AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction

Jianxin Lia,bYuhua Wanga( )Yitong WangaYao GuobShiding Zhanga,bHaixiang SongbXianchang LicQianqian GaobWanyu ShangbShuaishuai HubHuibin ZhengbXifei Lid,e,f( )
Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang, 455000, China
School of Intelligent Manufacturing, Huzhou, 313000, China
Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education, Xi'an, 710048, China
Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
Show Author Information

Abstract

Photocatalytic reduction of CO2 is considered as a kind of promising technologies for solving the greenhouse effect. Herein, a novel hybrid structure of g-C3N4/ZnO/Ti3C2 photocatalysts was designed and fabricated to investigate their abilities for CO2 reduction. As demonstration, heterojunction of g-C3N4/ZnO can improve photogenerated carriers' separation, the addition of Ti3C2 fragments can further facilitate the photocatalytic performance from CO2 to CO. Hence, g-C3N4/ZnO/Ti3C2 has efficiently increased CO production by 8 and 12 times than pristine g-C3N4 and ZnO, respectively. Which is ascribed to the photogenerated charge migration promoted by metallic Ti3C2. This work provides a guideline for designing efficient hybrid catalysts on other applications in the renewable energy fields.

References

[1]

S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (7411) (2012) 294–303.

[2]

K. Li, B. Peng, T. Peng, Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels, ACS Catal. 6 (11) (2016) 7485–7527.

[3]

S. Liu, H. Yang, X. Huang, L. Liu, W. Cai, J. Gao, et al., Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction, Adv. Funct. Mater. 28 (21) (2018), 1800499.

[4]

M. Liang, T. Borjigin, Y. Zhang, B. Liu, H. Liu, H. Guo, Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction, Appl. Catal. B Environ. 243 (2019) 566–575.

[5]

H.-J. Son, C. Pac, S.O. Kang, Inorganometallic photocatalyst for CO2 reduction, Acc. Chem. Res. 54 (24) (2021) 4530–4544.

[6]

X. Jiao, K. Zheng, Z. Hu, Y. Sun, Y. Xie, Broad-spectral-response photocatalysts for CO2 reduction, ACS Cent. Sci. 6 (5) (2020) 653–660.

[7]

S.C. Shit, I. Shown, R. Paul, K.-H. Chen, J. Mondal, L.-C. Chen, Integrated nanoarchitectured photocatalysts for photochemical CO2 reduction, Nanoscale 12 (46) (2020) 23301–23332.

[8]

X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels, Chem. Rev. (Washington, DC, U. S.) 119 (6) (2019) 3962–4179.

[9]

Y. Liu, F. Yu, F. Wang, S. Bai, G. He, Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight, Chin. J. Struct. Chem. 41 (2022) 2201034–2201039.

[10]

S. Han, B. Li, L. Huang, H. Xi, Z. Ding, J. Long, Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light, Chin. J. Struct. Chem. 41 (2022) 2201007–2201013.

[11]

Z.-T. Xu, K. Xie, Enhanced CO2 electrolysis with metal-oxide interface structures, Chin. J. Struct. Chem. 41 (1) (2021) 31–41.

[12]

L. Cheng, D. Zhang, Y. Liao, J. Fan, Q. Xiang, Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction, Chin. J. Catal. 42 (1) (2021) 131–140.

[13]

N. Li, J. Peng, Z. Shi, P. Zhang, X. Li, Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CTx -MXenes for highly selective CO2 electrochemical reduction, Chin. J. Catal. 43 (7) (2022) 1906–1917.

[14]

J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-Based heterostructured photocatalysts, Adv. Energy Mater. 8 (3) (2018), 1701503.

[15]

N.F.F. Moreira, M.J. Sampaio, A.R. Ribeiro, C.G. Silva, J.L. Faria, A.M.T. Silva, Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light, Appl. Catal. B Environ. 248 (2019) 184–192.

[16]

X. Qian, X. Meng, J. Sun, L. Jiang, Y. Wang, J. Zhang, et al., Salt-assisted synthesis of 3D porous g-C3N4 as a bifunctional photo- and electrocatalyst, ACS Appl. Mater. Interfaces 11 (30) (2019) 27226–27232.

