AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte

Yu-Qin Maoa,1Guang-He Donga,1Wei-Bin ZhuaYuan-Qing Lia,b( )Pei HuangaShao-Yun Fua,b( )
College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China

1 The same contribution as the first author.

Show Author Information

Abstract

Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries. The PEO-based composite electrolyte is fabricated by hot-pressing PEO, LiTFSI and Ti3C2Tx MXene nanosheets into glass fiber cloth (GFC). The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties, good electrochemical stability, and high lithium-ion migration number, which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene. Such as, the GFC@PEO-1 wt% MXene electrolyte shows a high tensile strength of 43.43 ​MPa and an impressive Young's modulus of 496 ​MPa, which are increased by 1205% and 6048% over those of PEO. Meanwhile, the ionic conductivity of GFC@PEO-1 wt% MXene at 60 ​℃ reaches 5.01 ​× ​10−2 ​S ​m−1, which is increased by around 200% compared with that of GFC@PEO electrolyte. In addition, the Li/Li symmetric battery based on GFC@PEO-1 wt% MXene electrolyte shows an excellent cycling stability over 800 h (0.3 ​mA ​cm−2, 0.3 ​mAh cm−2), which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt% MXene electrolyte with Li anode. Furthermore, the solid-state Li/LiFePO4 battery with GFC@PEO-1 wt% MXene as electrolyte demonstrates a high capacity of 110.2–166.1 ​mAh g−1 in a wide temperature range of 25–60 ​℃, and an excellent capacity retention rate. The developed sandwich structured GFC@PEO-1 wt% MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.

References

[1]

P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy 3 (2017) 16–21.

[2]

J. Zhang, M. Li, H.A. Younus, B. Wang, Q. Weng, Y. Zhang, S. Zhang, An overview of the characteristics of advanced binders for high-performance Li-S batteries, Nano Mater. Sci. 3 (2021) 124–139.

[3]

X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries, Energy Storage Mater. 34 (2021) 282–300.

[4]

J.B. Goodenough, Ceramic solid electrolytes, Solid State Ionics 94 (1997) 17–25.

[5]

X. Wei, D.F. Shriver, Highly conductive polymer electrolytes containing rigid polymers, Chem. Mater. 10 (1998) 2307–2308.

[6]

X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li, J. Borovilas, B. Xu, C. Shi, T. Jin, X. Liao, Y. Li, X. He, S. Du, Y. Fu, M. Dontigny, K. Zaghib, Y. Yang, Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte, Nano Energy 60 (2019) 205–212.

[7]

Y. Wang, S. Song, C. Xu, N. Hu, J. Molenda, L. Lu, Development of solid-state electrolytes for sodium-ion battery-A short review, Nano Mater. Sci. 1 (2019) 91–100.

[8]

G. Homann, L. Stolz, J. Nair, I.C. Laskovic, M. Winter, J. Kasnatscheew, Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure, Sci. Rep. 10 (2020) 4390.

[9]

A.A. Assegie, J.H. Cheng, L.M. Kuo, W.N. Su, B.J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale 10 (2018) 6125–6138.

[10]

Y.L. Yap, P.L. Cheang, A.H. You, L.L. Teo, Modelling of temperature dependence on PEO electrolyte with Al2O3, Comput. Mater. Sci. 106 (2015) 59–63.

[11]

C.W. Lin, C.L. Hung, M. Venkateswarlu, B.J. Hwang, Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries, J. Power Sources 146 (2005) 397–401.

[12]

J. Jiapei, C. Yongnan, J. Chaoping, Z. Yong, Z. Qinyang, Z. Zhen, Y. Zehui, W. Shaopeng, L. Hongzhan, Composite ceramic coating with enhanced thermal shock resistance formed by the in-situ synthesis of nano-ZrO2, Ceram. Int. 48 (2022) 10629–10637.

[13]

S.U. Patil, S.S. Yawale, S.P. Yawale, Conductivity study of PEO-LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler, Bull. Mater. Sci. 37 (2014) 1403–1409.

[14]

L. Yang, Q. Dai, L. Liu, D. Shao, K. Luo, S. Jamil, H. Liu, Z. Luo, B. Chang, X. Wang, Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte, Ceram. Int. 46 (2020) 10917–10924.

