy future, Science 285 (1999) 687-689.

[18]

Y. Yan, B. Xia, Z. Xu, X. Wang, Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction, ACS Catal. 4 (2014) 1693-1705.

[19]

C. Meng, M. Lin, X. Sun, X. Chen, X. Chen, X. Du, Y. Zhou, Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution, Chem. Commun. 55 (2019) 2904-2907.

[20]

Z. Kang, M.A. Khan, Y. Gong, R. Javed, Y. Xu, D. Ye, H. Zhao, J. Zhang, Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction, J. Mater. Chem. 9 (2021) 6089-6108.

[21]

L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, X. Huang, Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis, Nat. Commun. 7 (2016) 1-10.

[22]

X. Zhao, S. Chen, Z. Fang, J. Ding, W. Sang, Y. Wang, J. Zhao, Z. Peng, J. Zeng, Octahedral Pd@Pt1.8Ni core–shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction, J. Am. Chem. Soc. 137 (2015) 2804-2807.

[23]

M. Song, Y. Song, H. Li, P. Liu, B. Xu, H. Wei, J. Guo, Y. Wu, Sucrose leavening-induced hierarchically porous carbon enhanced the hydrogen evolution reaction performance of Pt nanoparticles, Electrochim. Acta 320 (2019), 134603.

[24]

C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc. 137 (2015) 4347-4357.

[25]

M. Escudero-Escribano, A.F. Pedersen, E.A. Paoli, R. Frydendal, D. Friebel, P. Malacrida, J. Rossmeisl, I.E.L. Stephens, I. Chorkendorff, Importance of surface IrO in stabilizing RuO2 for oxygen evolution, J. Phys. Chem. B 122 (2018) 947-955.

[26]

Z. Ma, Y. Zhang, S. Liu, W. Xu, L. Wu, Y. Hsieh, P. Liu, Y. Zhu, K. Sasaki, J.N. Renner, K.E. Ayers, R.R. Adzic, J.X. Wang, Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts, J. Electroanal. Chem. 819 (2018) 296-305.

[27]

W. Liu, H. Zhang, C. Li, X. Wang, J. Liu, X. Zhang, Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting, J. Energy Chem. 47 (2020) 333-345.

[28]

H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis, Electrochem. Energy Rev. (2021) 1-35.

[29]

Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting, Adv. Mater. 31 (2019), 1807134.

[30]

Y.-C. Zhang, C. Han, J. Gao, L. Pan, J. Wu, X.-D. Zhu, J.-J. Zou, NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: a review, ACS Catal. 11 (2021) 12485-12509.

[31]

Z. Li, X. Wu, X. Jiang, B. Shen, Z. Teng, D. Sun, G. Fu, Y. Tang, Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction, Adv. Powder Mater. 1 (2022) 100020.

[32]

Y. Mu, T. Wang, J. Zhang, C. Meng, Y. Zhang, Z. Kou, Single-atom catalysts: advances and challenges in metal-support interactions for enhanced electrocatalysis, Electrochem. Energy Rev. (2021) 1-42.

[33]

L. Chang, Z. Sun, Y.H. Hu, 1T phase transition metal dichalcogenides for hydrogen evolution reaction, Electrochem. Energy Rev. (2021) 1-25.

[34]

Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts, Chem. Mater. 29 (2017) 5566-5573.

[35]

Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando, Y. Yamauchi, Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting, Nano Energy 47 (2018) 494-502.

[36]

O. Mabayoje, S.G. Dunning, K. Kawashima, B.R. Wygant, R.A. Ciufo, S.M. Humphrey, C.B. Mullins, Hydrogen evolution by Ni2P catalysts derived from phosphine MOFs, ACS Appl. Energy Mater. 3 (2019) 176-183.

[37]

Z. Chen, X. Duan, W. Wei, S. Wang, B.-j. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution, J. Mater. Chem. 7 (2019) 14971-15005.

[38]

J. Yu, T.A. Le, N.Q. Tran, H. Lee, Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water splitting in alkaline media, Chem. Eur J. 26 (2020) 6423-6436.

[39]

A. Ray, S. Sultana, L. Paramanik, K.M. Parida, Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting, J. Mater. Chem. 8 (2020) 19196-19245.

[40]

C. Sun, J. Zeng, H. Lei, W. Yang, Q. Zhang, Direct electrodeposition of phosphorus-doped nickel superstructures from choline chloride-ethylene glycol deep eutectic solvent for enhanced hydrogen evolution catalysis, ACS Sustain. Chem. Eng. 7 (2018) 1529-1537.

[41]

S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A.M. Asiri, Q. Wu, X. Sun, Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects, J. Mater. Chem. 8 (2020) 19729-19745.

[42]

Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis, Adv. Energy Mater. 10 (2019), 1902104.

[43]

J. Wang, Z. Liu, Y. Zheng, L. Cui, W. Yang, J. Liu, Recent advances in cobalt phosphide based materials for energy-related applications, J. Mater. Chem. 5 (2017) 22913-22932.

[44]

J. Cai, Y. Song, Y. Zang, S. Niu, Y. Wu, Y. Xie, X. Zheng, Y. Liu, Y. Lin, X. Liu, N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides, Sci. Adv. 6 (2020).

[45]

K. Xu, H. Ding, M. Zhang, M. Chen, Z. Hao, L. Zhang, C. Wu, Y. Xie, Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution, Adv. Mater. 29 (2017), 1606980.

[46]

Y. Zeng, Y. Wang, G. Huang, C. Chen, L. Huang, R. Chen, S. Wang, Porous CoP nanosheets converted from layered double hydroxides with superior electrochemical activity for hydrogen evolution reactions at wide pH ranges, Chem. Commun. 54 (2018) 1465-1468.

[47]

H. Yoon, H.J. Song, B. Ju, D.-W. Kim, Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH, Nano Res. 13 (2020) 2469-2477.

[48]

M. Song, Z. Zhang, Q. Li, W. Jin, Z. Wu, G. Fu, X. Liu, Ni-foam supported Co(OH)F and Co–P nanoarrays for energy-efficient hydrogen production via urea electrolysis, J. Mater. Chem. 7 (2019) 3697-3703.

[49]

Y. Men, P. Li, J. Zhou, G. Cheng, W. Luo, Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values, ACS Catal. 9 (2019) 3744-3752.

[50]

L. Fang, Y. Xie, Y. Yang, B. Zhu, Y. Wang, M. Liu, K. Zhao, H. Zhao, J. Zhang, Interfacial electronic modulation of multishelled CoP hollow spheres via surface reconstruction for high-efficient hydrogen evolution reaction, ACS Appl. Energy Mater. 3 (2019) 309-318.

[51]

T. Liang, Y. Liu, P. Zhang, C. Liu, F. Ma, Q. Yan, Z. Dai, Interface and valence modulation on scalable phosphorene/phosphide lamellae for efficient water electrolysis, Chem. Eng. J. 395 (2020), 124976.

[52]

H. Liao, Y. Sun, C. Dai, Y. Du, S. Xi, F. Liu, L. Yu, Z. Yang, Y. Hou, A.C. Fisher, An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts, Nano Energy 50 (2018) 273-280.

[53]

Z. Li, H. Feng, M. Song, C. He, W. Zhuang, L. Tian, Advances in CoP electrocatalysts for water splitting, Mater. Today Energy (2021), 100698.

[54]

Z. Guo, L. Liu, J. Wang, Y. Cao, J. Tu, X. Zhang, L. Ding, Recent progress in CoP-based materials for electrochemical water splitting, Int. J. Hydrogen Energy 46 (2021) 34194-34215.

