AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Surface reconstruction, modification and functionalization of natural diatomites for miniaturization of shaped heterogeneous catalysts

Bowen LiaTian Wanga,bQiujian LeaRunze Qina,bYuxin Zhangb( )Hua Chun Zenga( )
Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, PR China
Show Author Information

Abstract

Since the discovery of mesoporous silica in 1990s, there have been numerous mesoporous silica-based nanomaterials developed for catalytic applications, aiming at enhanced catalytic activity and stability. Recently, there have also been considerable interests in endowing them with hierarchical porosities to overcome the diffusional limitation for those with long unimodal channels. Present processes of making mesoporous silica largely rely on chemical sources which are relatively expensive and impose environmental concerns on their processes. In this regard, it is desirable to develop hierarchical silica supports from natural minerals. Herein, we present a series of work on surface reconstruction, modification, and functionalization to produce diatomite-based catalysts with original morphology and macro-meso-micro porosities and to test their suitability as catalyst supports for both liquid- and gas-phase reactions. Two wet-chemical routes were developed to introduce mesoporosity to both amorphous and crystalline diatomites. Importantly, we have used computational modeling to affirm that the diatomite morphology can improve catalytic performance based on fluid dynamics simulations. Thus, one could obtain this type of catalysts from numerous natural diatoms that have inherently intricate morphologies and shapes in micrometer scale. In principle, such catalytic nanocomposites acting as miniaturized industrial catalysts could be employed in microfluidic reactors for process intensification.

References

[1]

C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710–712.

[2]

J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992) 10834–10843.

[3]

D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (1998) 548–552.

[4]

I.I. Slowing, J.L. Vivero-Escoto, B.G. Trewyn, V.S.Y. Lin, Mesoporous silica nanoparticles: structural design and applications, J. Mater. Chem. 20 (2010) 7924–7937.

[5]

A.F. Moreira, D.R. Dias, I.J. Correia, Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: a review, Microporous Mesoporous Mater. 236 (2016) 141–157.

[6]

J. Liang, Z. Liang, R. Zou, Y. Zhao, Heterogeneous catalysis in zeolites, mesoporous silica, and metal–organic frameworks, Adv. Mater. 29 (2017) 1701139.

[7]

I.I. Slowing, B.G. Trewyn, S. Giri, V.S.-Y. Lin, Mesoporous silica nanoparticles for drug delivery and biosensing applications, Adv. Funct. Mater. 17 (2007) 1225–1236.

[8]

E. Da'na, Adsorption of heavy metals on functionalized-mesoporous silica: a review, Microporous Mesoporous Mater. 247 (2017) 145–157.

[9]

X. Huang, X. Chen, A. Li, D. Atinafu, H. Gao, W. Dong, G. Wang, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications, Chem. Eng. J. 356 (2019) 641–661.

[10]

Y. Wang, H. Lv, L. Sun, B. Liu, Mesoporous noble metal–metalloid/nonmetal alloy nanomaterials: designing highly efficient catalysts, ACS Nano 15 (2021) 18661–18670.

[11]

B. Li, H.C. Zeng, Architecture and preparation of hollow catalytic devices, Adv. Mater. 31 (2019) 1801104.

[12]

P. Veerakumar, P. Thanasekaran, K.-L. Lu, S.-B. Liu, S. Rajagopal, Functionalized silica matrices and palladium: a versatile heterogeneous catalyst for Suzuki, heck, and sonogashira reactions, ACS Sustain. Chem. Eng. 5 (2017) 6357–6376.

[13]

H.C. Zeng, Mesoporous silica encapsulated metal-organic frameworks for heterogeneous catalysis, Matter 3 (2020) 332–334.

[14]

L. Sierra, J.-L. Guth, Synthesis of mesoporous silica with tunable pore size from sodium silicate solutions and a polyethylene oxide surfactant, Microporous Mesoporous Mater. 27 (1999) 243–253.

[15]

K. Kosuge, T. Sato, N. Kikukawa, M. Takemori, Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate, Chem. Mater. 16 (2004) 899–905.