[17]

J. Li, Y. Wang, X. Li, Q. Gao, S. Zhang, A facile synthesis of high-crystalline g-C3N4 nanosheets with closed self-assembly strategy for enhanced photocatalytic H2 evolution, J. Alloys Compd. 881 (2021), 160551.

[18]

Y. He, Y. Wang, L. Zhang, B. Teng, M. Fan, High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst, Appl. Catal. B Environ. 168 (2015) 1–8.

[19]

Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, et al., Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction, Sol. Energy Mater. Sol. Cell. 137 (2015) 175–184.

[20]

Y. He, L. Zhang, B. Teng, M. Fan, A new application of Z-scheme Ag3PO4/gC3N4 composite in converting CO2 to fuel, Environmental Science & Technology 49 (1) (2015) 649–656.

[21]

Y. Meng, Y. Lin, J. Yang, Synthesis of rod-cluster ZnO nanostructures and their application to dye-sensitized solar cells, Appl. Surf. Sci. 268 (2013) 561–565.

[22]

U. Manzoor, D.K. Kim, Size control of ZnO nanostructures formed in different temperature zones by varying Ar flow rate with tunable optical properties, Phys. E Low-dimens. Syst. Nanostruct. 41 (3) (2009) 500–505.

[23]

Y.-S. Tsai, J.-R. Chen, C.-H. Lee, C.-C. Kuo, Y.-H. Lin, C.-C. Wang, et al., Morphologies and material properties of ZnO nanotubes, ZnO/ZnS core-shell nanorods, and ZnO/ZnS core-shell nanotubes, Ceram. Int. 48 (5) (2022) 7232–7239.

[24]

J. Bai, R. Shen, Z. Jiang, P. Zhang, Y. Li, X. Li, Integration of 2D layered CdS/WO3 Sscheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation, Chin. J. Catal. 43 (2) (2022) 359–369.

[25]

S. Li, M. Cai, Y. Liu, J. Zhang, C. Wang, S. Zang, et al., In situ construction of a C3N5 nanosheet/Bi2WO6 nanodot S-scheme heterojunction with enhanced structural defects for the efficient photocatalytic removal of tetracycline and Cr(Ⅵ), Inorg. Chem. Front. 9 (11) (2022) 2479–2497.

[26]

H. Jung, T.-T. Pham, E.W. Shin, Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts, J. Alloys Compd. 788 (2019) 1084–1092.

[27]

F. Meng, Y. Liu, J. Wang, X. Tan, H. Sun, S. Liu, et al., Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: differences in photoactive mechanism, J. Colloid Interface Sci. 532 (2018) 321–330.

[28]

Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation, ACS Appl. Mater. Interfaces 6 (16) (2014) 14405–14414.

[29]

N. Nie, L. Zhang, J. Fu, B. Cheng, J. Yu, Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance, Appl. Surf. Sci. 441 (2018) 12–22.

[30]

X. Wei, H. Liu, T. Li, Z. Jiang, W. Hu, Q. Niu, et al., Three-dimensional flower heterojunction g-C3N4/Ag/ZnO composed of ultrathin nanosheets with enhanced photocatalytic performance, J. Photochem. Photobiol. Chem. 390 (2020), 112342.

[31]

Y. Zhang, Y. Wang, Nonlinear optical properties of metal nanoparticles: a review, RSC Adv. (7) (2017) 5129–5144.

[32]

P. Zhu, M. Hu, M. Duan, L. Xie, M. Zhao, High visible light response Z-scheme Ag3PO4/g-C3N4/ZnO composite photocatalyst for efficient degradation of tetracycline hydrochloride: preparation, properties and mechanism, J. Alloys Compd. 840 (2020), 155714.

[33]

P.P. Gotipamul, G. Vattikondala, K.D. Rajan, S. Khanna, M. Rathinam, S. Chidambaram, Impact of piezoelectric effect on the heterogeneous visible photocatalysis of g-C3N4/Ag/ZnO tricomponent, Chemosphere 287 (Pt 4) (2022), 132298.

[34]

P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, et al., Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production, Nano Energy 56 (2019) 127–137.

[35]

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (37) (2011) 4248–4253.

[36]

V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes, Science 369 (6506) (2020) 979.