[55]

B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting, Acc. Chem. Res. 51 (2018) 1571-1580.

[56]

W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis, Energy Environ. Sci. 8 (2015) 1404-1427.

[57]

P.C. Vesborg, B. Seger, I. Chorkendorff, Recent development in hydrogen evolution reaction catalysts and their practical implementation, J. Phys. Chem. Lett. 6 (2015) 951-957.

[58]

J. Zeng, J. Liu, S.S. Siwal, W. Yang, X. Fu, Q. Zhang, Morphological and electronic modification of 3D porous nickel microsphere arrays by cobalt and sulfur dual synergistic modulation for overall water splitting electrolysis and supercapacitors, Appl. Surf. Sci. 491 (2019) 570-578.

[59]

Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed. 54 (2015) 52-65.

[60]

C.G. Morales-Guio, L.-A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution, Chem. Soc. Rev. 43 (2014) 6555-6569.

[61]

S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review, ACS Catal. 6 (2016) 8069-8097.

[62]

J.M. Bockris, E. Potter, The mechanism of the cathodic hydrogen evolution reaction, J. Electrochem. Soc. 99 (1952) 169.

[63]

B. Conway, B. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H, Electrochim, Acta 47 (2002) 3571-3594.

[64]

M.A. Dominguez-Crespo, A.M. Torres-Huerta, B. Brachetti-Sibaja, A. Flores-Vela, Electrochemical performance of Ni–RE (RE=rare earth) as electrode material for hydrogen evolution reaction in alkaline medium, Int. J. Hydrogen Energy 36 (2011) 135-151.

[65]

Y.F. Xu, M.R. Gao, Y.R. Zheng, J. Jiang, S.H. Yu, Nickel/nickel(Ⅱ) oxide nanoparticles anchored onto cobalt(Ⅳ) diselenide nanobelts for the electrochemical production of hydrogen, Angew. Chem. 125 (2013) 8708-8712.

[66]

E. Skúlason, V. Tripkovic, M.E. Bjo¨rketun, S. Gudmundsdottir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson, J.K. Nørskov, Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations, J. Phys. Chem. C 114 (2010) 18182-18197.

[67]

J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 5 (2006) 909-913.

[68]

J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152 (2005) J23.

[69]

T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 317 (2007) 100-102.

[70]

M. Bajdich, M. Garcia-Mota, A. Vojvodic, J.K. Norskov, A.T. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water, J. Am. Chem. Soc. 135 (2013) 13521-13530.

[71]

Q. Zhou, Z. Shen, C. Zhu, J. Li, Z. Ding, P. Wang, F. Pan, Z. Zhang, H. Ma, S. Wang, Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption, Adv. Mater. 30 (2018), 1800140.

[72]

J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14, J. Am. Chem. Soc. 136 (2014) 7587-7590.

[73]

E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 135 (2013) 9267-9270.

[74]

Y. Li, H. Li, K. Cao, T. Jin, X. Wang, H. Sun, J. Ning, Y. Wang, L. Jiao, Electrospun three dimensional Co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution, Energy Stor. Mater. 12 (2018) 44-53.

[75]

G. Hu, Q. Tang, D.-e. Jiang, CoP for hydrogen evolution: implications from hydrogen adsorption, Phys. Chem. Chem. Phys. 18 (2016) 23864-23871.

[76]

H. Li, X. Zhao, H. Liu, S. Chen, X. Yang, C. Lv, H. Zhang, X. She, D. Yang, Sub-1.5 nm ultrathin CoP nanosheet aerogel: efficient electrocatalyst for hydrogen evolution reaction at all pH values, Small 14 (2018), 1802824.

[77]

Z. Jin, P. Li, D. Xiao, Metallic Co2P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall water-splitting, Green Chem. 18 (2016) 1459-1464.

[78]

G. Huang, W. Liang, Y. Wu, J. Li, Y.Q. Jin, H. Zeng, H. Zhang, F. Xie, J. Chen, N. Wang, Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium, J. Catal. 390 (2020) 23-29.

[79]

J.F. Callejas, C.G. Read, E.J. Popczun, J.M. McEnaney, R.E. Schaak, Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP, Chem. Mater. 27 (2015) 3769-3774.

[80]

T. Wu, M. Pi, X. Wang, W. Guo, D. Zhang, S. Chen, Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range, Appl. Surf. Sci. 427 (2018) 800-806.

[81]

M. Pramanik, S. Tominaka, Z.L. Wang, T. Takei, Y. Yamauchi, Mesoporous semimetallic conductors: structural and electronic properties of cobalt phosphide systems, Angew. Chem. 129 (2017) 13693-13697.

[82]

J. Kibsgaard, C. Tsai, K. Chan, J.D. Benck, J.K. Nørskov, F. Abild-Pedersen, T.F. Jaramillo, Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends, Energy Environ. Sci. 8 (2015) 3022-3029.

[83]

R. Beltrán-Suito, P.W. Menezes, M. Driess, Amorphous outperforms crystalline nanomaterials: surface modifications of molecularly derived CoP electro (pre) catalysts for efficient water-splitting, J. Mater. Chem. 7 (2019) 15749-15756.

[84]

J. Jiao, W. Yang, Y. Pan, C. Zhang, S. Liu, C. Chen, D. Wang, Interface engineering of partially phosphidated Co@Co–P@NPCNTs for highly enhanced electrochemical overall water splitting, Small 16 (2020), 2002124.

[85]

C.-Z. Yuan, S.-L. Zhong, Y.-F. Jiang, Z.K. Yang, Z.-W. Zhao, S.-J. Zhao, N. Jiang, A.-W. Xu, Direct growth of cobalt-rich cobalt phosphide catalysts on cobalt foil: an efficient and self-supported bifunctional electrode for overall water splitting in alkaline media, J. Mater. Chem. 5 (2017) 10561-10566.

[86]

J. Scaranto, H. Idriss, DFT studies of bulk and surfaces of the electrocatalyst cobalt phosphide CoP2, Chem. Phys. Lett. X 2 (2019), 100008.

[87]

C. Hu, L. Zhang, J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting, Energy Environ. Sci. 12 (2019) 2620-2645.

[88]

V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.-G. Lee, T. Yoon, K.S. Kim, Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions, ACS Catal. 7 (2017) 7196-7225.

[89]

Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions, Chem. Soc. Rev. 44 (2015) 2060-2086.

[90]

J. Chen, H. Chen, T. Yu, R. Li, Y. Wang, Z. Shao, S. Song, Recent advances in the understanding of the surface reconstruction of oxygen evolution electrocatalysts and materials development, Electrochem. Energy Rev. (2021) 1-35.

[91]

N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337-365.

[92]

H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis, ChemCatChem 2 (2010) 724-761.

[93]

G. Mattioli, P. Giannozzi, A. Amore Bonapasta, L. Guidoni, Reaction pathways for oxygen evolution promoted by cobalt catalyst, J. Am. Chem. Soc. 135 (2013) 15353-15363.

[94]

H. Jing, P. Zhu, X. Zheng, Z. Zhang, D. Wang, Y. Li, Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis, Adv. Powder Mater. 1 (2022), 100013.

[95]

W. Zou, K. Dou, Q. Jiang, J. Xiang, C.-C. Kaun, H. Tang, Nearly spherical CoP nanoparticle/carbon nanosheet hybrids: a high-performance trifunctional electrocatalyst for oxygen reduction and water splitting, RSC Adv. 9 (2019) 39951-39957.

[96]

Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis, Angew. Chem. Int. Ed. 56 (2017) 1324-1328.

[97]

H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting, Nat. Commun. 6 (2015) 1-8.

