AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Double enzyme mimetic activities of multifunctional Ag nanoparticle-decorated Co3V2O8 hollow hexagonal prismatic pencils for application in colorimetric sensors and disinfection

Ying Gaoa,c,d,e,1Peng Jub,1Yu Zhanga,c,d,eYuxin ZhangfXiaofan Zhaia,d,e( )Jizhou Duana,d,e( )Baorong Houa,d,e
Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China
Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China
University of Chinese Academy of Sciences, Beijing, 100049, PR China
Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, PR China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China

1 These two authors contributed equally to this work.

Show Author Information

Abstract

Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes, there is urgent need to discover novel highly efficient enzyme-like materials. In this work, Co3V2O8 with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics. They were then decorated by photo-depositing Ag nanoparticles (Ag NPs) on the surface to further improve its catalytic activities. The Ag NPs decorated Co3V2O8 (ACVPs) showed both excellent oxidase- and peroxidase-like catalytic activities. They can oxidize the colorless 3,3', 5,5'-tetramethylbenzidine rapidly to induce a blue change. The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance (SPR) effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co3V2O8, accelerating electron transfer and promoting the catalytic process. ACVPs were applied in constructing a colorimetric sensor, validating the occurrence of the Fenton reaction, and disinfection, presenting favorable catalytic performance. The enzyme-like catalytic mechanism was studied, indicating the chief role of ⋅O2- radicals in the catalytic process. This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability.

References

[1]

Q. Wang, Z. Yang, M. Ma, C.K. Chang, B. Xu, High catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme models, Chem. Eur J. 14 (16) (2008) 5073–5078, https://doi.org/10.1002/chem.200702010.

[2]

Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications, Chem. Rev. 119 (6) (2019) 4357–4412, https://doi.org/10.1021/acs.chemrev.8b00672.

[3]

K. Kirkorian, A. Ellis, L.J. Twyman, ChemInform abstract: catalytic hyperbranched polymers as enzyme mimics; exploiting the principles of encapsulation and supramolecular chemistry, ChemInform 43 (48) (2012), https://doi.org/10.1002/chin.201248235.

[4]

L. Liu, R. Breslow, Dendrimeric pyridoxamine enzyme mimics, J. Am. Chem. Soc. 125 (40) (2003) 12110–12111, https://doi.org/10.1021/ja0374473.

[5]

L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol. 2 (9) (2007) 577–583, https://doi.org/10.1038/nnano.2007.260.

[6]

W. Zhang, S. Hu, J.-J. Yin, W. He, W. Lu, M. Ma, N. Gu, Y. Zhang, Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers, J. Am. Chem. Soc. 138 (18) (2016) 5860–5865, https://doi.org/10.1021/jacs.5b12070.

[7]

A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Oxidase-like activity of polymer-coated cerium oxide nanoparticles, Angew. Chem. Int. Ed. 48 (13) (2009) 2308–2312, https://doi.org/10.1002/anie.200805279.

[8]

M. Liang, K. Fan, Y. Pan, H. Jiang, F. Wang, D. Yang, D. Lu, J. Feng, J. Zhao, L. Yang, X. Yan, Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent, Anal. Chem. 85 (1) (2013) 308–312, https://doi.org/10.1021/ac302781r.

[9]

A.S. Karakoti, S. Singh, A. Kumar, M. Malinska, S.V.N.T. Kuchibhatla, K. Wozniak, W.T. Self, S. Seal, PEGylated nanoceria as radical scavenger with tunable redox chemistry, J. Am. Chem. Soc. 131 (40) (2009) 14144–14145, https://doi.org/10.1021/ja9051087.

[10]

W. Li, Z. Liu, C. Liu, Y. Guan, J. Ren, X. Qu, Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation, Angew. Chem. Int. Ed. 56 (44) (2017) 13661–13665, https://doi.org/10.1002/anie.201706910.

