AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

MXene-based electrochemical (bio) sensors for sustainable applications: Roadmap for future advanced materials

Qing Wanga,1Ning Hanb,1( )Zhangfeng ShencXue LidZhijie CheneYue Caoa( )Weimeng SiaFagang Wanga( )Bing-Jie NieVijay Kumar Thakurf,g,h( )
School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China
Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, EH9 3JG, United Kingdom
School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India
Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India

1 Qing Wang and Ning Han are co-first authors.

Show Author Information

Abstract

MXenes are emerging transition metal carbides and nitrides-based 2D conductive materials. They have found wide applications in sensors due to their excellent valuable properties. This paper reviews the recent research status of MXene-based electrochemical (bio) sensors for detecting biomarkers, pesticides, and other aspects. The first part of this paper introduced the synthesis strategy and the effect of surface modification on various properties of MXenes. The second part of this paper discussed the application of MXenes as electrode modifiers for detecting pesticides, environmental pollutants, and biomarkers such as glucose, hydrogen peroxide, etc. Hope this review will inspire more efforts toward research on MXene-based sensors to meet the growing requirements.

References

[1]

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (37) (2011) 4248–4253.

[2]

M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341 (6153) (2013) 1502–1505.

[3]

M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater. 29 (18) (2017) 7633–7644.

[4]

P. Ares, K. Novoselov, Recent advances in graphene and other 2D materials, Nano Mater. Sci. 4 (2022), https://doi.org/10.1016/j.nanoms.2021.05.002.

[5]

G. Liu, Y. Xu, T. Yang, L. Jiang, Recent advances in electrocatalysts for seawater splitting, Nano Mater. Sci. (2020), https://doi.org/10.1016/j.nanoms.2020.12.003.

[6]

K. Chen, Y. Xu, Y. Zhao, J. Li, X. Wang, L. Qu, Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries, Nano Mater. Sci. (2022), https://doi.org/10.1016/j.nanoms.2021.11.003.

[7]

F. Li, Y. Li, J. Qu, J. Wang, V.K. Bandari, F. Zhu, O.G. Schmidt, Recent developments of stamped planar micro-supercapacitors: materials, fabrication and perspectives, Nano Mater. Sci. 3 (2) (2021) 154–169.

[8]

M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater. 26 (7) (2014) 992–1005.

[9]

R. Chen, N. Han, L. Li, S. Wang, X. Ma, C. Wang, H. Li, H. Li, L. Zeng, Fundamental understanding of oxygen content in activated carbon on acetone adsorption desorption, Appl. Surf. Sci. 508 (2020), 145211.

[10]

N. Han, S. Feng, W. Guo, O.M. Mora, X. Zhao, W. Zhang, S. Xie, Z. Zhou, Z. Liu, Q. Liu, K. Wan, X. Zhang, J. Fransaer, Rational design of Ruddlesden–Popper perovskite electrocatalyst for oxygen reduction to hydrogen peroxide, SusMat (2022), https://doi.org/10.1002/sus2.71.

[11]

P. Lakhe, E.M. Prehn, T. Habib, J.L. Lutkenhaus, M. Radovic, M.S. Mannan, M.J. Green, Process safety analysis for Ti3C2Tx MXene synthesis and processing, Ind. Eng. Chem. Res. 58 (4) (2019) 1570–1579.

[12]

C. Jiang, C. Wu, X. Li, Y. Yao, L. Lan, F. Zhao, Z. Ye, Y. Ying, J. Ping, All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets, Nano Energy 59 (2019) 268–276.

[13]

Z. Xu, G. Liu, H. Ye, W. Jin, Z. Cui, Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration, J. Membr. Sci. 563 (2018) 625–632.

[14]

S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: a critical review, Nano Mater. Sci. 1 (1) (2019) 2–30.

[15]

Y. Sun, W. Zhang, Q. Wang, N. Han, A. Núñez-Delgado, Y. Cao, W. Si, F. Wang, S. Liu, Biomass-derived N, S co-doped 3D multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction, Environ. Res. 202 (2021).

[16]

L. Gao, C. Li, W. Huang, S. Mei, H. Lin, Q. Ou, Y. Zhang, J. Guo, F. Zhang, S. Xu, H. Zhang, MXene/Polymer membranes: synthesis, properties, and emerging applications, Chem. Mater. 32 (5) (2020) 1703–1747.