[98]

G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, J. Li, Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting, J. Am. Chem. Soc. 138 (2016) 14686-14693.

[99]

X. Li, Z. Cheng, X. Wang, Understanding the mechanism of the oxygen evolution reaction with consideration of spin, Electrochem. Energy Rev. (2020) 1-10.

[100]

S.S. Siwal, W. Yang, Q. Zhang, Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media, J. Energy Chem. 51 (2020) 113-133.

[101]

J. Wu, D. Wang, S. Wan, H. Liu, C. Wang, X. Wang, An efficient cobalt phosphide electrocatalyst derived from cobalt phosphonate complex for all-pH hydrogen evolution reaction and overall water splitting in alkaline solution, Small 16 (2020), 1900550.

[102]

G. Huang, Z. Xiao, R. Chen, S. Wang, Defect engineering of cobalt-based materials for electrocatalytic water splitting, ACS Sustain. Chem. Eng. (2018) 15954-15969.

[103]

N.C.S. Selvam, L. Du, B.Y. Xia, P.J. Yoo, B. You, Reconstructed water oxidation electrocatalysts: the impact of surface dynamics on intrinsic activities, Adv. Funct. Mater. 31 (2021), 2008190.

[104]

P. Rekha, S. Yadav, L. Singh, A review on cobalt phosphate-based materials as emerging catalysts for water splitting, Ceram. Int. 47 (2021) 16385-16401.

[105]

J. Qi, J. Xie, Z. Wei, S. Lou, P. Hao, F. Lei, B. Tang, Modulation of crystal water in cobalt phosphate for promoted water oxidation, Chem. Commun. 56 (2020) 4575-4578.

[106]

Z. Liang, C. Yang, W. Zhang, H. Zheng, R. Cao, Anion engineering of hierarchical Co-A (A= O, Se, P) hexagrams for efficient electrocatalytic oxygen evolution reaction, Chin. Chem. Lett. 32 (2021) 3241-3244.

[107]

K. Xu, H. Cheng, L. Liu, H. Lv, X. Wu, C. Wu, Y. Xie, Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media, Nano Lett. 17 (2017) 578-583.

[108]

W. Zhang, L. Cui, J. Liu, Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions, J. Alloys Compd. 821 (2020), 153542.

[109]

J. Ryu, N. Jung, J.H. Jang, H.-J. Kim, S.J. Yoo, In situ transformation of hydrogen-evolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units, ACS Catal. 5 (2015) 4066-4074.

[110]

X. Ji, R. Zhang, X. Shi, A.M. Asiri, B. Zheng, X. Sun, Fabrication of hierarchical CoP nanosheet@ microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions, Nanoscale 10 (2018) 7941-7945.

[111]

P. Mei, Y. Yamauchi, M. Pramanik, A. Fatehmulla, A.M. Adhafiri, W.A. Farooq, Y. Bando, M.J. Shiddiky, Y.V. Kaneti, J. Lin, Hard-templated preparation of mesoporous cobalt phosphide as an oxygen evolution electrocatalyst, Electrochem. Commun. 104 (2019), 106476.

[112]

C.-W. Chiu, I.-W. Sun, P.-Y. Chen, Electrodeposition and characterization of CoP compounds produced from the hydrophilic room-temperature ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide, J. Electrochem. Soc. 164 (2017) H5018.

[113]

D.-H. Ha, L.M. Moreau, C.R. Bealing, H. Zhang, R.G. Hennig, R.D. Robinson, The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles, J. Mater. Chem. 21 (2011) 11498-11510.

[114]

E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles, Angew. Chem. 126 (2014) 5531-5534.

[115]

E.J. Popczun, C.W. Roske, C.G. Read, J.C. Crompton, J.M. McEnaney, J.F. Callejas, N.S. Lewis, R.E. Schaak, Highly branched cobalt phosphide nanostructures for hydrogen-evolution electrocatalysis, J. Mater. Chem. 3 (2015) 5420-5425.

[116]

Z. Huang, Z. Chen, Z. Chen, C. Lv, M.G. Humphrey, C. Zhang, Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction, Nano Energy 9 (2014) 373-382.

[117]

Z. Liu, X. Yu, H. Xue, L. Feng, Nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting, J. Mater. Chem. 7 (2019) 13242-13248.

[118]

L. Yang, H. Qi, C. Zhang, X. Sun, An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide, Nanotechnology 27 (2016), 23LT01.

[119]

F. Shang, S. Wan, X. Gao, W. Zhang, R. Cao, Engineering hierarchical-dimensional Co(OH)F into CoP superstructure for electrocatalytic water splitting, ChemCatChem 12 (2020) 4770-4774.

[120]

X.-y. Yan, S. Devaramani, J. Chen, D.-l. Shan, D.-d. Qin, Q. Ma, X.-q. Lu, Self-supported rectangular CoP nanosheet arrays grown on a carbon cloth as an efficient electrocatalyst for the hydrogen evolution reaction over a variety of pH values, New J. Chem. 41 (2017) 2436-2442.

[121]

T. Wu, M. Pi, D. Zhang, S. Chen, 3D structured porous CoP3 nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen, J. Mater. Chem. 4 (2016) 14539-14544.

[122]

T. Wu, M. Pi, X. Wang, W. Guo, D. Zhang, S. Chen, Developing bifunctional electrocatalyst for overall water splitting using three-dimensional porous CoP3 nanospheres integrated on carbon cloth, J. Alloys Compd. 729 (2017) 203-209.

[123]

M. Song, Y. He, M. Zhang, X. Zheng, Y. Wang, J. Zhang, X. Han, C. Zhong, W. Hu, Y. Deng, Controllable synthesis of Co2P nanorods as high-efficiency bifunctional electrocatalyst for overall water splitting, J. Power Sources 402 (2018) 345-352.

[124]

P. Wang, F. Song, R. Amal, Y.H. Ng, X. Hu, Efficient water splitting catalyzed by cobalt phosphide-based nanoneedle arrays supported on carbon cloth, ChemSusChem 9 (2016) 472-477.

[125]

S.H. Yu, D.H. Chua, Toward high-performance and low-cost hydrogen evolution reaction electrocatalysts: nanostructuring cobalt phosphide (CoP) particles on carbon fiber paper, ACS Appl. Mater. Interfaces 10 (2018) 14777-14785.

[126]

L. Wang, H. Wu, S. Xi, S.T. Chua, F. Wang, S.J. Pennycook, Z.G. Yu, Y. Du, J. Xue, Nitrogen-doped cobalt phosphide for enhanced hydrogen evolution activity, ACS Appl. Mater. Interfaces 11 (2019) 17359-17367.

[127]

B. Qiu, A. Han, D. Jiang, T. Wang, P. Du, Cobalt phosphide nanowire arrays on conductive substrate as an efficient bifunctional catalyst for overall water splitting, ACS Sustain. Chem. Eng. 7 (2018) 2360-2369.

[128]

J. Huang, Y. Li, Y. Xia, J. Zhu, Q. Yi, H. Wang, J. Xiong, Y. Sun, G. Zou, Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values, Nano Res. 10 (2017) 1010-1020.

[129]

C. Zhang, Y. Huang, Y. Yu, J. Zhang, S. Zhuo, B. Zhang, Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction, Chem. Sci. 8 (2017) 2769-2775.

[130]

M. Zhang, S. Ci, H. Li, P. Cai, H. Xu, Z. Wen, Highly defective porous CoP nanowire as electrocatalyst for full water splitting, Int. J. Hydrogen Energy 42 (2017) 29080-29090.