[11]

A.A. Vernekar, D. Sinha, S. Srivastava, P.U. Paramasivam, P. D'Silva, G. Mugesh, An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires, Nat. Commun. 5 (1) (2014) 5301, https://doi.org/10.1038/ncomms6301.

[12]

F. Pogacean, C. Socaci, S. Pruneanu, A.R. Biris, M. Coros, L. Magerusan, G. Katona, R. Turcu, G. Borodi, Graphene based nanomaterials as chemical sensors for hydrogen peroxide – a comparison study of their intrinsic peroxidase catalytic behavior, Sensor. Actuat. B-Chemical. 213 (2015) 474–483, https://doi.org/10.1016/j.snb.2015.02.124.

[13]

Y. Tao, E. Ju, J. Ren, X. Qu, Polypyrrole nanoparticles as promising enzyme mimics for sensitive hydrogen peroxide detection, Chem. Commun. 50 (23) (2014) 3030–3032, https://doi.org/10.1039/C4CC00328D.

[14]

Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L. Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, H. Wei, Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues, ACS Nano 11 (6) (2017) 5558–5566, https://doi.org/10.1021/acsnano.7b00905.

[15]

Y. Zhang, F. Wang, C. Liu, Z. Wang, L. Kang, Y. Huang, K. Dong, J. Ren, X. Qu, Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy, ACS Nano 12 (1) (2018) 651–661, https://doi.org/10.1021/acsnano.7b07746.

[16]

C. Ge, G. Fang, X. Shen, Y. Chong, W.G. Wamer, X. Gao, Z. Chai, C. Chen, J.-J. Yin, Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage, ACS Nano 10 (11) (2016) 10436–10445, https://doi.org/10.1021/acsnano.6b06297.

[17]

Z. Zhou, H. Chao, W. He, P. Su, J. Song, Y. Yang, Boosting the activity of enzymes in metal-organic frameworks by a one-stone-two-bird enzymatic surface functionalization strategy, Appl. Surf. Sci. 586 (2022) 152815, https://doi.org/10.1016/j.apsusc.2022.152815.

[18]

H. Qiu, F. Pu, X. Ran, C. Liu, J. Ren, X. Qu, Nanozyme as artificial receptor with multiple readouts for pattern recognition, Anal. Chem. 90 (20) (2018) 11775–11779, https://doi.org/10.1021/acs.analchem.8b03807.

[19]

T.K. Sharma, R. Ramanathan, P. Weerathunge, M. Mohammadtaheri, H.K. Daima, R. Shukla, V. Bansal, Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold nanoparticles for kanamycin detection, Chem. Commun. 50 (100) (2014) 15856–15859, https://doi.org/10.1039/C4CC07275H.

[20]

Y. Huang, X. Ran, Y. Lin, J. Ren, X. Qu, Self-assembly of an organic–inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions, Chem. Commun. 51 (21) (2015) 4386–4389, https://doi.org/10.1039/C5CC00040H.

[21]

Z. Chen, Z. Wang, J. Ren, X. Qu, Enzyme mimicry for combating bacteria and biofilms, Acc. Chem. Res. 51 (3) (2018) 789–799, https://doi.org/10.1021/acs.accounts.8b00011.

[22]

J. Niu, Y. Sun, F. Wang, C. Zhao, J. Ren, X. Qu, Photomodulated nanozyme used for a gram-selective antimicrobial, Chem. Mater. 30 (20) (2018) 7027–7033, https://doi.org/10.1021/acs.chemmater.8b02365.

[23]

J. Wu, S. Li, H. Wei, Integrated nanozymes: facile preparation and biomedical applications, Chem. Commun. 54 (50) (2018) 6520–6530, https://doi.org/10.1039/C8CC01202D.

[24]

D. Duan, K. Fan, D. Zhang, S. Tan, M. Liang, Y. Liu, J. Zhang, P. Zhang, W. Liu, X. Qiu, G.P. Kobinger, G. Fu Gao, X. Yan, Nanozyme-strip for rapid local diagnosis of Ebola, Biosens. Bioelectron. 74 (2015) 134–141, https://doi.org/10.1016/j.bios.2015.05.025.