[17]

N. Han, X. Guo, J. Cheng, P. Liu, S. Zhang, S. Huang, M.R. Rowles, J. Fransaer, S. Liu, Inhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation, Matter 4 (5) (2021) 1720–1734.

[18]

N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao, S. Liu, Recent advances in nanostructured metal nitrides for water splitting, J. Mater. Chem. 6 (41) (2018) 19912–19933.

[19]

M.E. Genovese, S. Abraham, G. Caputo, G. Nanni, S.K. Kumaran, C.D. Montemagno, A. Athanassiou, D. Fragouli, Photochromic paper indicators for acidic food spoilage detection, ACS Omega 3 (10) (2018) 13484–13493.

[20]

X. Fu, L. Wang, L. Zhao, Z. Yuan, Y. Zhang, D. Wang, D. Wang, J. Li, D. Li, V. Shulga, G. Shen, W. Han, Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin, Adv. Funct. Mater. 31 (17) (2021), 2010533.

[21]

W. Hou, Y. Sun, Y. Zhang, T. Wang, L. Wu, Y. Du, W. Zhong, Mixed-dimensional heterostructure of few-layer MXene based vertical aligned MoS2 nanosheets for enhanced supercapacitor performance, J. Alloys Compd. 859 (2021), 157797.

[22]

K. Rajavel, X. Yu, P. Zhu, Y. Hu, R. Sun, C. Wong, Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings, ACS Appl. Mater. Interfaces 12 (44) (2020) 49737–49747.

[23]

B. Yang, L. Wang, M. Zhang, W. Li, Q. Zhou, L. Zhong, Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress, J. Mater. Chem. 9 (22) (2021) 12923–12946.

[24]

M. Jose, G. Oudebrouckx, S. Bormans, P. Veske, R. Thoelen, W. Deferme, Monitoring body fluids in textiles: combining impedance and thermal principles in a printed, wearable, and washable sensor, ACS Sens. 6 (3) (2021) 896–907.

[25]

W. Niu, X. Cao, Y. Wang, B. Yao, Y. Zhao, J. Cheng, S. Wu, S. Zhang, X. He, Photonic vitrimer elastomer with self-healing, high toughness, mechanochromism, and excellent durability based on dynamic covalent bond, Adv. Funct. Mater. 31 (13) (2021), 2009017.

[26]

A. Angelucci, M. Cavicchioli, I.A. Cintorrino, G. Lauricella, C. Rossi, S. Strati, A. Aliverti, Smart textiles and sensorized garments for physiological monitoring: a review of available solutions and techniques, Sensors 21 (3) (2021).

[27]

L. Wang, L. Wu, Y. Wang, J. Luo, H. Xue, J. Gao, Drop casting based superhydrophobic and electrically conductive coating for high performance strain sensing, Nano Mater. Sci. 4 (2) (2022).

[28]

S. Zheng, H. Wang, P. Das, Y. Zhang, Y. Cao, J. Ma, S. Liu, Z.-S. Wu, Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems, Adv. Mater. 33 (10) (2021), 2005449.

[29]

K. Bayoumy, M. Gaber, A. Elshafeey, O. Mhaimeed, E.H. Dineen, F.A. Marvel, S.S. Martin, E.D. Muse, M.P. Turakhia, K.G. Tarakji, M.B. Elshazly, Smart wearable devices in cardiovascular care: where we are and how to move forward, Nat. Rev. Cardiol. 18 (8) (2021) 581–599.

[30]

J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha, Y. Jung, H. Lim, S.Y. Kim, H. Ko, Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures, ACS Nano 8 (12) (2014) 12020–12029.

[31]

P.K. Kalambate, Z. Huang Dhanjai, Y. Li, Y. Shen, M. Xie, Y. Huang, A.K. Srivastava, Core@shell nanomaterials based sensing devices: a review, TrAC, Trends Anal. Chem. 115 (2019) 147–161.

[32]

P.K. Kalambate, Y. Li, Y. Shen, Y. Huang, Mesoporous Pd@Pt core–shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: application in simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib, Anal. Methods 11 (4) (2019) 443–453.

[33]

N. Han, M. Race, W. Zhang, R. Marotta, C. Zhang, A. Bokhari, J.J. Klemeš, Perovskite and related oxide based electrodes for water splitting, J. Clean. Prod. 318 (2021), 128544.

[34]

N. Han, Z. Shen, X. Zhao, R. Chen, V.K. Thakur, Perovskite oxides for oxygen transport: chemistry and material horizons, Sci. Total Environ. 806 (2022), 151213.