[131]

P. Jiang, Q. Liu, C. Ge, W. Cui, Z. Pu, A.M. Asiri, X. Sun, CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction, J. Mater. Chem. 2 (2014) 14634-14640.

[132]

Y. Zhou, Y. Yang, R. Wang, X. Wang, X. Zhang, L. Qiang, W. Wang, Q. Wang, Z. Hu, Rhombic porous CoP2 nanowire arrays synthesized by alkaline etching as highly active hydrogen-evolution-reaction electrocatalysts, J. Mater. Chem. 6 (2018) 19038-19046.

[133]

J.A. Vigil, T.N. Lambert, Nanostructured cobalt phosphide-based films as bifunctional electrocatalysts for overall water splitting, RSC Adv. 5 (2015) 105814-105819.

[134]

J. Song, J. Xiang, C. Mu, B. Wang, F. Wen, C. Su, C. Wang, Z. Liu, Facile synthesis and excellent electrochemical performance of CoP nanowire on carbon cloth as bifunctional electrode for hydrogen evolution reaction and supercapacitor, Sci. China Mater. 60 (2017) 1179-1186.

[135]

Z. Pu, Q. Liu, P. Jiang, A.M. Asiri, A.Y. Obaid, X. Sun, CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution, Chem. Mater. 26 (2014) 4326-4329.

[136]

Y. Dang, J. He, T. Wu, L. Yu, P. Kerns, L. Wen, J. Ouyang, S.L. Suib, Constructing bifunctional 3D holey and ultrathin CoP nanosheets for efficient overall water splitting, ACS Appl. Mater. Interfaces 11 (2019) 29879-29887.

[137]

X. Yang, A.-Y. Lu, Y. Zhu, M.N. Hedhili, S. Min, K.-W. Huang, Y. Han, L.-J. Li, CoP nanosheet assembly grown on carbon cloth: a highly efficient electrocatalyst for hydrogen generation, Nano Energy 15 (2015) 634-641.

[138]

Y. Cheng, F. Liao, W. Shen, L. Liu, B. Jiang, Y. Li, M. Shao, Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries, Nanoscale 9 (2017) 18977-18982.

[139]

Y. Li, B. Wei, Z. Yu, O. Bondarchuk, A. Araujo, I. Amorim, N. Zhang, J. Xu, I.C. Neves, L. Liu, Bifunctional porous cobalt phosphide foam for high-current-density alkaline water electrolysis with 4000-h long stability, ACS Sustain. Chem. Eng. 8 (2020) 10193-10200.

[140]

Y. Zhang, L. Gao, E.J. Hensen, J.P. Hofmann, Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes, ACS Energy Lett. 3 (2018) 1360-1365.

[141]

M. Guo, Y. Qu, C. Yuan, S. Chen, Electrochemical exfoliation of hierarchical Co3O4 microflowers and their conversion into CoP as high-efficiency hydrogen evolution electrocatalyst, Electrochim, Acta 322 (2019), 134768.

[142]

J. Chang, L. Liang, C. Li, M. Wang, J. Ge, C. Liu, W. Xing, Ultrathin cobalt phosphide nanosheets as efficient bifunctional catalysts for a water electrolysis cell and the origin for cell performance degradation, Green Chem. 18 (2016) 2287-2295.

[143]

L. Ji, H. Zheng, Y. Wei, Y. Fang, J. Du, T. Wang, S. Wang, Formation of cobalt phosphide nanodisks as a bifunctional electrocatalyst for enhanced water splitting, Sustain, Energy Fuels 4 (2020) 1616-1620.

[144]

S. Gu, H. Du, A.M. Asiri, X. Sun, C.M. Li, Three-dimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode, Phys. Chem. Chem. Phys. 16 (2014) 16909-16913.

[145]

Q. Li, Z. Xing, A.M. Asiri, P. Jiang, X. Sun, Cobalt phosphide nanoparticles film growth on carbon cloth: a high-performance cathode for electrochemical hydrogen evolution, Int. J. Hydrogen Energy 39 (2014) 16806-16811.

[146]

Y.-R. Liu, W.-H. Hu, G.-Q. Han, B. Dong, X. Li, X. Shang, Y.-M. Chai, Y.-Q. Liu, C.-G. Liu, Novel CoP hollow prisms as bifunctional electrocatalysts for hydrogen evolution reaction in acid media and overall water-splitting in basic media, Electrochim. Acta 220 (2016) 98-106.

[147]

M. Wang, C.-L. Dong, Y.-C. Huang, S. Shen, Bifunctional cobalt phosphide nanoparticles with convertible surface structure for efficient electrocatalytic water splitting in alkaline solution, J. Catal. 371 (2019) 262-269.

[148]

A. Sumboja, T. An, H.Y. Goh, M. Lübke, D.P. Howard, Y. Xu, A.D. Handoko, Y. Zong, Z. Liu, One-step facile synthesis of cobalt phosphides for hydrogen evolution reaction catalysts in acidic and alkaline medium, ACS Appl. Mater. Interfaces 10 (2018) 15673-15680.

[149]

W. Li, X. Gao, D. Xiong, F. Xia, J. Liu, W.-G. Song, J. Xu, S.M. Thalluri, M.F. Cerqueira, X. Fu, Vapor–solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis, Chem. Sci. 8 (2017) 2952-2958.

[150]

B. Chang, Y. Yang, Z. Ye, S. Liu, Enhancement of alkaline water splitting activity by Co–P coating on a copper oxide nanowire, Dalton Trans. 48 (2019) 891-897.

[151]

N. Bai, Q. Li, D. Mao, D. Li, H. Dong, One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution, ACS Appl. Mater. Interfaces 8 (2016) 29400-29407.

[152]

S. Oh, H. Kim, Y. Kwon, M. Kim, E. Cho, H. Kwon, Porous Co–P foam as an efficient bifunctional electrocatalyst for hydrogen and oxygen evolution reactions, J. Mater. Chem. 4 (2016) 18272-18277.

[153]

X. Li, X. Qian, Y. Xu, F. Duan, Q. Yu, J. Wang, L. Chen, Y. Dan, X. Cheng, Electrodeposited cobalt phosphides with hierarchical nanostructure on biomass carbon for bifunctional water splitting in alkaline solution, J. Alloys Compd. 829 (2020), 154535.

[154]

Y.P. Zhu, Y.P. Liu, T.Z. Ren, Z.Y. Yuan, Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation, Adv. Funct. Mater. 25 (2015) 7337-7347.

[155]

G.-Q. Han, X. Li, Y.-R. Liu, B. Dong, W.-H. Hu, X. Shang, X. Zhao, Y.-M. Chai, Y.-Q. Liu, C.-G. Liu, Controllable synthesis of three dimensional electrodeposited Co–P nanosphere arrays as efficient electrocatalysts for overall water splitting, RSC Adv. 6 (2016) 52761-52771.

[156]

K. Li, T.-z. Ren, Z.-Y. Yuan, T.J. Bandosz, Electrodeposited PCo nanoparticles in deep eutectic solvents and their performance in water splitting, Int. J. Hydrogen Energy 43 (2018) 10448-10457.

[157]

M.J. Kang, H.J. Yu, H.S. Kim, H.G. Cha, Deep eutectic solvent stabilised Co–P films for electrocatalytic oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid, New J. Chem. 44 (2020) 14239-14245.

[158]

S.-S. Xu, X.-W. Lv, Y.-M. Zhao, T.-Z. Ren, Z.-Y. Yuan, Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction, J. Energy Chem. 52 (2021) 139-146.