[25]

D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang, The Chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds, ChemInform 35 (20) (2004), https://doi.org/10.1002/chin.200420288.

[26]

Z. Xiang, Y. Wang, P. Ju, D. Zhang, Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts, Microchim. Acta 183 (1) (2016) 457–463, https://doi.org/10.1007/s00604-015-1670-x.

[27]

Y. Yu, P. Ju, D. Zhang, X. Han, X. Yin, L. Zheng, C. Sun, Peroxidase-like activity of FeVO4 nanobelts and its analytical application for optical detection of hydrogen peroxide, Sensor. Actuat. B-Chem. 233 (2016) 162–172, https://doi.org/10.1016/j.snb.2016.04.041.

[28]

N. Singh, G. Mugesh, CeVO4 Nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species, Angew. Chem. Int. Ed. 58 (23) (2019) 7797–7801, https://doi.org/10.1002/anie.201903427.

[29]

Q. Zhang, J. Pei, G. Chen, C. Bie, D. Chen, Y. Jiao, J. Rao, Co3V2O8 hexagonal pyramid with tunable inner structure as high performance anode materials for lithium ion battery, Electrochim. Acta 238 (2017) 227–236, https://doi.org/10.1016/j.electacta.2017.04.013.

[30]

V. Soundharrajan, B. Sambandam, J. Song, S. Kim, J. Jo, S. Kim, S. Lee, V. Mathew, J. Kim, Co3V2O8 sponge network morphology derived from metal–organic framework as an excellent lithium storage anode material, ACS Appl. Mater. Interfaces 8 (13) (2016) 8546–8553, https://doi.org/10.1021/acsami.6b01047.

[31]

Z. Qin, J. Pei, G. Chen, D. Chen, Y. Hu, C. Lv, C. Bie, Design and fabrication of Co3V2O8 nanotubes by electrospinning as a high-performance anode for lithium-ion batteries, New J. Chem. 41 (13) (2017) 5974–5980, https://doi.org/10.1039/C7NJ00468K.

[32]

F. Wu, S. Xiong, Y. Qian, S.-H. Yu, Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8⋅n H2O: a new anode material for lithium-ion batteries, Angew. Chem. Int. Ed. 54 (37) (2015) 10787–10791, https://doi.org/10.1002/ange.201503487.

[33]

H. Jiang, Z. Chen, H. Cao, Y. Huang, Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose, Analyst 137 (23) (2012) 5560–5564, https://doi.org/10.1039/C2AN35911A.

[34]

L. Wang, L. Wu, Y. Wang, J. Luo, H. Xue, J. Gao, Drop casting based superhydrophobic and electrically conductive coating for high performance strain sensing, Nano Mater. Sci. 4 (2) (2022) 178–184, https://doi.org/10.1016/j.nanoms.2021.12.005.

[35]

D. Liu, L. Xu, J. Xie, J. Yang, A perspective of chalcogenide semiconductor-noble metal nanocomposites through structural transformations, Nano Mater. Sci. 1 (3) (2019) 184–197, https://doi.org/10.1016/j.nanoms.2019.03.005.

[36]

Y. Zhang, B. Song, X. Zhao, Y. Shi, Microstructure and properties of Ag/SnO2 functional material manufactured by selective laser melting, Nano Mater. Sci. 1 (3) (2019) 208–214, https://doi.org/10.1016/j.nanoms.2019.04.001.

[37]

A.P. Richter, J.S. Brown, B. Bharti, A. Wang, S. Gangwal, K. Houck, E.A. Cohen Hubal, V.N. Paunov, S.D. Stoyanov, O.D. Velev, An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core, Nat. Nanotechnol. 10 (9) (2015) 817–823, https://doi.org/10.1038/nnano.2015.141.