[16]

B. Li, H.C. Zeng, Formation combined with intercalation of Ni and its alloy nanoparticles within mesoporous silica for robust catalytic reactions, ACS Appl. Mater. Interfaces 10 (2018) 29435–29447.

[17]

D.P. Wang, H.C. Zeng, Creation of interior space, architecture of shell structure, and encapsulation of functional materials for mesoporous SiO2 spheres, Chem. Mater. 23 (2011) 4886–4899.

[18]

D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc. 120 (1998) 6024–6036.

[19]

E. Sánchez-Ramírez, C. Ramírez-Márquez, J.J. Quiroz-Ramírez, G. Contreras-Zarazúa, J.G. Segovia-Hernández, J.A. Cervantes-Jauregui, Reactive distillation column design for tetraethoxysilane (TEOS) production: economic and environmental aspects, Ind. Eng. Chem. Res. 57 (2018) 5024–5034.

[20]

H. Chen, H. Yang, Y. Xi, Highly ordered and hexagonal mesoporous silica materials with large specific surface from natural rectorite mineral, Microporous Mesoporous Mater. 279 (2019) 53–60.

[21]

C. Du, H. Yang, Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials, J. Colloid Interface Sci. 369 (2012) 216–222.

[22]

H. Hadjar, B. Hamdi, M. Jaber, J. Brendlé, Z. Kessaïssia, H. Balard, J.B. Donnet, Elaboration and characterisation of new mesoporous materials from diatomite and charcoal, Microporous Mesoporous Mater. 107 (2008) 219–226.

[23]

D. Li, H. Min, X. Jiang, X. Ran, L. Zou, J. Fan, One-pot synthesis of Aluminum-containing ordered mesoporous silica MCM-41 using coal fly ash for phosphate adsorption, J. Colloid Interface Sci. 404 (2013) 42–48.

[24]

Y. Liu, C. Li, A. Peyravi, Z. Sun, G. Zhang, K. Rahmani, S. Zheng, Z. Hashisho, Mesoporous MCM-41 derived from natural Opoka and its application for organic vapors removal, J. Hazard Mater. 408 (2021) 124911.

[25]

V. Sanhueza, L. López-Escobar, U. Kelm, R. Cid, Synthesis of a mesoporous material from two natural sources, J. Chem. Technol. Biotechnol. 81 (2006) 614–617.

[26]

Y. Wang, D. Zhang, J. Cai, J. Pan, M. Chen, A. Li, Y. Jiang, Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method, Appl. Microbiol. Biotechnol. 95 (2012) 1165–1178.

[27]

F. Yan, J. Jiang, S. Tian, Z. Liu, J. Shi, K. Li, X. Chen, Y. Xu, A green and facile synthesis of ordered mesoporous nanosilica using coal fly ash, ACS Sustain. Chem. Eng. 4 (2016) 4654–4661.

[28]

Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, , C.J. Summers, M. Liu, K.H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature 446 (2007) 172–175.

[29]

J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzl, Skeleton of euplectella sp.: structural hierarchy from the nanoscale to the macroscale, Science 309 (2005) 275–278.

[30]

D. Liu, W. Yuan, P. Yuan, W. Yu, D. Tan, H. Liu, H. He, Physical activation of diatomite-templated carbons and its effect on the adsorption of methylene blue (MB), Appl. Surf. Sci. 282 (2013) 838–843.

[31]

D. Liu, P. Yuan, D. Tan, H. Liu, T. Wang, M. Fan, J. Zhu, H. He, Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products, J. Colloid Interface Sci. 388 (2012) 176–184.

[32]

F.E. Round, R.M. Crawford, D.G. Mann, Diatoms: Biology and Morphology of the Genera, Cambridge university press, 1990.

[33]

N. Nassif, J. Livage, From diatoms to silica-based biohybrids, Chem. Soc. Rev. 40 (2011) 849–859.

[34]

K. Chen, C. Li, L. Shi, T. Gao, X. Song, A. Bachmatiuk, Z. Zou, B. Deng, Q. Ji, D. Ma, H. Peng, Z. Du, M.H. Rümmeli, Y. Zhang, Z. Liu, Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability, Nat. Commun. 7 (2016) 13440.