[159]

J. Masa, S. Barwe, C. Andronescu, I. Sinev, A. Ruff, K. Jayaramulu, K. Elumeeva, B. Konkena, B. Roldan Cuenya, W. Schuhmann, Low overpotential water splitting using cobalt–cobalt phosphide nanoparticles supported on nickel foam, ACS Energy Lett. 1 (2016) 1192-1198.

[160]

P. Xiao, W. Chen, X. Wang, A review of phosphide-based materials for electrocatalytic hydrogen evolution, Adv. Energy Mater. 5 (2015), 1500985.

[161]

J. Wang, W. Yang, J. Liu, CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting, J. Mater. Chem. 4 (2016) 4686-4690.

[162]

R. Zhang, C. Tang, R. Kong, G. Du, A.M. Asiri, L. Chen, X. Sun, Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity, Nanoscale 9 (2017) 4793-4800.

[163]

G. Zhou, M. Li, Y. Li, H. Dong, D. Sun, X. Liu, L. Xu, Z. Tian, Y. Tang, Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting, Adv. Funct. Mater. 30 (2020), 1905252.

[164]

J. Qin, J. Lin, T. Chen, D. Liu, J. Xie, B. Guo, L. Wang, Y. Chai, B. Dong, Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting, J. Energy Chem. 39 (2019) 182-187.

[165]

E. Cao, Z. Chen, H. Wu, P. Yu, Y. Wang, F. Xiao, S. Chen, S. Du, Y. Xie, Y. Wu, Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution, Angew. Chem. 59 (2020) 4154-4160.

[166]

A.M.A. Raza, O.M. Sait, K. Minkyung, L.M. Hee, P. Noejung, L.J. Sung, Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting, Nano Energy 53 (2018) 286-295.

[167]

F. Li, Y. Bu, Z. Lv, J. Mahmood, G. Han, I. Ahmad, G. Kim, Q. Zhong, J. Baek, Porous cobalt phosphide polyhedrons with iron doping as an efficient bifunctional electrocatalyst, Small 13 (2017), 1701167.

[168]

E. Hu, J. Ning, D. Zhao, C. Xu, Y. Lin, Y. Zhong, Z. Zhang, Y. Wang, Y. Hu, A room-temperature postsynthetic ligand exchange strategy to construct mesoporous Fe-doped CoP hollow triangle plate arrays for efficient electrocatalytic water splitting, Small 14 (2018), 1704233.

[169]

Z. Lei, M. Shao, J. Li, J. Shan, D. Xue, Two-dimensional ultrathin arrays of CoP: electronic modulation toward high performance overall water splitting, Nano Energy 41 (2017) 583-590.

[170]

C. Lina, P. Wang, H. Jin, J. Zhao, D. Chen, S. Liu, C. Zhang, S. Mu, An iron-doped cobalt phosphide nano-electrocatalyst derived from a metal–organic framework for efficient water splitting, Dalton Trans. 48 (2019) 16555-16561.

[171]

M. Ma, G. Zhu, F. Xie, F. Qu, Z. Liu, G. Du, A.M. Asiri, Y. Yao, X. Sun, Homologous catalysts based on Fe-doped CoP nanoarrays for high-performance full water splitting under benign conditions, ChemSusChem 10 (2017) 3188-3192.

[172]

X. Huang, L. Gong, H. Xu, J. Qin, P. Ma, M. Yang, K. Wang, L. Ma, X. Mu, R. Li, Hierarchical iron-doped CoP heterostructures self-assembled on copper foam as a bifunctional electrocatalyst for efficient overall water splitting, J. Colloid Interface Sci. 569 (2020) 140-149.

[173]

S. Meng, S. Sun, Y. Qi, D. Jiang, W. Wei, M. Chen, Synthesis of an iron-doped 3D-ordered mesoporous cobalt phosphide material toward efficient electrocatalytic overall water splitting, Inorg. Chem. Front. 7 (2020) 3002-3010.

[174]

L. Yan, B. Zhang, J. Zhu, Y. Li, P. Tsiakaras, P.K. Shen, Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting, Appl. Catal., B 265 (2020), 118555.

[175]

Y. Jing, H. Liu, R. Yan, J. Chen, X.-D. Zhang, Mesoporous CoP nanowire arrays for hydrogen evolution, ACS Appl. Nano Mater. 2 (2019) 5922-5930.

[176]

Y. Yang, C. Zhu, Y. Zhou, Y. Zhang, Y. Xie, L. Lv, W. Chen, Y. He, Z. Hu, Design and synthesis Zn doped CoP/Co2P nanowire arrays for boosting hydrogen generation reaction, J. Solid State Chem. 285 (2020), 121231.

[177]

G. Cao, H. Wu, X. Wen, X. Liu, J. Wang, Hollow Mo-doped CoP nanoarrays for efficient overall water splitting, Nano Energy 48 (2018) 73-80.

[178]

D. Kim, X. Qin, B. Yan, Y. Piao, Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for high-performance water splitting catalyst, Chem. Eng. J. 408 (2021), 127331.

[179]

X. Li, S. Li, A. Yoshida, S. Sirisomboonchai, K. Tang, Z. Zuo, X. Hao, A. Abudula, G. Guan, Mn doped CoP nanoparticle clusters: an efficient electrocatalyst for hydrogen evolution reaction, Catal. Sci. Technol. 8 (2018) 4407-4412.

[180]

T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A.M. Asiri, X. Sun, L. Chen, Mn doping of CoP nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values, ACS Catal. 7 (2017) 98-102.

[181]

M. Wang, W. Fu, L. Du, Y. Wei, P. Rao, L. Wei, X. Zhao, Y. Wang, S. Sun, Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis, Appl. Surf. Sci. 515 (2020), 146059.

[182]

Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W. Cheong, D. Zhao, K. Wu, Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production, Nano Energy 56 (2019) 411-419.

[183]

X. Lv, Z. Hu, J. Ren, Y. Liu, Z. Wang, Z. Yuan, Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation, Inorg. Chem. Front. 6 (2019) 74-81.

[184]

G. Zhang, B. Wang, J. Bi, D. Fang, S. Yang, Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalyst for overall water splitting, J. Mater. Chem. 7 (2019) 5769-5778.

[185]

X. Xiao, L. Tao, M. Li, X. Lv, D. Huang, X. Jiang, H. Pan, M. Wang, Y. Shen, Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction, Chem. Sci. 9 (2018) 1970-1975.

[186]

L. Truong, S.B. Roy, S.-K. Jerng, J.H. Jeon, S. Lee, S.-H. Chun, Facile electrodeposition of V-doped CoP on vertical graphene for efficient alkaline water electrolysis, RSC Adv. 10 (2020) 13016-13020.

[187]

T. Chen, R. Zhang, B. Ye, Q. Yang, H. Xu, L. Zheng, L. Wang, Ce-doped CoP nanoparticles embedded in carbon nanotubes as an efficient and durable catalyst for hydrogen evolution, Nanotechnology 31 (2020), 125402.

[188]

J. Li, S. Zou, X. Liu, Y. Lu, D. Dong, Electronically modulated CoP by Ce doping as a highly efficient electrocatalyst for water splitting, ACS Sustain. Chem. Eng. 8 (2020) 10009-10016.

[189]

Z. Ren, X. Ren, L. Zhang, C. Fu, X. Li, Y. Zhang, B. Gao, L. Yang, P.K. Chu, K. Huo, Tungsten-doped CoP nanoneedle arrays grown on carbon cloth as efficient bifunctional electrocatalysts for overall water splitting, Chemelectrochem 6 (2019) 5229-5236.

[190]

J. Wu, N. Han, S. Ning, T. Chen, C. Zhu, C. Pan, H. Wu, S.J. Pennycook, C. Guan, Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction, ACS Sustain. Chem. Eng. 8 (2020) 14825-14832.