[15]

J. Leng, H. Wang, Y. Li, Z. Xiao, S. Wang, Z. Zhang, Z. Tang, Insight into the solid-liquid electrolyte interphase between Li6.4La3Zr1.4Ta0.6O12 and LiPF6-based liquid electrolyte, Appl. Surf. Sci. 575 (2022), 151638.

[16]

Y.C. Cao, C. Xu, X. Wu, X. Wang, L. Xing, K. Scott, A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells, J. Power Sources 196 (2011) 8377–8382.

[17]

C. Zhang, A. Wang, J. Zhang, X. Guan, W. Tang, J. Luo, 2D materials for lithium/sodium metal anodes, Adv. Energy Mater. 8 (2018), 1802833.

[18]

Y. Wu, Y.C. Zhang, Y.P. Liu, J.K. Feng, In situ-formed dual-conductive protecting layer for dendrite-free Li metal anodes in all-solid-state batteries, Energy Technol. 9 (2021), 2100087.

[19]

J. Wen, Q. Zhao, X. Jiang, G. Ji, R. Wang, G. Lu, J. Long, N. Hu, C. Xu, Graphene oxide enabled flexible PEO-based solid polymer electrolyte for all-solid-state lithium metal battery, ACS Appl. Energy Mater. 4 (2021) 3660–3669.

[20]

Q. Pan, Y. Zheng, S. Kota, W. Huang, S. Wang, H. Qi, S. Kim, Y. Tu, M.W. Barsoum, C.Y. Li, 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries, Nanoscale Adv. 1 (2019) 395–402.

[21]

Z. Chen, X. Li, D. Wang, Q. Yang, L. Ma, Z. Huang, G. Liang, A. Chen, Y. Guo, B. Dong, X. Huang, C. Yang, C. Zhi, Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures, Energy Environ. Sci. 14 (2021) 3492–3501.

[22]

N. Lucero, D. Vilcarino, D. Datta, M.Q. Zhao, The roles of MXenes in developing advanced lithium metal anodes, J. Energy Chem. 69 (2022) 132–149.

[23]

Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage, ACS Appl. Mater. Interfaces 10 (2018) 3634–3643.

[24]

G.H. Dong, Y.Q. Mao, G.M. Yang, Y.Q. Li, S.F. Song, C.H. Xu, P. Huang, N. Hu, S.Y. Fu, High-strength poly(ethylene oxide) composite electrolyte reinforced with glass fiber and ceramic electrolyte simultaneously for structural energy storage, ACS Appl. Energy Mater. 4 (2021) 4038–4049.

[25]

Y. Zhai, G. Yang, Z. Zeng, S. Song, S. Li, N. Hu, W. Tang, Z. Wen, L. Lu, J. Molenda, Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries, ACS Appl. Energy Mater. 4 (2021) 7973–7982.

[26]

B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, J. Xiao, The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries, Energy Environ. Sci. 11 (2018) 1803–1810.

[27]

X.B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao, J.Q. Huang, Q. Zhang, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater. 28 (2016) 2888–2895.

[28]

R. Xu, X.Q. Zhang, X.B. Cheng, H.J. Peng, C.Z. Zhao, C. Yan, J.Q. Huang, Artificial soft-rigid protective layer for dendrite-free lithium metal anode, Adv. Funct. Mater. 28 (2018), 1705838.

[29]

L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang, J. Zhao, B. Wang, T. Chen, Y. Sun, P. Jia, H. Li, L. Geng, J. Chen, H. Ye, Z. Wang, Y. Li, H. Sun, X. Li, Q. Dai, Y. Tang, Q. Peng, T. Shen, S. Zhang, T. Zhu, J. Huang, Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up, Nat. Nanotechnol. 15 (2020) 94–98.

[30]

X. Yang, Q. Sun, C. Zhao, X. Gao, K.R. Adair, Y. Liu, J. Luo, X. Lin, J. Liang, H. Huang, L. Zhang, R. Yang, S. Lu, R. Li, X. Sun, High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes, Nano Energy 61 (2019) 567–575.