[35]

Z. Han, C. Wang, X. Zou, T. Chen, S. Dong, Y. Zhao, J. Xie, H. Liu, Diatomite-supported birnessite–type MnO2 catalytic oxidation of formaldehyde: preparation, performance and mechanism, Appl. Surf. Sci. 502 (2020) 144201.

[36]

N. Inchaurrondo, J. Font, C.P. Ramos, P. Haure, Natural diatomites: efficient green catalyst for Fenton-like oxidation of Orange Ⅱ, Appl. Catal., B 181 (2016) 481–494.

[37]

K. Jabbour, N. El Hassan, A. Davidson, P. Massiani, S. Casale, Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane, Chem. Eng. J. 264 (2015) 351–358.

[38]

G. Sriram, M. Kigga, U.T. Uthappa, R.M. Rego, V. Thendral, T. Kumeria, H.-Y. Jung, M.D. Kurkuri, Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: a review, Adv. Colloid Interface Sci. 282 (2020) 102198.

[39]

P. Yuan, D. Liu, D.-Y. Tan, K.-K. Liu, H.-G. Yu, Y.-H. Zhong, A.-H. Yuan, W.-B. Yu, H.-P. He, Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth) and its function in Cu(Ⅱ) adsorption: the effects of heating pretreatment, Microporous Mesoporous Mater. 170 (2013) 9–19.

[40]

Q. Li, Y. Song, R. Xu, L. Zhang, J. Gao, Z. Xia, Z. Tian, N. Wei, M.H. Rümmeli, X. Zou, J. Sun, Z. Liu, Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li–S batteries, ACS Nano 12 (2018) 10240–10250.

[41]

Z. Bao, M.-K. Song, S.C. Davis, Y. Cai, M. Liu, K.H. Sandhage, High surface area, micro/mesoporous carbon particles with selectable 3-D biogenic morphologies for tailored catalysis, filtration, or adsorption, Energy Environ. Sci. 4 (2011) 3980–3984.

[42]

Z. Yu, Y. Wang, X. Liu, J. Sun, G. Sha, J. Yang, C. Meng, A novel pathway for the synthesis of ordered mesoporous silica from diatomite, Mater. Lett. 119 (2014) 150–153.

[43]

H.C. Zeng, Hierarchy concepts in design and synthesis of nanocatalysts, ChemCatChem 12 (2020) 5303–5311.

[44]

A. Tanimu, S. Jaenicke, K. Alhooshani, Heterogeneous catalysis in continuous flow microreactors: a review of methods and applications, Chem. Eng. J. 327 (2017) 792–821.

[45]

X. Liu, B. Ünal, K.F. Jensen, Heterogeneous catalysis with continuous flow microreactors, Catal. Sci. Technol. 2 (2012) 2134–2138.

[46]

T.N. Glasnov, S. Findenig, C.O. Kappe, Heterogeneous versus homogeneous palladium catalysts for ligandless mizoroki–heck reactions: a comparison of batch/microwave and continuous-flow processing, Chem. Eur J. 15 (2009) 1001–1010.

[47]

I. Denčić, S. de Vaan, T. Noël, J. Meuldijk, M. de Croon, V. Hessel, Lipase-based biocatalytic flow process in a packed-bed microreactor, Ind. Eng. Chem. Res. 52 (2013) 10951–10960.

[48]

G. Innocenti, E. Papadopoulos, G. Fornasari, F. Cavani, A.J. Medford, C. Sievers, Continuous liquid-phase upgrading of dihydroxyacetone to lactic acid over metal phosphate catalysts, ACS Catal. 10 (2020) 11936–11950.

[49]
R.D.J. Crangle, Diatomite: U.S. Geological Survey Minerals Yearbook. Survey, U. S. G., 2020.
[50]

N. Km, C. Bedi, Diatomix: a diatoms enhancer, J. FisheriesSci. com 13 (2019) 12–15.

[51]

D. Liu, P. Yuan, Q. Tian, H. Liu, L. Deng, Y. Song, J. Zhou, D. Losic, J. Zhou, H. Song, H. Guo, W. Fan, Lake sedimentary biogenic silica from diatoms constitutes a significant global sink for aluminium, Nat. Commun. 10 (2019).