[191]

X. Wang, Y. Fei, W. Li, L. Yi, B. Feng, Y. Pan, W. Hu, C.M. Li, Gold-incorporated cobalt phosphide nanoparticles on nitrogen-doped carbon for enhanced hydrogen evolution electrocatalysis, ACS Appl. Mater. Interfaces 12 (2020) 16548-16556.

[192]

W. Zhang, Y. Sun, Q. Liu, J. Guo, X. Zhang, Vanadium and nitrogen co-doped CoP nanoleaf array as pH-universal electrocatalyst for efficient hydrogen evolution, J. Alloys Compd. 791 (2019) 1070-1078.

[193]

K. Xu, Y. Sun, Y. Sun, Y. Zhang, G. Jia, Q. Zhang, L. Gu, S. Li, Y. Li, H.J. Fan, Yin-yang harmony: metal and non-metal dual-doping boosts electrocatalytic activity for alkaline hydrogen evolution, ACS Energy Lett. 3 (2018) 2750-2756.

[194]

J. Duan, S. Chen, A. Vasileff, S.Z. Qiao, Anion and cation modulation in metal compounds for bifunctional overall water splitting, ACS Nano 10 (2016) 8738-8745.

[195]

L. Yan, B. Zhang, J. Zhu, Z. Liu, H. Zhang, Y. Li, Callistemon-like Zn and S codoped CoP nanorod clusters as highly efficient electrocatalysts for neutral-pH overall water splitting, J. Mater. Chem. 7 (2019) 22453-22462.

[196]

P. Liu, Y. Lu, W. Ma, L. Ma, Q. Liu, X. Zhang, J. Guo, Cerium and nitrogen doped CoP nanorod arrays for hydrogen evolution in all pH conditions, Sustain. Energy Fuels 3 (2019) 3344-3351.

[197]

C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A.M. Asiri, X. Sun, J. Wang, L. Chen, Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight, Nano Lett. 16 (2016) 6617-6621.

[198]

Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A.M. Asiri, X. Sun, Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution, Angew. Chem. Int. Ed. 53 (2014) 6710-6714.

[199]

H. Yang, Y. Zhang, F. Hu, Q. Wang, Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability, Nano Lett. 15 (2015) 7616-7620.

[200]

J. Wang, L. Zhu, G. Dharan, G.W. Ho, Electrodeposited cobalt phosphide superstructures for solar-driven thermoelectrocatalytic overall water splitting, J. Mater. Chem. 5 (2017) 16580-16584.

[201]

L. Ji, J. Wang, X. Teng, T.J. Meyer, Z. Chen, CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting, ACS Catal. 10 (2019) 412-419.

[202]

J. Xu, T. Liu, J. Li, B. Li, Y. Liu, B. Zhang, D. Xiong, I. Amorim, W. Li, L. Liu, Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide, Energy Environ. Sci. 11 (2018) 1819-1827.

[203]

Z. Niu, C. Qiu, J. Jiang, L. Ai, Hierarchical CoP–FeP branched heterostructures for highly efficient electrocatalytic water splitting, ACS Sustain. Chem. Eng. 7 (2018) 2335-2342.

[204]

Y. Hua, Q. Xu, Y. Hu, H. Jiang, C. Li, Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting, J. Energy Chem. 37 (2019) 1-6.

[205]

W. Li, S. Zhang, Q. Fan, F. Zhang, S. Xu, Hierarchically scaffolded CoP/CoP2 nanoparticles: controllable synthesis and their application as a well-matched bifunctional electrocatalyst for overall water splitting, Nanoscale 9 (2017) 5677-5685.

[206]

L. Chen, Y. Zhang, H. Wang, Y. Wang, D. Li, C. Duan, Cobalt layered double hydroxides derived CoP/Co2P hybrids for electrocatalytic overall water splitting, Nanoscale 10 (2018) 21019-21024.

[207]

A.-L. Wang, J. Lin, H. Xu, Y.-X. Tong, G.-R. Li, Ni2P–CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution, J. Mater. Chem. 4 (2016) 16992-16999.

[208]

X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang, B. Chen, MOF-derived formation of Ni2P–CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting, ACS Appl. Mater. Interfaces 9 (2017) 23222-23229.

[209]

I.K. Mishra, H. Zhou, J. Sun, F. Qin, K. Dahal, J. Bao, S. Chen, Z. Ren, Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation, Energy Environ. Sci. 11 (2018) 2246-2252.

[210]

R. Zhang, R. Zhu, Y. Li, Z. Hui, Y. Song, Y. Cheng, J. Lu, CoP and Ni2P implanted in a hollow porous N-doped carbon polyhedron for pH universal hydrogen evolution reaction and alkaline overall water splitting, Nanoscale 12 (2020) 23851-23858.

[211]

Y. Pan, Y. Fang, H. Jin, M. Zhang, L. Wang, S. Ma, H. Zhu, M. Du, A highly active and robust CoP/CoS2-based electrocatalyst toward overall water splitting, Electrocatalysis 10 (2019) 253-261.

[212]

J.-G. Li, K. Xie, H. Sun, Z. Li, X. Ao, Z. Chen, K.K. Ostrikov, C. Wang, W. Zhang, Template-directed bifunctional dodecahedral CoP/CN@MoS2 electrocatalyst for high efficient water splitting, ACS Appl. Mater. Interfaces 11 (2019) 36649-36657.

[213]

Y. Hu, H. Yu, L. Qi, J. Dong, P. Yan, T.T. Isimjan, X. Yang, Interface engineering of needle-like P-doped MoS2/CoP arrays as highly active and durable bifunctional electrocatalyst for overall water splitting, ChemSusChem 14 (2021) 1565-1573.

[214]

M. Lu, L. Li, D. Chen, J. Li, N. Klyui, W. Han, MOF-derived nitrogen-doped CoO@CoP arrays as bifunctional electrocatalysts for efficient overall water splitting, Electrochim. Acta 330 (2020), 135210.

[215]

J. Yu, Y. Zhong, X. Wu, J. Sunarso, M. Ni, W. Zhou, Z. Shao, Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis, Adv. Sci. 5 (2018), 1800514.

[216]

R. Zhang, X. Ren, S. Hao, R. Ge, Z. Liu, A.M. Asiri, L. Chen, Q. Zhang, X. Sun, Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis, J. Mater. Chem. 6 (2018) 1985-1990.

[217]

T. Zhang, X. Wu, Y. Fan, C. Shan, B. Wang, H. Xu, Y. Tang, Hollow CeOx/CoP heterostructures using two-dimensional Co−MOF as template for efficient and stable electrocatalytic water splitting, ChemNanoMat 6 (2020) 1119-1126.

[218]

X.-Z. Song, Q.-F. Su, S.-J. Li, G.-C. Liu, N. Zhang, W.-Y. Zhu, Z.-H. Wang, Z. Tan, Heterostructural Co/CeO2/Co2P/CoP@NC dodecahedrons derived from CeO2-inserted zeolitic imidazolate framework-67 as efficient bifunctional electrocatalysts for overall water splitting, Int. J. Hydrogen Energy 45 (2020) 30559-30570.

[219]

L. Yang, R. Liu, L. Jiao, Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting, Adv. Funct. Mater. 30 (2020), 1909618.

[220]

K. Tao, H. Dan, Y. Hai, L. Liu, Y. Gong, Controllable synthesis of MoO linkage enhanced CoP ultrathin nanosheet arrays for efficient overall water splitting, Appl. Surf. Sci. 493 (2019) 852-861.