[37]

Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, et al., Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging, Adv. Mater. 29 (15) (2017).

[38]

Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui, J. Tian, Boosting the photocatalytic ability of g-C3N4 for Hydrogen production by Ti3C2 MXene quantum dots, ACS Appl. Mater. Interfaces 11 (44) (2019) 41440–41447.

[39]

C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, et al., 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: dual effects of urea, Appl. Catal. B Environ. 268 (2020), 118738.

[40]

J. Li, Q. Zhang, Y. Zou, Y. Cao, W. Cui, F. Dong, et al., Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification, J. Colloid Interface Sci. 575 (2020) 443–451.

[41]

J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, S.-Z. Qiao, Metal-Free 2D/2D Phosphorene/ g-C3N4 Van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production, Adv. Mater. 30 (25) (2018), 1800128.

[42]

H. Dong, X. Zhang, Y. Zuo, N. Song, X. Xin, B. Zheng, et al., 2D Ti3C2 as electron harvester anchors on 2D g-C3N4 to create boundary edge active sites for boosting photocatalytic performance, Applied Catalysis A: General. 590 (2020), 117367.

[43]

J. Li, L. Zhao, S. Wang, J. Li, G. Wang, J. Wang, In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution, Appl. Surf. Sci. (2020) 515.

[44]

Q. Tang, Z. Sun, S. Deng, H. Wang, Z. Wu, Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance, J. Colloid Interface Sci. 564 (2020) 406–417.

[45]

Z. Zhao, X. Wang, Z. Shu, J. Zhou, T. Li, W. Wang, et al., Facile preparation of hollow-nanosphere based mesoporous g-C3N4 for highly enhanced visible-lightdriven photocatalytic hydrogen evolution, Appl. Surf. Sci. 455 (2018) 591–598.

[46]

Y. Si, Z. Sun, L. Huang, M. Chen, L. Wu, A "ship-in-a-bottle" strategy to fabricate highly crystallized nanoporous graphitic C3N4 microspheres under pressurized conditions, J. Mater. Chem. 7 (15) (2019) 8952–8959.

[47]

Y. Li, M. Yang, Y. Xing, X. Liu, Y. Yang, X. Wang, et al., Preparation of carbon-rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production, Small 13 (2017), 1701552.

[48]

Z. Chen, Y. Fang, L. Wang, X. Chen, W. Lin, X. Wang, Remarkable oxygen evolution by Co-doped ZnO nanorods and visible light, Appl. Catal. B Environ. 296 (2021), 120369.

[49]

Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, et al., Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution, ACS Nano 10 (2) (2016) 2745–2751.

[50]

H. Xu, X. She, T. Fei, Y. Song, D. Liu, H. Li, et al., Metal-Oxide-Mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 Evolution, ACS Nano 13 (10) (2019) 11294–11302.

[51]

M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater. 29 (18) (2017) 7633–7644.

[52]

F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity, Appl. Catal. B Environ. 272 (2020), 119006.

[53]

S. Prabhu, M. Pudukudy, S. Harishd, M. Navaneethan, S. Sohila, K. Murugesan, et al., Facile construction of djembe-like ZnO and its composite with g-C3N4 as a visible-light-driven heterojunction photocatalyst for the degradation of organic dyes, Mater. Sci. Semicond. Process. 106 (2020), 104754.

[54]

W. Liu, M. Wang, c Xu, s Chen, Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties, Chem. Eng. J. 209 (2012) 386–393.

[55]

J. Liu, X.-T. Yan, X.-S. Qin, S.-J. Wu, H. Zhao, W.-B. Yu, et al., Light-assisted preparation of heterostructured g-C3N4/ZnO nanorods arrays for enhanced photocatalytic hydrogen performance, Catal. Today 355 (2019) 932–936.

Nano Materials Science
Pages 237-245
Cite this article:
Li J, Wang Y, Wang Y, et al. MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction. Nano Materials Science, 2023, 5(2): 237-245. https://doi.org/10.1016/j.nanoms.2023.02.003

306

Views

8

Downloads

40

Crossref

44

Web of Science

47

Scopus

1

CSCD

Altmetrics

Received: 05 November 2022
Accepted: 28 December 2022
Published: 02 March 2023
© 2023 Chongqing University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return