[52]

M. Sumper, E. Brunner, Learning from diatoms: nature's tools for the production of nanostructured silica, Adv. Funct. Mater. 16 (2006) 17–26.

[53]

F. Okkels, H. Bruus, Scaling behavior of optimally structured catalytic microfluidic reactors, Phys. Rev. E 75 (2007) 016301.

[54]

W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity, Chem. Soc. Rev. 45 (2016) 3353–3376.

[55]

B. Xi, Y.C. Tan, H.C. Zeng, A general synthetic approach for integrated nanocatalysts of metal-Silica@ZIFs, Chem. Mater. 28 (2016) 326–336.

[56]

M.A. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad, S. Allen, Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study, J. Hazard Mater. 165 (2009) 589–598.

[57]

C.-m. Yang, P.-h. Liu, Y.-f. Ho, C.-y. Chiu, K.-j. Chao, Highly dispersed metal nanoparticles in functionalized SBA-15, Chem. Mater. 15 (2003) 275–280.

[58]

C.-W. Tsai, E.H.G. Langner, The effect of synthesis temperature on the particle size of nano-ZIF-8, Microporous Mesoporous Mater. 221 (2016) 8–13.

[59]

S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8, J. Am. Chem. Soc. 132 (2010) 18030–18033.

[60]

J. Huang, M. Zhang, J. Wang, X. Hu, R. Luque, F.L.Y. Lam, A comprehensive study on the effect of preparation methods for Au-Core@Shell silica materials in room temperature oxidative amide formation, J. Mater. Chem. 3 (2015) 789–796.

[61]

K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. Unit. States Am. 103 (2006) 10186–10191.

[62]

M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069.

[63]

I.P. Beletskaya, F. Alonso, V. Tyurin, The Suzuki-Miyaura reaction after the Nobel prize, Coord. Chem. Rev. 385 (2019) 137–173.

[64]

A. Biffis, P. Centomo, A. Del Zotto, M. Zecca, Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review, Chem. Rev. 118 (2018) 2249–2295.

[65]

P.G. Gildner, T.J. Colacot, Reactions of the 21st century: two decades of innovative catalyst design for palladium-catalyzed cross-couplings, Organometallics 34 (2015) 5497–5508.

[66]

M. Pagliaro, V. Pandarus, R. Ciriminna, F. Béland, P. Demma Carà, Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions, ChemCatChem 4 (2012) 432–445.

[67]

Z. Chen, Z.-M. Cui, P. Li, C.-Y. Cao, Y.-L. Hong, Z.-y. Wu, W.-G. Song, Diffusion induced reactant shape selectivity inside mesoporous pores of Pd@meso-SiO2 nanoreactor in Suzuki coupling reactions, J. Phys. Chem. C 116 (2012) 14986–14991.

[68]

Y. Xia, J. Wang, G. Dong, Suzuki–miyaura coupling of simple ketones via activation of unstrained carbon–carbon bonds, J. Am. Chem. Soc. 140 (2018) 5347–5351.

[69]

M.R. Yadav, M. Nagaoka, M. Kashihara, R.-L. Zhong, T. Miyazaki, S. Sakaki, Y. Nakao, The suzuki–miyaura coupling of nitroarenes, J. Am. Chem. Soc. 139 (2017) 9423–9426.

[70]

H.M. O'Brien, M. Manzotti, R.D. Abrams, D. Elorriaga, H.A. Sparkes, S.A. Davis, R.B. Bedford, Iron-catalysed substrate-directed Suzuki biaryl cross-coupling, Nat. Catal. 1 (2018) 429–437.

[71]

C.A. Malapit, J.R. Bour, C.E. Brigham, M.S. Sanford, Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides, Nature 563 (2018) 100–104.

[72]

G. Collins, M. Blömker, M. Osiak, J.D. Holmes, M. Bredol, C. O'Dwyer, Three-dimensionally ordered hierarchically porous tin dioxide inverse opals and immobilization of palladium nanoparticles for catalytic applications, Chem. Mater. 25 (2013) 4312–4320.