[221]

R. Dong, A. Zhu, W. Zeng, L. Qiao, L. Lu, Y. Liu, P. Tan, J. Pan, Selective phosphidation and reduction strategy to construct heterostructured porous nanorod of CoP coated on Mn3O4 as a bifunctional electrocatalyst for overall water splitting, Appl. Surf. Sci. 544 (2021), 148860.

[222]

B. Guo, J. Sun, X. Hu, Y. Wang, Y. Sun, R. Hu, L. Yu, H. Zhao, J. Zhu, Fe3O4-CoPx nanoflowers vertically grown on TiN nanoarrays as efficient and stable electrocatalysts for overall water splitting, ACS Appl. Nano Mater. 2 (2018) 40-47.

[223]

Y. Li, S. Guo, T. Jin, Y. Wang, F. Cheng, L. Jiao, Promoted synergy in core-branch CoP@NiFe–OH nanohybrids for efficient electrochemical-/photovoltage-driven overall water splitting, Nano Energy 63 (2019), 103821.

[224]

K. He, T. Tadesse Tsega, X. Liu, J. Zai, X.H. Li, X. Liu, W. Li, N. Ali, X. Qian, Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis, Angew. Chem. Int. Ed. 58 (2019) 11903-11909.

[225]

H. Zhou, M. Zheng, H. Pang, Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction, Chem. Eng. J. 416 (2020), 127884.

[226]

M. Li, S. Li, J. Wang, C. Wang, W. Li, P.K. Chu, NiFeP nanoflakes composite with CoP on carbon cloth as flexible and durable electrocatalyst for efficient overall water splitting, Nanotechnology 30 (2019), 485402.

[227]

X. Jiang, Y. Li, M. He, L. Zhou, Q. Zheng, F. Xie, W. Jie, D. Lin, Construction of NiFeP/CoP nanosheets/nanowires hierarchical array as advanced electrocatalysts for water oxidation, Int. J. Hydrogen Energy 44 (2019) 19986-19994.

[228]

Y. Ge, H. Chu, J. Chen, P. Zhuang, Q. Feng, W.R. Smith, P. Dong, M. Ye, J. Shen, Ultrathin MoS2 nanosheets decorated hollow CoP heterostructures for enhanced hydrogen evolution reaction, ACS Sustain. Chem. Eng. 7 (2019) 10105-10111.

[229]

N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, Platinum single-atom and cluster catalysis of the hydrogen evolution reaction, Nat. Commun. 7 (2016) 1-9.

[230]

Z. Ding, Z. Tang, L. Li, K. Wang, W. Wu, X. Chen, X. Wu, S. Chen, Ternary ptvco dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries, Inorg. Chem. Front. 5 (2018) 2425-2431.

[231]

Z. Jiang, J. Ren, Y. Li, X. Zhang, P. Zhang, J. Huang, C. Du, J. Chen, Low-cost high-performance hydrogen evolution electrocatalysts based on Pt-CoP polyhedra with low Pt loading in both alkaline and neutral media, Dalton Trans. 48 (2019) 8920-8930.

[232]

J. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia, S. Zhang, C.-R. Chang, Y. Ma, Y. Qu, Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover, Energy Environ. Sci. 12 (2019) 2298-2304.

[233]

Z. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers, ChemSusChem 10 (2017) 87-90.

[234]

S. Meng, P. An, L. Chen, S. Sun, Z. Xie, M. Chen, D. Jiang, Integrating Ru-modulated CoP nanosheets binary co-catalyst with 2D g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution activity, J. Colloid Interface Sci. 585 (2021) 108-117.

[235]

C.I. Hiley, H.Y. Playford, J.M. Fisher, N.C. Felix, D. Thompsett, R.J. Kashtiban, R.I. Walton, Pair distribution function analysis of structural disorder by Nb5+ inclusion in ceria: evidence for enhanced oxygen storage capacity from under-coordinated oxide, J. Am. Chem. Soc. 140 (2018) 1588-1591.

[236]

J.X. Feng, S.H. Ye, H. Xu, Y.X. Tong, G.R. Li, Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction, Adv. Mater. 28 (2016) 4698-4703.

[237]

T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials, Chem. Rev. 116 (2016) 5987-6041.

[238]

F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Electron localization determines defect formation on ceria substrates, Science 309 (2005) 752-755.

[239]

X. Liu, Y. Yao, H. Zhang, L. Pan, C. Shi, X. Zhang, Z.-F. Huang, J.-J. Zou, In situ-grown cobalt–iron phosphide-based integrated electrode for long-term water splitting under a large current density at the industrial electrolysis temperature, ACS Sustain. Chem. Eng. 8 (2020) 17828-17838.

[240]

H. Du, R.-M. Kong, X. Guo, F. Qu, J. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution, Nanoscale 10 (2018) 21617-21624.

[241]

Y. Liu, Y. Zhu, J. Shen, J. Huang, X. Yang, C. Li, CoP nanoparticles anchored on N, P-dual-doped graphene-like carbon as a catalyst for water splitting in non-acidic media, Nanoscale 10 (2018) 2603-2612.

[242]

Y. Lin, Y. Pan, J. Zhang, CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution, Electrochim. Acta 232 (2017) 561-569.

[243]

H. Liu, D. Liu, M. Gu, Z. Zhao, D. Chen, P. Cui, L. Xu, J. Yang, Highly purified dicobalt phosphide nanodendrites on exfoliated graphene: in situ synthesis and as robust bifunctional electrocatalysts for overall water splitting, Mater, Today Energy 14 (2019), 100336.

[244]

Z. Li, D. Wu, Y. Ouyang, H. Wu, M. Jiang, F. Wang, L.Y. Zhang, Synthesis of hollow cobalt phosphide nanocrystals with ultrathin shells anchored on reduced graphene oxide as an electrocatalyst toward hydrogen evolution, Appl. Surf. Sci. 506 (2020), 144975.

[245]

D. Yang, W. Hou, Y. Lu, W. Zhang, Y. Chen, Cobalt phosphide nanoparticles supported within network of N-doped carbon nanotubes as a multifunctional and scalable electrocatalyst for water splitting, J. Energy Chem. 52 (2021) 130-138.

[246]

A. Adam, M.H. Suliman, M.N. Siddiqui, Z.H. Yamani, B. Merzougui, M. Qamar, Interconnected hollow cobalt phosphide grown on carbon nanotubes for hydrogen evolution reaction, ACS Appl. Mater. Interfaces 10 (2018) 29407-29416.

[247]

S. Yang, M. Xie, L. Chen, W. Wei, X. Lv, Y. Xu, N. Ullah, O.C. Judith, Y.B. Adegbemiga, J. Xie, Cobalt phosphide nanoparticles embedded in 3D N-doped porous carbon for efficient hydrogen and oxygen evolution reactions, Int. J. Hydrogen Energy 44 (2019) 4543-4552.

[248]

Z. Peng, Y. Yu, D. Jiang, Y.P. Wu, B.Y. Xia, Z. Dong, N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting, Carbon 144 (2019) 464-471.

[249]

R. Boppella, J. Park, W. Yang, J. Tan, J. Moon, Efficient electrocatalytic proton reduction on CoP nanocrystals embedded in microporous P, N Co-doped carbon spheres with dual active sites, Carbon 156 (2020) 529-537.

[250]

L. Chen, P. Wu, C. Zhu, S. Yang, K. Qian, N. Ullah, W. Wei, C. Sun, Y. Xu, J. Xie, Fabrication of carbon nanotubes encapsulated cobalt phosphide on graphene: cobalt promoted hydrogen evolution reaction performance, Electrochim. Acta 330 (2020), 135213.