[35]

P.K. Kalambate, M.R. Biradar, S.P. Karna, A.K. Srivastava, Adsorptive stripping differential pulse voltammetry determination of rivastigmine at graphene nanosheet-gold nanoparticle/carbon paste electrode, J. Electroanal. Chem. 757 (2015) 150–158.

[36]

P.K. Kalambate, C.R. Rawool, A.K. Srivastava, Voltammetric determination of pyrazinamide at graphene-zinc oxide nanocomposite modified carbon paste electrode employing differential pulse voltammetry, Sensors Actuat. B Chem. 237 (2016) 196–205.

[37]

M. Chen, Z. Li, L. Chen, Highly antibacterial rGO/Cu2O nanocomposite from a biomass precursor: synthesis, performance, and mechanism, Nano Mater. Sci. 2 (2) (2020) 172–179.

[38]

A. Sinha, B. Tan Dhanjai, Y. Huang, H. Zhao, X. Dang, J. Chen, R. Jain, MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review, TrAC, Trends Anal. Chem. 102 (2018) 75–90.

[39]

Z.-H. Tang, W.-B. Zhu, J.-Z. Chen, Y.-Q. Li, P. Huang, K. Liao, S.-Y. Fu, Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices, Nano Mater. Sci (2021).

[40]

H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J.W. Chew, Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges, Adv. Mater. 30 (12) (2018), e1704561.

[41]

M.W. Barsoum, The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates, Prog. Solid State Chem. 28 (1–4) (2000) 201–281.

[42]

Z. Sun, D. Music, R. Ahuja, S. Li, J.M. Schneider, Bonding and classification of nanolayered ternary carbides, Phys. Rev. B 70 (9) (2004).

[43]

Q. Wang, N. Han, A. Bokhari, X. Li, Y. Cao, S. Asif, Z. Shen, W. Si, F. Wang, J.J. Klemeš, X. Zhao, Insights into MXenes-based electrocatalysts for oxygen reduction, Energy (2022), 124465.

[44]

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065) (2005) 197–200.

[45]

M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6 (2) (2012) 1322–1331.

[46]

O. Mashtalir, M.R. Lukatskaya, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices, Adv. Mater. 27 (23) (2015) 3501–3506.

[47]

M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter, S. Uzun, A. Levitt, Y. Gogotsi, Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene), Chem. Int. Ed. Engl 57 (19) (2018) 5444–5448.

[48]

J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, M.W. Barsoum, Synthesis and characterization of 2D molybdenum carbide (MXene), Adv. Funct. Mater. 26 (18) (2016) 3118–3127.

[49]

J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, Q. Huang, A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5, Chem. Int. Ed. Engl 55 (16) (2016) 5008–5013.

[50]

J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.A. Naslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Transparent conductive two-dimensional titanium carbide epitaxial thin films, Chem. Mater. 26 (7) (2014) 2374–2381.

[51]

M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance, Nature 516 (7529) (2014) 78–81.

[52]

A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, L. Song, Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2, Mater. Des. 114 (2017) 161–166.

[53]

X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset, S. Hurand, P. Chartier, J. Rousseau, T. Cabioc'h, C. Coutanceau, V. Mauchamp, S. Célérier, A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs, water, J. Mater. Chem. A 5 (41) (2017) 22012–22023.

[54]

M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication, J. Mater. Chem. 7 (18) (2019) 10843–10857.

[55]

V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra, M.W. Barsoum, 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents, Chem 6 (3) (2020) 616–630.

[56]

N. Han, S. Wang, Z. Yao, W. Zhang, X. Zhang, L. Zeng, R. Chen, Superior three-dimensional perovskite catalyst for catalytic oxidation, EcoMat 2 (3) (2020), e12044.

[57]

N. Han, Z. Yao, H. Ye, C. Zhang, P. Liang, H. Sun, S. Wang, S. Liu, Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst, Sustain. Mater. Techno 20 (2019), e00108.

[58]

S. Wang, W. Zhang, F. Jia, H. Fu, T. Liu, X. Zhang, B. Liu, A. Núñez-Delgado, N. Han, Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation, J. Environ. Manag. 292 (2021), 112763.

[59]

P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, Y. Gogotsi, Synthesis of two-dimensional titanium nitride Ti4N3 (MXene), Nanoscale 8 (22) (2016) 11385–11391.