[38]

F. Cao, E. Ju, Y. Zhang, Z. Wang, C. Liu, W. Li, Y. Huang, K. Dong, J. Ren, X. Qu, An efficient and benign antimicrobial depot based on silver-infused MoS2, ACS Nano 11 (5) (2017) 4651–4659, https://doi.org/10.1021/acsnano.7b00343.

[39]

A. Guadagnini, S. Agnoli, D. Badocco, P. Pastore, D. Coral, M.B. Fernàndez van Raap, D. Forrer, V. Amendola, Facile synthesis by laser ablation in liquid of nonequilibrium cobalt-silver nanoparticles with magnetic and plasmonic properties, J. Colloid Interface Sci. 585 (2021) 267–275, https://doi.org/10.1016/j.jcis.2020.11.089.

[40]

L. Barrientos, P. Allende, M.Á. Laguna-Bercero, J. Pastrián, J. Rodriguez-Becerra, L. Cáceres-Jensen, Controlled Ag-TiO2 heterojunction obtained by combining physical vapor deposition and bifunctional surface modifiers, J. Phys. Chem. Solid. 119 (2018) 147–156, https://doi.org/10.1016/j.jpcs.2018.03.046.

[41]

B. Aysin, A. Ozturk, J. Park, Silver-loaded TiO2 powders prepared through mechanical ball milling, Ceram. Int. 39 (6) (2013) 7119–7126, https://doi.org/10.1016/j.ceramint.2013.02.054.

[42]

E. Uysal, S. Ates, S. Safaltin, D.N. Dikmetas, D. Devecioglu, F.K. Guler, S. Gurmen, Synthesis of calcium, copper and iron alginate hydrogels doped with Ag nanoparticles produced by chemical reduction method, Mater. Chem. Phys. 281 (2022) 125843, https://doi.org/10.1016/j.matchemphys.2022.125843.

[43]

A. Kumar, A. Rana, C. Guo, G. Sharma, K.M. M Katubi, F.M. Alzahrani, M. Naushad, M. Sillanpää, P. Dhiman, F.J. Stadler, Acceleration of photo-reduction and oxidation capabilities of Bi4O5I2/SPION@calcium alginate by metallic Ag: wide spectral removal of nitrate and azithromycin, Chem. Eng. J. 423 (2021) 130173, https://doi.org/10.1016/j.cej.2021.130173.

[44]

A. Saranya, A. Murad, A. Thamer, A. Priyadharsan, P. Maheshwaran, Preparation of reduced ZnO/Ag nanocomposites by a green microwave-assisted method and their applications in photodegradation of methylene blue dye, and as antimicrobial and anticancer agents, ChemistrySelect 6 (16) (2021) 3995–4004, https://doi.org/10.1002/slct.202100413.

[45]

L. Jiang, I. Santiago, J. Foord, High-yield electrochemical synthesis of silver nanoparticles by enzyme-modified boron-doped diamond electrodes, Langmuir 36 (22) (2020) 6089–6094, https://doi.org/10.1021/acs.langmuir.0c00375.

[46]

E. Kakazu, T. Murakami, K. Akamatsu, T. Sugawara, R. Kikuchi, S.-i. Nakao, Preparation of silver nanoparticles using the SPG membrane emulsification technique, J. Membr. Sci. 354 (1) (2010) 1–5, https://doi.org/10.1016/j.memsci.2010.02.056.

[47]

D.J. da Silva, A.G. Souza, G.d.S. Ferreira, A. Duran, A.D. Cabral, F.L.A. Fonseca, R.F. Bueno, D.S. Rosa, Cotton fabrics decorated with antimicrobial Ag-coated TiO2 nanoparticles are unable to fully and rapidly eradicate SARS-CoV-2, ACS Appl. Nano Mater. 4 (12) (2021) 12949–12956, https://doi.org/10.1021/acsanm.1c03492.