[31]

C. Cao, Y. Li, Y. Feng, C. Peng, Z. Li, W. Feng, A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries, Energy Storage Mater. 19 (2019) 401–407.

[32]

D. Li, L. Chen, T. Wang, L.Z. Fan, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries, ACS Appl. Mater. Interfaces 10 (2018) 7069–7078.

[33]

Z. Zhang, Y. Huang, H. Gao, C. Li, J. Huang, P. Liu, 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries, J. Membr. Sci. 621 (2021), 118940.

[34]

Z. Zhang, Ying Huang, G. Zhang, L. Chao, Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries, Energy Storage Mater. 41 (2021) 631–641.

[35]

S. Luo, E. Zhao, Y. Gu, J. Huang, Z. Zhang, L. Yang, S. i. Hirano, Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries, Chem. Eng. J. 421 (2021), 127771.

[36]

N. Molinari, J.P. Mailoa, B. Kozinsky, Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of PEO-LiTFSI, Chem. Mater. 30 (2018) 6298–6306.

[37]

W.B. Zhu, F.L. Yi, P. Huang, H. Zhang, Z.H. Tang, Y.Q. Fu, Y.Y. Wang, J. Huang, G.H. Dong, Y.Q. Li, S.Y. Fu, Flexible but robust Ti3C2Tx MXene/bamboo microfibril composite paper for high-performance wearable electronics, J. Mater. Chem. 9 (2021) 26758–26766.

[38]

G.H. Dong, Y.Q. Mao, Y.Q. Li, P. Huang, S.Y. Fu, MXene-carbon nanotubes-cellulose-LiFePO4 based self-supporting cathode with ultrahigh-area-capacity for lithium-ion batteries, Electrochim. Acta 420 (2022), 140464.

[39]

J. Jeong, L. Jia, J. Kim, J. Chun, D.G. Kang, S.M. Han, C. Jo, J. Lee, A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte, J. Mater. Chem. 9 (2021) 7774–7781.

[40]

C. Wang, Y. Yang, X. Liu, H. Zhong, H. Xu, Z. Xu, H. Shao, F. Ding, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS Appl. Mater. Interfaces 9 (2017) 13694–13702.

[41]

J. Zhang, L. Yue, P. Hu, Z. Liu, B. Qin, B. Zhang, Q. Wang, G. Ding, C. Zhang, X. Zhou, Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries, Sci. Rep. 4 (2014) 6272.

[42]

B. Chen, Z. Huang, X. Chen, Y. Zhao, Q. Xu, P. Long, S. Chen, X. Xu, A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery, Electrochim. Acta 210 (2016) 905–914.

[43]

Z. Wu, Z. Xie, A. Yoshida, J. Wang, T. Yu, Z. Wang, X. Hao, A. Abudula, G. Guan, Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries, J. Colloid Interface Sci. 565 (2020) 110–118.

[44]

C. Tao, M.H. Gao, B.H. Yin, B. Li, Y.P. Huang, G. Xu, J.J. Bao, A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries, Electrochim. Acta 257 (2017) 31–39.

[45]

C. Li, Y. Huang, X. Feng, Z. Zhang, H. Gao, J. Huang, Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries, J. Colloid Interface Sci. 594 (2021) 1–8.

[46]

R. Puteh, M. Yahya, A. Ali, M.A. Sulaiman, R. Yahya, Conductivity studies on chitosan-based polymer electrolytes with lithium salts, Ionics 11 (2005) 375–377.

[47]

Y. Li, Z. Sun, L. Shi, S. Lu, Z. Sun, Y. Shi, H. Wu, Y. Zhang, S. Ding, Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries, Chem. Eng. J. 375 (2019), 121925.

[48]

S.S. Chi, Y. Liu, N. Zhao, X. Guo, C.W. Nan, L.Z. Fan, Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries, Energy Storage Mater. 17 (2019) 309–316.

Nano Materials Science
Pages 60-67
Cite this article:
Mao Y-Q, Dong G-H, Zhu W-B, et al. Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte. Nano Materials Science, 2024, 6(1): 60-67. https://doi.org/10.1016/j.nanoms.2023.01.001

136

Views

3

Downloads

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 07 November 2022
Accepted: 28 December 2022
Published: 14 January 2023
© 2023 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return