[60]

H. Kumar, N.C. Frey, L. Dong, B. Anasori, Y. Gogotsi, V.B. Shenoy, Tunable magnetism and transport properties in nitride MXenes, ACS Nano 11 (8) (2017) 7648–7655.

[61]

N. Han, W. Zhang, W. Guo, S. Xie, C. Zhang, X. Zhang, J. Fransaer, S. Liu, Novel oxygen permeable hollow fiber perovskite membrane with surface wrinkles, Separ. Purif. Technol. 261 (2021), 118295.

[62]

Y. Orooji, N. Han, Z. Nezafat, N. Shafiei, Z. Shen, M. Nasrollahzadeh, H. Karimi-Maleh, R. Luque, A. Bokhari, J.J. Klemeš, Valorisation of nuts biowaste: prospects in sustainable bio(nano)catalysts and environmental applications, J. Clean. Prod. 347 (2022), 131220.

[63]

M. Li, J. Lu, K. Luo, Y. Li, K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P.O.A. Persson, S. Du, Z. Chai, Z. Huang, Q. Huang, Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes, J. Am. Chem. Soc. 141 (11) (2019) 4730–4737.

[64]

J. Sun, L. Wang, S. Zhang, Z. Li, X. Zhang, W. Dai, R. Mori, ZnCl2/phosphonium halide: an efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate, J. Mol. Catal. Chem. 256 (1–2) (2006) 295–300.

[65]

M. Jiang, M. Zhang, L. Wang, Y. Fei, S. Wang, A. Núñez-Delgado, A. Bokhari, M. Race, A. Khataee, J. Jaromír Klemeš, L. Xing, N. Han, Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites, Chem. Eng. J. 431 (2022), 134104.

[66]

N. Han, X. Zhao, V.K. Thakur, Adjusting the interfacial adhesion via surface modification to prepare high-performance fibers, Nano Mater. Sci. (2021), https://doi.org/10.1016/j.nanoms.2021.11.004.

[67]

M. Zhang, N. Han, Y. Fei, J. Liu, L. Xing, A. Núñez-Delgado, M. Jiang, S. Liu, TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater, J. Environ. Manag. 297 (2021), 113311.

[68]

Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu, B. Duployer, P.O.A. Persson, P. Eklund, L. Hultman, M. Li, K. Chen, X.H. Zha, S. Du, P. Rozier, Z. Chai, E. Raymundo-Pinero, P.L. Taberna, P. Simon, Q. Huang, A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte, Nat. Mater. 19 (8) (2020) 894–899.

[69]

V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, D.V. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes, Science 369 (6506) (2020) 979–983.

[70]

S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using A binary aqueous system, Chem. Int. Ed. Engl 57 (47) (2018) 15491–15495.

[71]

T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, D. Zhang, Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment, Chem. Int. Ed. Engl 57 (21) (2018) 6115–6119.

[72]

C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.L. Ma, H.M. Cheng, W. Ren, Large-area high-quality 2D ultrathin Mo2C superconducting crystals, Nat. Mater. 14 (11) (2015) 1135–1141.

[73]

A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes), Science 372 (6547) (2021).

[74]

X. Li, M. Li, Q. Yang, G. Liang, Z. Huang, L. Ma, D. Wang, F. Mo, B. Dong, Q. Huang, C. Zhi, In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery, Adv. Energy Mater. 10 (36) (2020).

[75]

R. Ramachandran, C. Zhao, M. Rajkumar, K. Rajavel, P. Zhu, W. Xuan, Z.-X. Xu, F. Wang, Porous nickel oxide microsphere and Ti3C2Tx hybrid derived from metal-organic framework for battery-type supercapacitor electrode and non-enzymatic H2O2 sensor, Electrochim. Acta 322 (2019).

[76]

F. Wang, C. Yang, C. Duan, D. Xiao, Y. Tang, J. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc. 162 (1) (2014) B16-B21.

[77]

F. Wang, C. Yang, M. Duan, Y. Tang, J. Zhu, TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances, Biosens. Bioelectron. 74 (2015) 1022–1028.

[78]

L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova, A. Vikartovska, V. Sasinkova, J. Filip, P. Kasak, M. Jerigova, D. Velic, K.A. Mahmoud, J. Tkac, Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing, Electrochim. Acta 235 (2017) 471–479.

[79]

L. Lorencova, T. Bertok, J. Filip, M. Jerigova, D. Velic, P. Kasak, K.A. Mahmoud, J. Tkac, Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications, Sensors Actuat. B Chem. 263 (2018) 360–368.