[251]

L. Li, L. Song, H. Xue, C. Jiang, B. Gao, H. Gong, W. Xia, X. Fan, H. Guo, T. Wang, CoP nanoparticles encapsulated by graphitic layers and anchored to N-doped carbon nanoplates for enhanced bifunctional electrocatalytic properties for overall water splitting, Carbon 150 (2019) 446-454.

[252]

H. Li, S.M. Xu, H. Yan, L. Yang, S. Xu, Cobalt phosphide composite encapsulated within N, P-doped carbon nanotubes for synergistic oxygen evolution, Small 14 (2018), 1800367.

[253]

L. Chai, Z. Hu, X. Wang, Y. Xu, L. Zhang, T.T. Li, Y. Hu, J. Qian, S. Huang, Stringing bimetallic metal–organic framework-derived cobalt phosphide composite for high-efficiency overall water splitting, Adv. Sci. 7 (2020), 1903195.

[254]

Y. Liu, F. Yang, W. Qin, G. Yang, Co2P@NiCo2O4 bi-functional electrocatalyst with low overpotential for water splitting in wide range pH electrolytes, J. Colloid Interface Sci. 534 (2019) 55-63.

[255]

J. Lu, S. Yin, P.K. Shen, Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction, Electrochem. Energy Rev. 2 (2019) 105-127.

[256]

J. Sun, N. Guo, T. Song, Y.-R. Hao, J. Sun, H. Xue, Q. Wang, Revealing the interfacial electron modulation effect of CoFe alloys with CoCX encapsulated in N-doped CNTs for superior oxygen reduction, Adv. Powder Mater. 1 (2022), 100023.

[257]

Z. Zhou, N. Mahmood, Y. Zhang, L. Pan, L. Wang, X. Zhang, J.-J. Zou, CoP nanoparticles embedded in P and N co-doped carbon as efficient bifunctional electrocatalyst for water splitting, J. Energy Chem. 26 (2017) 1223-1230.

[258]

H. Liang, C. Yang, L. Jia, N. Jiang, F. Tan, L. Wu, X. Yang, F. Chen, Mesoporous carbon shell encapsulated Co/Co2P composite for electrocatalytic hydrogen evolution reaction: the effect of Cd initiator on its catalytic performance, Catal. Lett. 150 (2020) 12-20.

[259]

X. Huang, X. Xu, C. Li, D. Wu, D. Cheng, D. Cao, Vertical CoP nanoarray wrapped by N, P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions, Adv. Energy Mater. 9 (2019), 1803970.

[260]

F. Yang, Y. Chen, G. Cheng, S. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution, ACS Catal. 7 (2017) 3824-3831.

[261]

Y. Li, M. Cui, T. Li, Y. Shen, Z. Si, H.-g. Wang, Embedding Co2P nanoparticles into co-doped carbon hollow polyhedron as a bifunctional electrocatalyst for efficient overall water splitting, Int. J. Hydrogen Energy 45 (2020) 16540-16549.

[262]

C. Wang, J. Jiang, X. Zhou, W. Wang, J. Zuo, Q. Yang, Alternative synthesis of cobalt monophosphide@C core–shell nanocables for electrochemical hydrogen production, J. Power Sources 286 (2015) 464-469.

[263]

X. Lv, J. Ren, Y. Wang, Y. Liu, Z.-Y. Yuan, Well-defined phase-controlled cobalt phosphide nanoparticles encapsulated in nitrogen-doped graphitized carbon shell with enhanced electrocatalytic activity for hydrogen evolution reaction at all-pH, ACS Sustain. Chem. Eng. 7 (2019) 8993-9001.

[264]

L. Jin, H. Pang, CoP@SiO2 nanoreactors: a core-shell structure for efficient electrocatalytic oxygen evolution reaction, Chin. Chem. Lett. 31 (2020) 2300-2304.

[265]

F. Huang, J. Wang, M. Wang, C. Zhang, Y. Xue, J. Liu, T. Xu, N. Cai, W. Chen, F. Yu, Core-shell Ni2P@ CoP nanoarrays supported on NF as a highly efficient electrocatalyst for hydrogen evolution reaction, Colloids Surf. A Physicochem. Eng. Asp. 623 (2021), 126526.

[266]

D. Chen, J. Xiao, H. Zhou, A. Yuan, Core-shell structured CoP@MoS2 electrocatalysts for enhanced hydrogen evolution reaction, ChemistrySelect 5 (2020) 3130-3136.

[267]

L. Wu, L. Yu, B. McElhenny, X. Xing, D. Luo, F. Zhang, J. Bao, S. Chen, Z. Ren, Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis, Appl. Catal., B 294 (2021), 120256.

[268]

X. Zhang, A. Shan, S. Duan, H. Zhao, R. Wang, W.-M. Lau, Au@Co2P core/shell nanoparticles as a nano-electrocatalyst for enhancing the oxygen evolution reaction, RSC Adv. 9 (2019) 40811-40818.

[269]

Y. Hou, Y. Liu, R. Gao, Q. Li, H. Guo, A. Goswami, R. Zboril, M.B. Gawande, X. Zou, Ag@CoxP core–shell heterogeneous nanoparticles as efficient oxygen evolution reaction catalysts, ACS Catal. 7 (2017) 7038-7042.

[270]

P. Wang, Y. Lin, L. Wan, B. Wang, Core–shell Cu@CoP as highly efficient and durable bifunctional electrodes for electrochemical water splitting, Energy Fuels 34 (2020) 10276-10281.

[271]

C. Yang, T. He, W. Zhou, R. Deng, Q. Zhang, Iron-tuned 3d cobalt–phosphate catalysts for efficient hydrogen and oxygen evolution reactions over a wide pH range, ACS Sustain. Chem. Eng. 8 (2020) 13793-13804.

[272]

M.M. Alsabban, X. Yang, W. Wahyudi, J.-H. Fu, M.N. Hedhili, J. Ming, C.-W. Yang, M.A. Nadeem, H. Idriss, Z. Lai, Design and mechanistic study of highly durable carbon-coated cobalt diphosphide core–shell nanostructure electrocatalysts for the efficient and stable oxygen evolution reaction, ACS Appl. Mater. Interfaces 11 (2019) 20752-20761.

[273]

Y. Zhu, J. Wang, H. Chu, Y.-C. Chu, H.M. Chen, In situ/operando studies for designing next-generation electrocatalysts, ACS Energy Lett. 5 (2020) 1281-1291.

[274]

H. Zhang, G. Shen, X. Liu, B. Ning, C. Shi, L. Pan, X. Zhang, Z.-F. Huang, J.-J. Zou, Self-supporting NiFe LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions, Chin. J. Catal. 42 (2021) 1732-1741.

[275]

X. Yang, R. Guo, R. Cai, W. Shi, W. Liu, J. Guo, J. Xiao, Engineering transition metal catalysts for large-current-density water splitting, Dalton Trans. 51 (2022) 4590-4607.

[276]

E. Zoulias, E. Varkaraki, N. Lymberopoulos, C.N. Christodoulou, G.N. Karagiorgis, A review on water electrolysis, Tcjst 4 (2004) 41-71.

Nano Materials Science
Pages 139-173
Cite this article:
Deng R, Guo M, Wang C, et al. Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. Nano Materials Science, 2024, 6(2): 139-173. https://doi.org/10.1016/j.nanoms.2022.04.003

146

Views

3

Downloads

17

Crossref

18

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 22 February 2022
Accepted: 13 April 2022
Published: 21 May 2022
© 2022 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return