[48]

Y. Gao, J. Duan, X. Zhai, F. Guan, X. Wang, J. Zhang, B. Hou, Photocatalytic degradation and antibacterial properties of Fe3+-doped alkalized carbon nitride, Nanomaterials 10 (2020), https://doi.org/10.3390/nano10091751.

[49]

Y. Gao, X. Zhai, Y. Zhang, F. Guan, N. Liu, X. Wang, J. Zhang, B. Hou, J. Duan, Developing high photocatalytic antibacterial Zn electrodeposited coatings through Schottky junction with Fe3+-doped alkalized g-C3N4 photocatalysts, Nano Mater. Sci. (2022), https://doi.org/10.1016/j.nanoms.2022.01.004.

[50]

N.-N. Zhu, X.-H. Liu, T. Li, J.-G. Ma, P. Cheng, G.-M. Yang, Composite system of Ag nanoparticles and metal–organic frameworks for the capture and conversion of carbon dioxide under mild conditions, Inorg. Chem. 56 (6) (2017) 3414–3420, https://doi.org/10.1021/acs.inorgchem.6b02855.

[51]

S. Zhou, H. Ji, L. Liu, S. Feng, Y. Fu, Y. Yang, C. Lü, Mussel-inspired coordination functional polymer brushes-decorated rGO-stabilized silver nanoparticles composite for antibacterial application, Polym. Chem. 11 (16) (2020) 2822–2830, https://doi.org/10.1039/D0PY00180E.

[52]

B. Huang, W. Wang, T. Pu, J. Li, C. Zhao, L. Xie, L. Chen, Rational design and facile synthesis of two-dimensional hierarchical porous M3V2O8 (M = Co, Ni and Co–Ni) thin sheets assembled by ultrathin nanosheets as positive electrode materials for high-performance hybrid supercapacitors, Chem. Eng. J. 375 (2019) 121969, https://doi.org/10.1016/j.cej.2019.121969.

[53]

Y. Mu, X. Pei, Y. Zhao, X. Dong, Z. Kou, M. Cui, C. Meng, Y. Zhang, In situ confined vertical growth of Co2.5Ni0.5Si2O5(OH)4 nanoarrays on rGO for an efficient oxygen evolution reaction, Nano Materials Science (2022), https://doi.org/10.1016/j.nanoms.2022.04.002.

[54]

R. Mishra, P. Panda, S. Barman, Synthesis of a Co3V2O8/CNx hybrid nanocomposite as an efficient electrode material for supercapacitors, New J. Chem. 45 (13) (2021) 5897–5906, https://doi.org/10.1039/D1NJ00181G.

[55]

M. Xing, L.-B. Kong, M.-C. Liu, L.-Y. Liu, L. Kang, Y.-C. Luo, Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst, J. Mater. Chem. 2 (43) (2014) 18435–18443, https://doi.org/10.1039/C4TA03776F.

[56]

G. Yang, H. Cui, G. Yang, C. Wang, Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent Li-storage properties, and investigation of electrochemical mechanism, ACS Nano 8 (5) (2014) 4474–4487, https://doi.org/10.1021/nn406449u.

[57]

G.-L. Wang, X.-F. Xu, L.-H. Cao, C.-H. He, Z.-J. Li, C. Zhang, Mercury(ii)-stimulated oxidase mimetic activity of silver nanoparticles as a sensitive and selective mercury(ii) sensor, RSC Adv. 4 (12) (2014) 5867–5872, https://doi.org/10.1039/C3RA45226C.

[58]

S. Chen, Y. Quan, Y.-L. Yu, J.-H. Wang, Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application, ACS Biomater. Sci. Eng. 3 (3) (2017) 313–321, https://doi.org/10.1021/acsbiomaterials.6b00644.

[59]

V.-D. Doan, V.-C. Nguyen, T.-L.-H. Nguyen, A.-T. Nguyen, T.-D. Nguyen, Highly sensitive and low-cost colourimetric detection of glucose and ascorbic acid based on silver nanozyme biosynthesized by Gleditsia australis fruit, Spectrochim. Acta A. 268 (2022) 120709, https://doi.org/10.1016/j.saa.2021.120709.