[80]

R. Gao, X. Yang, Q. Yang, Y. Wu, F. Wang, Q. Xia, S.J. Bao, Design of an amperometric glucose oxidase biosensor with added protective and adhesion layers, Mikrochim. Acta 188 (9) (2021) 312.

[81]

M. Li, L. Fang, H. Zhou, F. Wu, Y. Lu, H. Luo, Y. Zhang, B. Hu, Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor, Appl. Surf. Sci. 495 (2019).

[82]

H.L. Chia, C.C. Mayorga-Martinez, N. Antonatos, Z. Sofer, J.J. Gonzalez-Julian, R.D. Webster, M. Pumera, MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance, Anal. Chem. 92 (3) (2020) 2452–2459.

[83]

T. Xia, G. Liu, J. Wang, S. Hou, S. Hou, MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol, Biosens. Bioelectron. 183 (2021), 113243.

[84]

X. Liu, L. He, P. Li, X. Li, P. Zhang, A direct electrochemical H2S sensor based on Ti3C2Tx MXene, Chemelectrochem 8 (19) (2021) 3658–3665.

[85]

H. Wang, H. Li, Y. Huang, M. Xiong, F. Wang, C. Li, A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes, Biosens. Bioelectron. 142 (2019), 111531.

[86]

F. Shahzad, A. Iqbal, S.A. Zaidi, S.-W. Hwang, C.M. Koo, Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter, J. Ind. Eng. Chem. 79 (2019) 338–344.

[87]

M. Zhang, Y. Yang, Y. Wang, B. Zhang, H. Wang, G. Fang, S. Wang, A molecularly imprinted electrochemical sensor based on cationic intercalated two-dimensional titanium carbide nanosheets for sensitive and selective detection of triclosan in food samples, Food Control 132 (2022).

[88]

W. Zhong, F. Gao, J. Zou, S. Liu, M. Li, Y. Gao, Y. Yu, X. Wang, L. Lu, MXene@Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples, Food Chem. 360 (2021), 130006.

[89]

Y. Xie, F. Gao, X. Tu, X. Ma, Q. Xu, R. Dai, X. Huang, Y. Yu, L. Lu, Facile synthesis of MXene/electrochemically reduced graphene oxide composites and their application for electrochemical sensing of carbendazim, J. Electrochem. Soc. 166 (16) (2019) B1673-B1680.

[90]

Y. Jiang, X. Zhang, L. Pei, S. Yue, L. Ma, L. Zhou, Z. Huang, Y. He, J. Gao, Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor, Chem. Eng. J. 339 (2018) 547–556.

[91]

Q. Xu, S. Chen, J. Xu, X. Duan, L. Lu, Q. Tian, X. Zhang, Y. Cai, X. Lu, L. Rao, Y. Yu, Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin, J. Electroanal. Chem. 880 (2021).

[92]

Y. Yao, X. Han, X. Yang, J. Zhao, C. Chai, Detection of hydrazine at MXene/ZIF-8 nanocomposite modified electrode†, Chin. J. Chem. 39 (2) (2021) 330–336.

[93]

H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, Z. Zhu, A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2, Sensors Actuat. B Chem. 218 (2015) 60–66.

[94]

X. Zhu, B. Liu, H. Hou, Z. Huang, K.M. Zeinu, L. Huang, X. Yuan, D. Guo, J. Hu, J. Yang, Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(Ⅱ), Pb(Ⅱ), Cu(Ⅱ) and Hg(Ⅱ), Electrochim. Acta 248 (2017) 46–57.

[95]

X. Lv, F. Pei, S. Feng, Y. Wu, S.-M. Chen, Q. Hao, W. Lei, Facile synthesis of protonated carbon nitride/Ti3C2Tx nanocomposite for simultaneous detection of Pb2+ and Cd2+, J. Electrochem. Soc. 167 (6) (2020).

[96]

C.L. Sawyers, The cancer biomarker problem, Nature 452 (7187) (2008) 548–552.

[97]

S.K. Chatterjee, B.R. Zetter, Cancer biomarkers: knowing the present and predicting the future, Future Oncol. 1 (1) (2005) 37–50.

[98]

S. Kumar, A. Mohan, R. Guleria, Biomarkers in cancer screening, research and detection: present and future: a review, Biomarkers 11 (5) (2006) 385–405.