[73]

W. Shi, Y. Niu, S. Li, L. Zhang, Y. Zhang, G.A. Botton, Y. Wan, B. Zhang, Revealing the structure evolution of heterogeneous Pd catalyst in Suzuki reaction via the identical location transmission electron microscopy, ACS Nano 15 (2021) 8621–8637.

[74]

S. Muratsugu, N. Maity, H. Baba, M. Tasaki, M. Tada, Preparation and catalytic performance of a molecularly imprinted Pd complex catalyst for Suzuki cross-coupling reactions, Dalton Trans. 46 (2017) 3125–3134.

[75]

E. Mieczyńska, T. Borkowski, M. Cypryk, P. Pospiech, A.M. Trzeciak, Palladium supported on triazolyl-functionalized polysiloxane as recyclable catalyst for Suzuki–Miyaura cross-coupling, Appl. Catal., A 470 (2014) 24–30.

[76]

B. Karimi, P. Fadavi Akhavan, A study on applications of N-substituted main-chain NHC-palladium polymers as recyclable self-supported catalysts for the suzuki–miyaura coupling of aryl chlorides in water, Inorg. Chem. 50 (2011) 6063–6072.

[77]

R.S.B. Gonçalves, A.B.V. de Oliveira, H.C. Sindra, B.S. Archanjo, M.E. Mendoza, L.S.A. Carneiro, C.D. Buarque, P.M. Esteves, Heterogeneous catalysis by covalent organic frameworks (COF): Pd(OAc)2@COF-300 in cross-coupling reactions, ChemCatChem 8 (2016) 743–750.

[78]

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun. 9 (2018) 187.

[79]

B. Sun, L. Ning, H.C. Zeng, Confirmation of suzuki–miyaura cross-coupling reaction mechanism through synthetic architecture of nanocatalysts, J. Am. Chem. Soc. 142 (2020) 13823–13832.

[80]

J.D. Webb, S. MacQuarrie, K. McEleney, C.M. Crudden, Mesoporous silica-supported Pd catalysts: an investigation into structure, activity, leaching and heterogeneity, J. Catal. 252 (2007) 97–109.

[81]

K.-i. Shimizu, S. Koizumi, T. Hatamachi, H. Yoshida, S. Komai, T. Kodama, Y. Kitayama, Structural investigations of functionalized mesoporous silica-supported palladium catalyst for Heck and Suzuki coupling reactions, J. Catal. 228 (2004) 141–151.

[82]

S. MacQuarrie, B. Nohair, J.H. Horton, S. Kaliaguine, C.M. Crudden, Functionalized mesostructured silicas as supports for palladium catalysts: effect of pore structure and collapse on catalytic activity in the Suzuki−Miyaura reaction, J. Phys. Chem. C 114 (2010) 57–64.

[83]

J.M. Richardson, C.W. Jones, Strong evidence of solution-phase catalysis associated with palladium leaching from immobilized thiols during Heck and Suzuki coupling of aryl iodides, bromides, and chlorides, J. Catal. 251 (2007) 80–93.

[84]

B. Li, H.C. Zeng, Minimalization of metallic Pd formation in Suzuki reaction with a solid-state organometallic catalyst, ACS Appl. Mater. Interfaces 12 (2020) 33827–33837.

[85]

L. Li, H. Zhao, R. Wang, Tailorable synthesis of porous organic polymers decorating ultrafine palladium nanoparticles for hydrogenation of olefins, ACS Catal. 5 (2015) 948–955.

[86]

G. Zhan, H.C. Zeng, ZIF-67-Derived nanoreactors for controlling product selectivity in CO2 hydrogenation, ACS Catal. 7 (2017) 7509–7519.

Nano Materials Science
Pages 293-311
Cite this article:
Li B, Wang T, Le Q, et al. Surface reconstruction, modification and functionalization of natural diatomites for miniaturization of shaped heterogeneous catalysts. Nano Materials Science, 2023, 5(3): 293-311. https://doi.org/10.1016/j.nanoms.2022.05.001

293

Views

4

Downloads

9

Crossref

13

Web of Science

11

Scopus

0

CSCD

Altmetrics

Published: 30 May 2022
© 2022 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return