[60]

G.-L. Wang, L.-Y. Jin, X.-M. Wu, Y.-M. Dong, Z.-J. Li, Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters, Anal. Chim. Acta 871 (2015) 1–8, https://doi.org/10.1016/j.aca.2015.02.027.

[61]

L. Zhang, J. Sha, R. Chen, Q. Liu, J. Liu, J. Yu, H. Zhang, C. Lin, W. Zhou, J. Wang, Surface plasma Ag-decorated Bi5O7I microspheres uniformly distributed on a zwitterionic fluorinated polymer with superfunctional antifouling property, Appl. Catal. B Environ. 271 (2020) 118920, https://doi.org/10.1016/j.apcatb.2020.118920.

[62]

Y. Liu, Y. Deng, H. Dong, K. Liu, N. He, Progress on sensors based on nanomaterials for rapid detection of heavy metal ions, Sci. China Chem. 60 (3) (2017) 329–337, https://doi.org/10.1007/s11426-016-0253-2.

[63]

Y. Zhang, P. Ju, L. Sun, Z. Wang, X. Zhai, F. Jiang, C. Sun, Colorimetric determination of Hg2+ based on the mercury-stimulated oxidase mimetic activity of Ag3PO4 microcubes, Microchim. Acta 187 (7) (2020) 422, https://doi.org/10.1007/s00604-020-04399-0.

[64]

D.-F. Chai, Z. Ma, Y. Qiu, Y.-G. Lv, H. Liu, C.-Y. Song, G.-G. Gao, Oxidase-like mimic of Ag@Ag3PO4 microcubes as a smart probe for ultrasensitive and selective Hg2+ detection, Dalton Trans. 45 (7) (2016) 3048–3054, https://doi.org/10.1039/C5DT04192A.

[65]

L. Rastogi, R.B. Sashidhar, D. Karunasagar, J. Arunachalam, Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system, Talanta 118 (2014) 111–117, https://doi.org/10.1016/j.talanta.2013.10.012.

[66]

N. Agrawal, P.S. Low, J.S.J. Tan, E.W.M. Fong, Y. Lai, Z. Chen, Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles, Nano Mater. Sci. 2 (3) (2020) 281–291, https://doi.org/10.1016/j.nanoms.2019.09.004.

[67]

I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275 (1) (2004) 177–182, https://doi.org/10.1016/j.jcis.2004.02.012.

[68]

M. Chen, Z. Li, L. Chen, Highly antibacterial rGO/Cu2O nanocomposite from a biomass precursor: synthesis, performance, and mechanism, Nano Mater. Sci. 2 (2) (2020) 172–179, https://doi.org/10.1016/j.nanoms.2019.09.005.

[69]

C. Shan, Y. Liu, Y. Huang, B. Pan, Non-radical pathway dominated catalytic oxidation of As(III) with stoichiometric H2O2 over nanoceria, Environ. Int. 124 (2019) 393–399, https://doi.org/10.1016/j.envint.2019.01.014.

[70]

P. Ni, X. Wei, J. Guo, X. Ye, S. Yang, On the origin of the oxidizing ability of ceria nanoparticles, RSC Adv. 5 (118) (2015) 97512–97519, https://doi.org/10.1039/C5RA20700B.

Nano Materials Science
Pages 244-255
Cite this article:
Gao Y, Ju P, Zhang Y, et al. Double enzyme mimetic activities of multifunctional Ag nanoparticle-decorated Co3V2O8 hollow hexagonal prismatic pencils for application in colorimetric sensors and disinfection. Nano Materials Science, 2024, 6(2): 244-255. https://doi.org/10.1016/j.nanoms.2022.10.002

100

Views

2

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 July 2022
Accepted: 03 September 2022
Published: 11 March 2023
© 2024 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return