[99]

P.R. Srinivas, B.S. Kramer, S. Srivastava, Trends in biomarker research for cancer detection, Lancet Oncol. 2 (11) (2001) 698–704.

[100]
M. Verma, S. Srivastava, New cancer biomarkers deriving from NCI early detection research, in: H.-J. Senn, R. Morant (Eds.), Tumor Prevention and Genetics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 72–84.
[101]

J.F. Rusling, C.V. Kumar, J.S. Gutkind, V. Patel, Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer, Analyst 135 (10) (2010) 2496–2511.

[102]

Y. Wang, N. Han, X. Li, S. Yu, L. Xing, Artificial light-harvesting systems and their applications in photocatalysis and cell labeling, ChemPhysMater (2022), https://doi.org/10.1016/j.chphma.2022.05.002.

[103]

M. Carpelan-Holmström, J. Louhimo, U.H. Stenman, H. Alfthan, C. Haglund, CEA, CA 19–9 and CA 72–4 improve the diagnostic accuracy in gastrointestinal cancers, Anticancer Res. 22 (4) (2002) 2311–2316.

[104]

T. Hayakawa, S. Naruse, M. Kitagawa, H. Ishiguro, T. Kondo, K. Kurimoto, M. Fukushima, T. Takayama, Y. Horiguchi, N. Kuno, A. Noda, T. Furukawa, A prospective multicenter trial evaluating diagnostic validity of multivariate analysis and individual serum marker in differential diagnosis of pancreatic cancer from benign pancreatic diseases, Int. J. Pancreatol. 25 (1) (1999) 23–29.

[105]

W. Zhang, N. Han, J. Luo, X. Han, S. Feng, W. Guo, S. Xie, Z. Zhou, P. Subramanian, K. Wan, J. Arbiol, C. Zhang, S. Liu, M. Xu, X. Zhang, J. Fransaer, Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting, Small 18 (4) (2022), 2103561.

[106]

M. Sawangphruk, Y. Sanguansak, A. Krittayavathananon, S. Luanwuthi, P. Srimuk, S. Nilmoung, S. Maensiri, W. Meevasana, J. Limtrakul, Silver nanodendrite modified graphene rotating disk electrode for nonenzymatic hydrogen peroxide detection, Carbon 70 (2014) 287–294.

[107]

Y. Cao, W. Si, Q. Hao, Z. Li, W. Lei, X. Xia, J. Li, F. Wang, Y. Liu, One-pot fabrication of Hemin-N C composite with enhanced electrocatalysis and application to H2O2 sensing, Electrochim. Acta 261 (2018) 206–213.

[108]

Y. Cao, Y. Qi, X. Meng, W. Si, Q. Hao, W. Lei, J. Li, J. Cao, X. Li, Q. Li, F. Wang, Facile preparation of hemin/polypyrrole/N, B-Co-doped graphene nanocomposites for non-enzymatic H2O2 determination, J. Electrochem. Soc. 165 (13) (2018) B623-B631.

[109]

Y. Jiang, X. Zhao, Q. Wang, Y. Sun, Y. Cao, N. Han, C. Lee, J. Cao, J. Li, W. Si, Facile synthesis of paper-derived porous activated carbon and the electrochemical determination of hydrogen peroxide, J. Electrochem. Soc. 169 (5) (2022).

[110]

M.H. Hussain, L.P. Fook, M.K. Sanira Putri, H.L. Tan, N.F. Abu Bakar, N. Radacsi, Advances on ultra-sensitive electrospun nanostructured electrochemical and colorimetric sensors for diabetes mellitus detection, Nano Mater. Sci. 3 (4) (2021) 321–343.

[111]

Y. Li, J. Qu, F. Li, Z. Qu, H. Tang, L. Liu, M. Zhu, O.G. Schmidt, Advanced architecture designs towards high-performance 3D microbatteries, Nano Mater. Sci. 3 (2) (2021) 140–153.

[112]

Y. Wan, Y. Liu, D. Chao, W. Li, D. Zhao, Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries, Nano Mater. Sci (2022).

[113]

Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue, W. Liu, L. Wang, S. Jia, C. Li, T. Qi, J. Wang, Y. Gao, Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor, ACS Nano 14(2) (2020) 2145–2155.

[114]

A. Devadoss, J.D. Burgess, Steady-state detection of cholesterol contained in the plasma membrane of a single cell using lipid bilayer-modified microelectrodes incorporating cholesterol oxidase, J. Am. Chem. Soc. 126 (33) (2004) 10214–10215.

