AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A novel strategy of constructing 2D supramolecular organic framework sensor for the identification of toxic metal ions

Ying WangaNing Hanb( )Chao-Qun MaaHui LiuaShengsheng YuaRongzhou WangaVijay Kumar ThakurcLing-Bao Xinga( )
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
Show Author Information

Abstract

Two novel two-dimensional (2D) supramolecular organic frameworks were fabricated in water based on the encapsulation-enhanced donor-acceptor interaction between the methyl viologen (MV) units, methoxy naphthyl (MN) units, and CB [8]. The tetraphenylethylene (TPE) derivatives 1 with four MV units were employed as rigid building blocks and the two MN units modified oligoethylene glycol derivatives 2 and 3 served as flexible edges, respectively. The obtained two SOFs have obvious sheet-like structures and exhibit fluorescence emission at 350–500 ​nm. In addition, these two SOFs were employed for the luminescent detection of Cr(Ⅵ) and Mn(Ⅶ) in aqueous solutions, and the detection limits of CrO42−, Cr2O72−, and MnO4 were calculated in a very low concentration range, indicating that these two SOFs can serve as a potential sensor for Cr(Ⅵ) and Mn(Ⅶ) detection in water. This work constructs two SOFs in an aqueous solution through a facile method and further enriches the applications of SOFs.

References

[1]

E. Krieg, M.M.C. Bastings, P. Besenius, B. Rybtchinski, Supramolecular polymers in aqueous media, Chem. Rev. 116 (4) (2016) 2414–2477.

[2]

T.F.A. de Greef, E.W. Meijer, Supramolecular polymers, Nature 453 (7192) (2008) 171–173.

[3]

L. Brunsveld, B.J.B. Folmer, E.W. Meijer, R.P. Sijbesma, Supramolecular polymers, Chem. Rev. 101 (12) (2001) 4071–4098.

[4]

T. Aida, E.W. Meijer, S.I. Stupp, Functional supramolecular polymers, Science 335 (6070) (2012) 813–817.

[5]

R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu, J. Shen, Functional supramolecular polymers for biomedical applications, Adv. Mater. 27 (3) (2015) 498–526.

[6]

X. Ma, H. Tian, Stimuli-responsive supramolecular polymers in aqueous solution, Acc. Chem. Res. 47 (7) (2014) 1971–1981.

[7]

C. Li, Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates, Chem. Commun. 50 (83) (2014) 12420–12433.

[8]

H. Li, Y. Yang, F. Xu, T. Liang, H. Wen, W. Tian, Pillararene-based supramolecular polymers, Chem. Commun. 55 (3) (2019) 271–285.

[9]

Y. Luo, W. Zhang, Q. Ren, Z. Tao, X. Xiao, Highly efficient artificial light-harvesting systems constructed in an aqueous solution based on twisted cucurbit[14]Uril, ACS Appl. Mater. Interfaces 14 (26) (2022) 29806–29812.

[10]

L. Yang, X. Tan, Z. Wang, X. Zhang, Supramolecular polymers: historical development, preparation, characterization, and functions, Chem. Rev. 115 (15) (2015) 7196–7239.

[11]

P. Wei, X. Yan, F. Huang, Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions, Chem. Soc. Rev. 44 (3) (2015) 815–832.

[12]

Y. Liu, J. Jin, H. Deng, K. Li, Y. Zheng, C. Yu, Y. Zhou, Protein-framed multi-porphyrin micelles for a hybrid natural-artificial light-harvesting nanosystem, Angew. Chem. Int. Ed. 55 (28) (2016) 7952–7957.

[13]

Y. Liu, S. Li, K. Li, Y. Zheng, M. Zhang, C. Cai, C. Yu, Y. Zhou, D. Yan, A srikaya-like light-harvesting antenna based on graphene quantum dots and porphyrin unimolecular micelles, Chem. Commun. 52 (60) (2016) 9394–9397.

[14]

Y. Ji, Q. Zuo, C. Chen, Y. Liu, Y. Mai, Y. Zhou, A supramolecular single-site photocatalyst based on multi-to-one Forster resonance energy transfer, Chem. Commun. 57 (34) (2021) 4174–4177.

[15]

H.-Q. Peng, C.-L. Sun, L.-Y. Niu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung, Q.-Z. Yang, Supramolecular polymeric fluorescent nanoparticles based on quadruple hydrogen bonds, Adv. Funct. Mater. 26 (30) (2016) 5483–5489.

[16]

X.M. Chen, Y. Chen, Q. Yu, B.H. Gu, Y. Liu, Supramolecular assemblies with near-infrared emission mediated in two stages by cucurbituril and amphiphilic calixarene for lysosome-targeted cell imaging, Angew. Chem. Int. Ed. 57 (38) (2018) 12519–12523.

[17]

S.B. Yu, F. Lin, J. Tian, J. Yu, D.W. Zhang, Z.T. Li, Water-soluble and dispersible porous organic polymers: preparation, functions and applications, Chem. Soc. Rev. 51 (2) (2022) 434–449.