[115]

Y. Cao, W. Si, Y. Zhang, Q. Hao, W. Lei, X. Xia, J. Li, F. Wang, Nitrogen-doped graphene: effect of graphitic-N on the electrochemical sensing properties towards acetaminophen, FlatChem 9 (2018) 1–7.

[116]

Y. Cao, W. Zhang, Y. Sun, Y. Jiang, N. Han, J. Zou, W. Si, F. Wang, A. Nunez-Delgado, S. Liu, Highly active iron-nitrogen-boron-carbon bifunctional electrocatalytic platform for hydrogen peroxide sensing and oxygen reduction, Environ. Res. 201 (2021), 111563.

[117]

S. Huang, E. Yang, J. Yao, X. Chu, Y. Liu, Y. Zhang, Q. Xiao, Nitrogen, cobalt Co-doped fluorescent magnetic carbon dots as ratiometric fluorescent probes for cholesterol and uric acid in human blood serum, ACS Omega 4 (5) (2019) 9333–9342.

[118]

M. Amiri, S. Arshi, An overview on electrochemical determination of cholesterol, Electroanalysis 32 (7) (2020) 1391–1407.

[119]

P. Nagy, Z. Pálinkás, A. Nagy, B. Budai, I. Tóth, A. Vasas, Chemical aspects of hydrogen sulfide measurements in physiological samples, Biochimica et Biophysica Acta BBA, Gen. Subjects 1840 (2) (2014) 876–891.

[120]

H. Xu, H. Shang, Q. Liu, C. Wang, J. Di, C. Chen, L. Jin, Y. Du, Dual mode electrochemical-photoelectrochemical sensing platform for hydrogen sulfide detection based on the inhibition effect of titanium dioxide/bismuth tungstate/silver heterojunction, J. Colloid Interface Sci. 581 (2021) 323–333.

[121]

M. Asif, A. Aziz, Z. Wang, G. Ashraf, J. Wang, H. Luo, X. Chen, F. Xiao, H. Liu, Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells, Anal. Chem. 91 (6) (2019) 3912–3920.

[122]

X. Ning, D. Tang, M. Zhang, Directly electrospinning submillimeter continuous fibers on tubes to fabricate H2S detectors with fast and high response, Nano Mater. Sci (2021), https://doi.org/10.1016/j.nanoms.2021.07.005.

[123]

D. Brown Gordon, W. Denning David, A.R. Gow Neil, M. Levitz Stuart, G. Netea Mihai, C. White Theodore, Hidden killers: human fungal infections, Sci. Transl. Med. 4 (165) (2012), 165rv13–165rv13.

[124]

Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H. Xia, Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron. 34 (1) (2012) 125–131.

[125]

S.A. Zaidi, Development of molecular imprinted polymers based strategies for the determination of Dopamine, Sensors Actuat, Biol. Chem. 265 (2018) 488–497.

[126]

S.A. Zaidi, J.H. Shin, A novel and highly sensitive electrochemical monitoring platform for 4-nitrophenol on MnO2 nanoparticles modified graphene surface, RSC Adv. 5 (108) (2015) 88996–89002.

[127]

W. Zhang, J. Zheng, J. Shi, Z. Lin, Q. Huang, H. Zhang, C. Wei, J. Chen, S. Hu, A. Hao, Nafion covered core–shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine, Anal. Chim. Acta 853 (2015) 285–290.

[128]

C.-L. Huang, H.-W. Ma, C.-P. Yu, Substance flow analysis and assessment of environmental exposure potential for triclosan in mainland China, Sci, Total Environ 499 (2014) 265–275.

[129]

H. Singer, S. Müller, C. Tixier, L. Pillonel, Triclosan: occurrence and fate of a widely used biocide in the aquatic Environment: field measurements in wastewater treatment plants, surface waters, and lake sediments, Environ. Sci. Technol. 36 (23) (2002) 4998–5004.

[130]

M. Goodman, D.Q. Naiman, J.S. LaKind, Systematic review of the literature on triclosan and health outcomes in humans, Crit. Rev. Toxicol. 48 (1) (2018) 1–51.

[131]

K. Wang, D.-W. Sun, H. Pu, Q. Wei, A rapid dual-channel readout approach for sensing carbendazim with 4-aminobenzenethiol-functionalized core–shell Au@Ag nanoparticles, Analyst 145 (5) (2020) 1801–1809.

[132]

S. Singh, N. Singh, V. Kumar, S. Datta, A.B. Wani, D. Singh, K. Singh, J. Singh, Toxicity, monitoring and biodegradation of the fungicide carbendazim, Environ. Chem. Lett. 14 (3) (2016) 317–329.

[133]

F. Arduini, F. Ricci, C.S. Tuta, D. Moscone, A. Amine, G. Palleschi, Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode, Anal. Chim. Acta 580 (2) (2006) 155–162.

[134]

F. Gao, X. Chen, H. Tanaka, A. Nishitani, Q. Wang, Alkaline phosphatase mediated synthesis of carbon nanotube–hydroxyapatite nanocomposite and its application for electrochemical determination of luteolin, Adv. Powder Technol. 27 (3) (2016) 921–928.

[135]

B. Xu, B. Zhang, L. Yang, F. Zhao, B. Zeng, Electrochemical determination of luteolin using molecularly imprinted poly-carbazole on MoS2/graphene-carbon nanotubes nanocomposite modified electrode, Electrochim. Acta 258 (2017) 1413–1420.

[136]

Y. Ma, Y. Kong, J. Xu, Y. Deng, M. Lu, R. Yu, M. Yuan, T. Li, J. Wang, Carboxyl hydrogel particle film as a local pH buffer for voltammetric determination of luteolin and baicalein, Talanta 208 (2020), 120373.

[137]

X. Feng, X. Yin, X. Bo, L. Guo, An ultrasensitive luteolin sensor based on MOFs derived CuCo coated nitrogen-doped porous carbon polyhedron, Sensors Actuat, Biol. Chem. 281 (2019) 730–738.

[138]

J. Tang, R. Huang, S. Zheng, S. Jiang, H. Yu, Z. Li, J. Wang, A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls, Microchem. J. 145 (2019) 899–907.

[139]

M.M. Shahid, P. Rameshkumar, W.J. Basirunc, U. Wijayantha, W.S. Chiu, P.S. Khiew, N.M. Huang, An electrochemical sensing platform of cobalt oxide@gold nanocubes interleaved reduced graphene oxide for the selective determination of hydrazine, Electrochim. Acta 259 (2018) 606–616.

[140]

L. Cui, C. Ji, Z. Peng, L. Zhong, C. Zhou, L. Yan, S. Qu, S. Zhang, C. Huang, X. Qian, Y. Xu, Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine, Anal. Chem. 86 (9) (2014) 4611–4617.

[141]

L. Cui, Z. Peng, C. Ji, J. Huang, D. Huang, J. Ma, S. Zhang, X. Qian, Y. Xu, Hydrazine detection in the gas state and aqueous solution based on the Gabriel mechanism and its imaging in living cells, Chem. Commun. 50 (12) (2014) 1485–1487.

[142]

V. Karri, M. Schuhmacher, V. Kumar, Heavy metals (Pb, Cd, as and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain, Environ, Toxicol. Phar 48 (2016) 203–213.

[143]

B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources, Chem. Rev. 120 (2020) 9304–9362.

[144]

S.S. Siwal, K. Sheoran, K. Mishra, H. Kaur, A.K. Saini, V. Saini, D.-V.N. Vo, H.Y. Nezhad, V.K. Thakur, Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: future perspectives, Chemosphere 293 (2022), 133542.

[145]

V. Soni, P. Singh, H.H. Phan Quang, A.A. Parwaz Khan, A. Bajpai, Q. Van Le, V.K. Thakur, S. Thakur, V.-H. Nguyen, P. Raizada, Emerging architecture titanium carbide (Ti3C2Tx) MXene based photocatalyst toward degradation of hazardous pollutants: recent progress and perspectives, Chemosphere 293 (2022), 133541.

[146]

S. Fu, Z. Sun, P. Huang, H. Li, N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Mater. Sci. 1 (2019) 2–30.

Nano Materials Science
Pages 39-52
Cite this article:
Wang Q, Han N, Shen Z, et al. MXene-based electrochemical (bio) sensors for sustainable applications: Roadmap for future advanced materials. Nano Materials Science, 2023, 5(1): 39-52. https://doi.org/10.1016/j.nanoms.2022.07.003

431

Views

9

Downloads

45

Crossref

43

Web of Science

51

Scopus

0

CSCD

Altmetrics

Received: 02 June 2022
Accepted: 07 July 2022
Published: 26 August 2022
© 2022 Chongqing University.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return