[18]

K.D. Zhang, J. Tian, D. Hanifi, Y. Zhang, A.C. Sue, T.Y. Zhou, L. Zhang, X. Zhao, Y. Liu, Z.T. Li, Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water, J. Am. Chem. Soc. 135 (47) (2013) 17913–17918.

[19]

C. Xu, X. Lin, W. Wu, X. Ma, Room-temperature phosphorescence of a water-soluble supramolecular organic framework, Chem. Commun. 57 (79) (2021) 10178–10181.

[20]

B. Yang, X.-D. Zhang, J. Li, J. Tian, Y.-P. Wu, F.-X. Yu, R. Wang, H. Wang, D.-W. Zhang, Y. Liu, L. Zhou, Z.-T. Li, In situ loading and delivery of short single- and double-stranded DNA by supramolecular organic frameworks, CCS Chemistry 1 (2) (2019) 156–165.

[21]

Y.Y. Liu, Z.K. Wang, S.B. Yu, Y. Liu, H. Wang, W. Zhou, Z.T. Li, D.W. Zhang, Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety, J. Mater. Chem. B 10 (22) (2022) 4163–4171.

[22]

I. Neira, C. Peinador, M.D. Garcia, CB[7]- and CB[8]-Based [2]-(Pseudo)rotaxanes with triphenylphosphonium-capped threads: serendipitous discovery of a new high-affinity binding motif, Org. Lett. 24 (25) (2022) 4491–4495.

[23]

J.W. Lee, S. Samal, N. Selvapalam, H.J. Kim, K. Kim, Acc. Chem. Res. 36 (2003) 621–630.

[24]

J. del Barrio, P.N. Horton, D. Lairez, G.O. Lloyd, C. Toprakcioglu, O.A. Scherman, Photocontrol over cucurbit[8]uril complexes: stoichiometry and supramolecular polymers, J. Am. Chem. Soc. 135 (32) (2013) 11760–11763.

[25]

S.J. Barrow, S. Kasera, M.J. Rowland, J. del Barrio, O.A. Scherman, Cucurbituril-based molecular recognition, Chem. Rev. 115 (22) (2015) 12320–12406.

[26]

H. Xu, H. Lu, Q. Zhang, M. Chen, Y. Shan, T.-Y. Xu, F. Tong, D.-H. Qu, Surfactant-induced chirality transfer, amplification and inversion in a cucurbit[8]uril–viologen host–guest supramolecular system, J. Mater. Chem. C 10 (7) (2022) 2763–2774.

[27]

Y.X. Hu, W.J. Li, P.P. Jia, X.Q. Wang, L. Xu, H.B. Yang, Supramolecular artificial light-harvesting systems with aggregation-induced emission, Adv. Opt. Mater. 8 (14) (2020), 1902154.

[28]

X.-M. Chen, Y.-M. Zhang, Y. Liu, Adsorption of anionic dyes from water by thermostable supramolecular hydrogel, Supramol. Chem. 28 (9–10) (2016) 817–824.

[29]

Y. Li, Y. Dong, X. Miao, Y. Ren, B. Zhang, P. Wang, Y. Yu, B. Li, L. Isaacs, L. Cao, Shape-controllable and fluorescent supramolecular organic frameworks through aqueous host-guest complexation, Angew. Chem. Int. Ed. 57 (3) (2018) 729–733.

[30]

H. Liu, Z. Zhang, Y. Zhao, Y. Zhou, B. Xue, Y. Han, Y. Wang, X. Mu, S. Zang, X. Zhou, Z. Li, A water-soluble two-dimensional supramolecular organic framework with aggregation-induced emission for DNA affinity and live-cell imaging, J. Mater. Chem. B 7 (9) (2019) 1435–1441.

[31]

H. Liu, Q. Pan, C. Wu, J. Sun, T. Zhuang, T. Liang, X. Mu, X. Zhou, Z. Li, Y. Zhao, Construction of two-dimensional supramolecular nanostructure with aggregation-induced emission effect via host–guest interactions, Mater. Chem. Front. 3 (8) (2019) 1532–1537.

[32]

B. Yang, S.B. Yu, P.Q. Zhang, Z.K. Wang, Q.Y. Qi, X.Q. Wang, X.H. Xu, H.B. Yang, Z.Q. Wu, Y. Liu, D. Ma, Z.T. Li, Self-assembly of a bilayer 2D supramolecular organic framework in water, Angew. Chem. Int. Ed. 60 (50) (2021) 26268–26275.

[33]

W. Wang, B. Qi, X. Yu, W.Z. Li, Z. Yang, H. Zhang, S. Liu, Y. Liu, X.Q. Wang, Modular design of supramolecular organic frameworks for image-guided photodynamic therapy, Adv. Funct. Mater. 30 (43) (2020).

[34]

J. Li, Y. Zhao, Y. Dong, Y. Yu, L. Cao, B. Wu, Supramolecular organic frameworks of cucurbit[n]uril-based [2]pseudorotaxanes in the crystalline state, CrystEngComm 18 (41) (2016) 7929–7933.

[35]

Y. Li, Q. Li, X. Miao, C. Qin, D. Chu, L. Cao, Adaptive chirality of an achiral cucurbit[8]uril-based supramolecular organic framework for chirality induction in water, Angew. Chem. Int. Ed. 60 (12) (2021) 6744–6751.

[36]

C. Xu, X. Lin, W. Wu, X. Ma, Room-temperature phosphorescence of a water-soluble supramolecular organic framework, Chem. Commun. 57 (79) (2021) 10178–10181.

[37]

M. Liu, L. Chen, P. Shan, C. Lian, Z. Zhang, Y. Zhang, Z. Tao, X. Xiao, Pyridine detection using supramolecular organic frameworks incorporating cucurbit[10]uril, ACS Appl. Mater. Interfaces 13 (6) (2021) 7434–7442.

[38]

H.J. Kim, J. Heo, W.S. Jeon, E. Lee, J. Kim, S. Sakamoto, K. Kim, Selective inclusion of a hetero-guest pair in a molecular host: formation of stable charge-transfer complexes in cucurbit [8]uril, Angew. Chem. Int. Ed. 40 (8) (2001) 1526–1529.

[39]

X. Zhang, C.-B. Nie, T.-Y. Zhou, Q.-Y. Qi, J. Fu, X.-Z. Wang, L. Dai, Y. Chen, X. Zhao, The construction of single-layer two-dimensional supramolecular organic frameworks in water through the self-assembly of rigid vertexes and flexible edges, Polym. Chem. 6 (11) (2015) 1923–1927.

[40]

L. Zhang, Y. Jia, H. Wang, D.-W. Zhang, Q. Zhang, Y. Liu, Z.-T. Li, pH-Responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity, Polym. Chem. 7 (10) (2016) 1861–1865.

[41]

M. Pfeffermann, R. Dong, R. Graf, W. Zajaczkowski, T. Gorelik, W. Pisula, A. Narita, K. Mullen, X. Feng, Free-standing monolayer two-dimensional supramolecular organic framework with good internal order, J. Am. Chem. Soc. 137 (45) (2015) 14525–14532.

[42]

J. Liu, Y.-Q. Fan, S.-S. Song, G.-F. Gong, J. Wang, X.-W. Guan, H. Yao, Y.-M. Zhang, T.-B. Wei, Q. Lin, Aggregation-Induced emission supramolecular organic framework (AIE SOF) gels constructed from supramolecular polymer networks based on tripodal pillar[5]arene for fluorescence detection and efficient removal of various analytes, ACS Sustain. Chem. Eng. 7 (14) (2019) 11999–12007.

[43]

Q. Lin, X.-W. Guan, Y.-M. Zhang, J. Wang, Y.-Q. Fan, H. Yao, T.-B. Wei, Spongy materials based on supramolecular polymer networks for detection and separation of broad-spectrum pollutants, ACS Sustain. Chem. Eng. 7 (17) (2019) 14775–14784.

[44]

Y. Zhang, T.G. Zhan, T.Y. Zhou, Q.Y. Qi, X.N. Xu, X. Zhao, Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid, Chem. Commun. 52 (48) (2016) 7588–7591.

[45]

Y.C. Zhang, P.Y. Zeng, Z.Q. Ma, Z.Y. Xu, Z.K. Wang, B. Guo, F. Yang, Z.T. Li, A pH-responsive complex based on supramolecular organic framework for drug-resistant breast cancer therapy, Drug Deliv. 29 (1) (2022) 1–9.

[46]

Z.Y. Xu, W. Mao, Z. Zhao, Z.K. Wang, Y.Y. Liu, Y. Wu, H. Wang, D.W. Zhang, Z.T. Li, D. Ma, Self-assembled nanoparticles based on supramolecular-organic frameworks and temoporfin for an enhanced photodynamic therapy in vitro and in vivo, J. Mater. Chem. B 10 (6) (2022) 899–908.

[47]

Y.-J. Li, T.-T. Huang, J. Liu, Y.-Q. Xie, B. Shi, Y.-M. Zhang, H. Yao, T.-B. Wei, Q. Lin, Detection of lead(Ⅱ) in living cells by inducing the transformation of a supramolecular system into quantum dots, ACS Sustain. Chem. Eng. 10 (24) (2022) 7907–7915.

[48]

X.-M. Jiang, X.-J. Huang, S.-S. Song, X.-Q. Ma, Y.-M. Zhang, H. Yao, T.-B. Wei, Q. Lin, Tri-pillar[5]arene-based multi-stimuli-responsive supramolecular polymers for fluorescence detection and separation of Hg2+, Polym. Chem. 9 (37) (2018) 4625–4630.

Nano Materials Science
Pages 335-342
Cite this article:
Wang Y, Han N, Ma C-Q, et al. A novel strategy of constructing 2D supramolecular organic framework sensor for the identification of toxic metal ions. Nano Materials Science, 2023, 5(3): 335-342. https://doi.org/10.1016/j.nanoms.2023.01.002

313

Views

7

Downloads

5

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 18 July 2022
Accepted: 28 December 2022
Published: 03 February 2023
© 2023 Chongqing University.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return